圓錐曲線:斜率問題、向量問題、三點(diǎn)共線問題專項(xiàng)訓(xùn)練(解析版)_第1頁
圓錐曲線:斜率問題、向量問題、三點(diǎn)共線問題專項(xiàng)訓(xùn)練(解析版)_第2頁
圓錐曲線:斜率問題、向量問題、三點(diǎn)共線問題專項(xiàng)訓(xùn)練(解析版)_第3頁
圓錐曲線:斜率問題、向量問題、三點(diǎn)共線問題專項(xiàng)訓(xùn)練(解析版)_第4頁
圓錐曲線:斜率問題、向量問題、三點(diǎn)共線問題專項(xiàng)訓(xùn)練(解析版)_第5頁
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

(2)直線l:y=k(x-1((k>0(與C交于A,B兩點(diǎn),過C上的點(diǎn)P(與A,B不重合且不在坐標(biāo)軸上)作xBP.,因此sin∠APQ=sin∠BPQ,故直線AP,BP的斜率kAP,kBP互為相反數(shù),則kAP(ii)設(shè)P(x0,y0(,x2-4k2x+2k2-8=0,化簡得(y1-y0((x2-x0(+(y2-y0((x1-x0(=0,即[k(x1-1(-y0[(x2-x0(+[k(x2-1(-y0[(x1-x0(=2kx1x2-(y0+kx0+k((x1+x2(+2x0(故2k(2k2-8(-4k2(y0+kx0+k(+2x0(y0+k((2k2+1(=0,化簡得2y0(x0-1(k2+(x0-8(k+x0y0=0,從而2y0(x0-1(k2+(x0-x-2y(k+x0y0=0,整理得(2y0k-x0([(x0-1(k-y0[=0,又因P(x0,y0(不在直線l:y=k(x-1(上,即(x0-1(k-y0≠0,(2)過點(diǎn)E(2,0(作直線l1交雙曲線的右支于A,B兩點(diǎn),連接AO并延長交雙曲線左(3)(-1,0(∩(0,1(故右焦點(diǎn)F(c,0(到漸近線的距離為,y2(, (x=my+2x2-=1?(3m2-1(y2+12my+9=02××|OE|×(|y1-y2|(=2、(y1+y2(2-4y1y2,-1(y2+6λty+3t2-3=0,方程(3λ2-1(y2+6λty+3t2-3=0的判別式Δ=36λ2t2-4(3λ2-1((3t2-3(=36λ2+12t2-12>0,x3x4=(λy3+t((λy4+t(=λ2y3y4+λt(y3+y4(+t2=,x3x4-(x3+x4(x0+xkSM+kSN=x4y3+x3y4-(x3+x4(y0x3x4-(x3+x4(x0+x所以kSM+kSN=3λ-13λ所以kSM+kSN=3λ-13λ-13λ-1+x所以tx0-1=03x-3-2tx0+t2+x(t-x0(2t-x0,所以6x0y0=2ty03x-3-2tx0+t2+x(t-x0(2t-x0,所以t的范圍為(-1,0(∩(0,1(.(2)已知P,Q,R是C上的三個(gè)不同點(diǎn).k3,k4①若P(2,0(,設(shè)Q(x2,y2(,R(x3,y3(, -2(2+y=(x3-2(2+y.②根據(jù)條件k1,k2,k3,k4均存在知k1,k2,k3,k4均不設(shè)點(diǎn)P(x1,y1(,Q(x2,y2(,R(x3,y3(,三角形外心D(x0,y0(,則有-y=1,-y=1,-y=1,則PQ的中垂線為y將k1代入則:y-=-x-,整理得=-+,由①-②得,-=-,則有k1k2k3k4=-.2三等分線段BD.的右頂點(diǎn),M(2,3(,N(2,-3(在雙曲線E上.(2)過點(diǎn)G(-3,0(且斜率為k1的直線l與雙曲線E的左支交于A,B兩點(diǎn),△ABD的外接圓的圓心為P,1k2為定值.【詳解】(1)因?yàn)镸(2,3(,N(2,-3(在雙曲線E上,(2--2la22x2-=1.得(3-k(x2-6kx-9k-3=0,① 設(shè)圓P:(x-s(2+(y-t(2=r2,r>0,由{得(1+k(x2+(6k-2k1t-2s(x+s2+(3k1-t(2-r2=0,②由雙曲線的右頂點(diǎn)D在圓上得(1-s(2+t2=r2,t-3s=0③于點(diǎn)F,點(diǎn)M為直線EF與BD的交點(diǎn),點(diǎn)N為直線BE與OM的交點(diǎn).證明:直線OM與直線DE的斜率6k(1-3k(x+27k2-18k-9=0,由M為直線EF與BD的交點(diǎn),則設(shè)M(xM,1),當(dāng)直線EF的斜率不存在時(shí),xM=9k2-6k- 1-xM- 1-xM-,解得xM=-3k,,解得xM=-3k,=xM-(2)①設(shè)M(x1,y1(,N(x2,y2(..、(x1+x2(2-4x1x2=.則x2-x1=-(x1+x2(2-4x1x2=-. =-(5+26(.2,,8.(24-25高二下·重慶沙坪壩·期末)橢圓E:x2+y2=1(a>b>0(的左、右焦點(diǎn)分別為F12,,F又PF1.PF2=(-x0-c,-y0(.(-x0+c,-y0(=x+y-c則Δ=8(m2+1(>0,y1+y2=-,y1y2=-,T(2,0(的直線l與橢圓C交于不同的兩點(diǎn)M,N.(2)λ=-或-(x=ty+2且y1+y2=-y1y,-2,若t=-1,同理可得λ=-或λ=-,綜上,λ=-或λ=-. (2)過點(diǎn)F(1,0(的直線l(斜率存在且不為0)與C-1,0(和(1,0(為兩焦點(diǎn)的橢圓,則直線PM的方程為y-yx-x1(, -18m+-6m則直線PM的方程為yx-4(,(ⅱ)M=(4-x1,y1(,N=(4-x2,y2(,M.N=(4-x1((4-x2(+y1y2=(3-my1((3-my2(+y1y2=(m2+1(y1y2-3m(y1+y2(+9-,:設(shè)A(x1,2x1(,B(x2,-2x2(,P(x,y(,((:動(dòng)點(diǎn)P的軌跡方程為x2+=1.:P.P=(P+C(.(P+C(=(P+C(.(P-C(=P2-C2,:P.P=(x+2)2+y2-1=-15x2+4x+19=-15(x-2+,“-1≤x≤1,:當(dāng)x=時(shí),P.P取得最大值.5-4=1,-5k2(x2-10kx5-4=1, 所以O(shè).O=(x1,kx1+1(.(x2,kx2+1(=-,A2(所以雙曲線C的方程為x2-=1.因?yàn)橹本€l過點(diǎn)M(-2,0)且斜率不為0,所以設(shè)直線l的方程為x=my-2(m>(其中m為設(shè)P(x1,y1(,Q(x2,y2(,因?yàn)橹本€OQ交雙曲線C于點(diǎn)R,所以R(-x2,-y2(,所以A1R=(-x2+1,-y2(,A2P=(x1-1-1(y2-12my+9=0,所以A1R·A2P=(-x2+1((x所以A1R·A2P=(-x2+1((x1-1(-y1y2=(-my2+2+1((my1-2-1(-y1y2=-(m2+1(y1y2+3m(y1+y2(-9=-(m2+1(+3m-9=0,所以A1R.A2M(2,0(的直線l交雙曲線Γ于P,Q兩點(diǎn).(2)P(-2,22(2-1=3.-=1,其中M(2,0(,A1(-1,0(, 其方程為(x-2(2+y2=9;則有解得P(-2,22(.(3)由題知A1(-1,0(,A2(1,0(,l≠0,設(shè)點(diǎn)P(x1,y1(,Q(x2,y2(,根據(jù)OQ延長線交雙曲線Γ于點(diǎn)R,根據(jù)雙曲線對稱性知R(-x2,-y2(,可得A1R=(-x2+1,-可得A1R=(-x2+1,-y2(,A2P=(x1-1,y1(,則A1R.A2P=(-x2+1((x1-1(-y1y2=1,因?yàn)镻(x1,y1(,Q(x2,y2(在直線l上,2-2=0,的兩點(diǎn)M,N.-m2(x2+2m2x-2m2=0,因?yàn)橹本€l與雙曲線C的右支相交于M,N不同的兩點(diǎn),因?yàn)镻=P,所以(x1,y1-1(=(x2,y2-1(,(3)過點(diǎn)(0,-的動(dòng)直線與橢圓E有兩個(gè)交點(diǎn)P,Q.在y軸上是否存在點(diǎn)T使得T.T≤0恒成 所以A(-2c,0),B(0,-3c),C(0,-,[-3,3]設(shè)P(x1,y1(,Q(x2,y2(,T(0,t(,y=kx-,可得(3+4k2(x2-12kx-27=設(shè)P(x1,y1(,Q(x2,y2(,T(0,t(,y=kx-,可得(3+4k2(x2-12kx-27=0,而TP=(x1,y1-t(,TQ=(x2,y2-t(,故T.T=x1x2+(y1-t((y2-t(=x1x2+(kx1--t((kx2--t(=(1+k2(x1x2-k+t((x1+x2(++t(2=-27k2-27-18k2-12k2t++t(2+(3+2t(2k2=[(3+2t(2-12t-45[k2++t(2-27t(-3≤t≤.P的軌跡為E.H,線段AB與CD的中點(diǎn)分別為M,N.∴點(diǎn)P到(0,1(的距離與到直線y=-1的距離相等,則直線AB的斜率為kABxM,∴直線AB的方程為y-yx-x1(,即(x2+x1(x-4y-x1x2=0,∴直線CD的方程為y-yx-x3(,即(x4+x3(x-4y-x4x3=0,又直線AC的斜率為kAC∴直線AC的方程為y-yx-x3(,即(x1+x3(x-4y-x1x3=0,直線BD的斜率為kBD∴直線BD的方程為y-yx-x2(,即(x2+x4(x-4y-x2x4=0,所以直線AC與MN的交點(diǎn)和直線BD與MN的交點(diǎn)重合,即為點(diǎn)H.所以M,H,N三點(diǎn)共線; “ABⅡCD,:=>1,得yN>yH>yM,:|HM|=yH-yM==1,上面兩式相減得(x4-x1(2+(x2-x3(2=8,1-x4=x3-x2,:|x2-x3|=2,過點(diǎn)B作BEⅡMN交CD于點(diǎn)E,“四邊形BMNE是平行四邊形,:NE=MB,“M,N分別是AB,CD的中點(diǎn),:NC=2m,MB=m,:NE=m,:EC=m,設(shè)△ABH的邊AB上的高為h1,△BCE的邊EC上的高為h2,則=,“====,:S△CDH=4S△ABH,S△BCH=2S△ABH,S△ADH=2S△ABH,:SABCD=S△ABH+S△AHD+S△CHD+S△BHC=9S△ABH=9×2=18.三點(diǎn)共線.(2)x-y+1=0或x+y-1=0;,y1),Q(x2,y2),-4kx-4=0,x1+x2=4k,x1x2=-4,所以直線l的方程為x-y+1=0或x+y-1=0.(3)依題意,設(shè)M(t,-1),A(x3,y3),B(x4,y4),由y=x2,求導(dǎo)得y/=x,因此拋物線C在點(diǎn)A處切線方程為y-y3=x3(x-x3),所以A,B,F三點(diǎn)共線.方程為y=.(1)求二次函數(shù)y=x2-x+1的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(3)設(shè)過A(4,1(的直線與拋物線y=x2-x+1的另一個(gè)交點(diǎn)為B,直線AB與直線y=x-4交于點(diǎn)P,過點(diǎn)P作x軸的垂線交拋物線y=x2-x+1于點(diǎn)N.是否存在定點(diǎn)G,使得B,N,G三點(diǎn)共線?若【詳解】(1)二次函數(shù)y=x2-x+1=(x2所以二次函數(shù)y=x2-x+1的焦點(diǎn)坐標(biāo)為F(2,1),準(zhǔn)線方程為y=-1. 準(zhǔn)線方程為y(3)由(1)知拋物線y=x2-x+1=(x2-4x+4)=(x-2)2可以由拋物線y=x2沿向量=設(shè)B/yx-xx-x1(,化簡得y=+(x-x1)=(x-2)+--+2;(2)設(shè)A為C的左頂點(diǎn),過F且斜率存在的直線交C的右支于M,N兩點(diǎn),直線AM,AN分別交圓O的另一點(diǎn)于P,Q.所以雙曲線C的方程為x(x=my+2x2-=1∴y1+yy1y其中-<m<,∴-4my1y2=3(y1+y2(,∴P,O,Q三點(diǎn)共線.(ii)不妨設(shè)直線AM:x=m1y-1,AN:x=m2y-1,其中m由(i)可知m1m2=-1,∴直線OP:x=-my, :點(diǎn)D在定直線x=1上.(2)過點(diǎn)(2,0(且斜率為k(k≠0(的直線與橢圓E交于A,B兩點(diǎn),點(diǎn)C與點(diǎn)B關(guān)于x軸對稱.在設(shè)直線AB的方程為y=k(x-2(,點(diǎn)A(x1,y1(,點(diǎn)B(x2,y2(.x2-8k2x+8k2-6=0.若在x軸上存在定點(diǎn)D(m,0(,使A,D,C三點(diǎn)共線,則kAD-kCD=0.k(x1-2((x2-m(+k(x2-2((x1-x1x2-m(x1+x2(+m2k[2x1x2-(m+2((x1+x2(+4m[=x1x2-m(x1+x2(+m2由kAD-kCD=0,得k[2x1x2-(m+2((x1+x2(+4m[=0.x2-(m+2((x1+x2(+4m=0.x2-(m+2((x1+x2(+4m=2×-(m+2(+4m22-12-8mk2-16k2+4m+8mk2=2 故在x軸上存在定點(diǎn)D(3,0(,使A,C,D三點(diǎn)共線.(2)設(shè)點(diǎn)M(4,0(,斜率不為0的直線AM與C交于另一點(diǎn)B.設(shè)直線lAB:x=my+4,m設(shè)直線lAB:x=my+4,m≠0,A(x1,y1),B(x2,y2),則D(x1,-y1(,(i)因?yàn)橄褹B中點(diǎn)的縱坐標(biāo)為-,解得m=3或(舍),所以直線AB的斜率為.(ii)由題得F=(x2-1,y2(,F=(x1-1,-y1(,因?yàn)?x2-1((-y1(-y2(x1-1(=(my2+4-1(.(-y1(-y2(my1+4-1(=-2my1y2-3(y1+y2(=-=0,所以FBⅡFD,又FB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論