寧化縣2025年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
寧化縣2025年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
寧化縣2025年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
寧化縣2025年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
寧化縣2025年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

寧化縣2025年中考試題猜想數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某射擊運(yùn)動員練習(xí)射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=82.如圖①是半徑為2的半圓,點(diǎn)C是弧AB的中點(diǎn),現(xiàn)將半圓如圖②方式翻折,使得點(diǎn)C與圓心O重合,則圖中陰影部分的面積是()A. B.﹣ C.2+ D.2﹣3.實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,則代數(shù)式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b4.-2的絕對值是()A.2 B.-2 C.±2 D.5.如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AE⊥BD,垂足為E,AE=3,ED=3BE,則AB的值為()A.6 B.5 C.2 D.36.下面的統(tǒng)計(jì)圖反映了我市2011﹣2016年氣溫變化情況,下列說法不合理的是()A.2011﹣2014年最高溫度呈上升趨勢B.2014年出現(xiàn)了這6年的最高溫度C.2011﹣2015年的溫差成下降趨勢D.2016年的溫差最大7.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個圖形中的鮮花盆數(shù)為()A.37 B.38 C.50 D.518.若函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,則m的取值范圍是()A.m>﹣2 B.m<﹣2C.m>2 D.m<29.一個多邊形的內(nèi)角和比它的外角和的倍少180°,那么這個多邊形的邊數(shù)是()A.7 B.8 C.9 D.1010.光年天文學(xué)中的距離單位,1光年大約是9500000000000km,用科學(xué)記數(shù)法表示為A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.北京奧運(yùn)會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學(xué)記數(shù)法可表示為.12.如圖,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于點(diǎn)D,點(diǎn)P在線段DB上,若AP2-PB2=48,則△PCD的面積為____.13.關(guān)于x的一元二次方程(k-1)x2+6x+k2-k=0的一個根是0,則k的值是______.14.請寫出一個開口向下,并且與y軸交于點(diǎn)(0,1)的拋物線的表達(dá)式_________15.5月份,甲、乙兩個工廠用水量共為200噸.進(jìn)入夏季用水高峰期后,兩工廠積極響應(yīng)國家號召,采取節(jié)水措施.6月份,甲工廠用水量比5月份減少了15%,乙工廠用水量比5月份減少了10%,兩個工廠6月份用水量共為174噸,求兩個工廠5月份的用水量各是多少.設(shè)甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意列關(guān)于x,y的方程組為__.16.已知直線m∥n,將一塊含有30°角的直角三角板ABC按如圖方式放置,其中A、B兩點(diǎn)分別落在直線m、n上,若∠1=20°,則∠2=_____度.三、解答題(共8題,共72分)17.(8分)如圖,拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4).(1)求這條拋物線的表達(dá)式;(2)P是拋物線對稱軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點(diǎn)P的坐標(biāo);(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點(diǎn)D,過點(diǎn)D作DE∥x軸交新拋物線于點(diǎn)E,射線EO交新拋物線于點(diǎn)F,如果EO=2OF,求m的值.18.(8分)計(jì)算:2sin30°﹣|1﹣|+()﹣119.(8分)如圖,內(nèi)接于,,的延長線交于點(diǎn).(1)求證:平分;(2)若,,求和的長.20.(8分)某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球多15元,王老師從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費(fèi)255元.該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?根據(jù)消費(fèi)者需求,該網(wǎng)店決定用不超過8780元購進(jìn)甲、乙兩種羽毛球共200筒,且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的,已知甲種羽毛球每筒的進(jìn)價為50元,乙種羽毛球每筒的進(jìn)價為40元.①若設(shè)購進(jìn)甲種羽毛球m筒,則該網(wǎng)店有哪幾種進(jìn)貨方案?②若所購進(jìn)羽毛球均可全部售出,請求出網(wǎng)店所獲利潤W(元)與甲種羽毛球進(jìn)貨量m(筒)之間的函數(shù)關(guān)系式,并說明當(dāng)m為何值時所獲利潤最大?最大利潤是多少?21.(8分)如圖,已知∠ABC=90°,AB=BC.直線l與以BC為直徑的圓O相切于點(diǎn)C.點(diǎn)F是圓O上異于B、C的動點(diǎn),直線BF與l相交于點(diǎn)E,過點(diǎn)F作AF的垂線交直線BC于點(diǎn)D.如果BE=15,CE=9,求EF的長;證明:①△CDF∽△BAF;②CD=CE;探求動點(diǎn)F在什么位置時,相應(yīng)的點(diǎn)D位于線段BC的延長線上,且使BC=CD,請說明你的理由.22.(10分)如圖,AB是⊙O的直徑,⊙O過BC的中點(diǎn)D,DE⊥AC.求證:△BDA∽△CED.23.(12分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個球(不放回),再從余下的2個球中任意摸出1個球.用樹狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;求兩次摸到的球的顏色不同的概率.24.如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點(diǎn)D,過點(diǎn)D作⊙O的切線DE交AC于點(diǎn)E,交AB延長線于點(diǎn)F.(1)求證:BD=CD;(2)求證:DC2=CE?AC;(3)當(dāng)AC=5,BC=6時,求DF的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實(shí)數(shù),故本選項(xiàng)錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實(shí)數(shù),故本選項(xiàng)錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項(xiàng)錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項(xiàng)正確;

故選D.本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.2、D【解析】

連接OC交MN于點(diǎn)P,連接OM、ON,根據(jù)折疊的性質(zhì)得到OP=OM,得到∠POM=60°,根據(jù)勾股定理求出MN,結(jié)合圖形計(jì)算即可.【詳解】解:連接OC交MN于點(diǎn)P,連接OM、ON,由題意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,則圖中陰影部分的面積=S半圓-2S弓形MCN=×π×22-2×(-×2×1)=2-π,故選D.本題考查了軸對稱的性質(zhì)的運(yùn)用、勾股定理的運(yùn)用、三角函數(shù)值的運(yùn)用、扇形的面積公式的運(yùn)用、三角形的面積公式的運(yùn)用,解答時運(yùn)用軸對稱的性質(zhì)求解是關(guān)鍵.3、A【解析】

根據(jù)數(shù)軸得到b<a<0<c,根據(jù)有理數(shù)的加法法則,減法法則得到c-a>0,a+b<0,根據(jù)絕對值的性質(zhì)化簡計(jì)算.【詳解】由數(shù)軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.本題考查的是實(shí)數(shù)與數(shù)軸,絕對值的性質(zhì),能夠根據(jù)數(shù)軸比較實(shí)數(shù)的大小,掌握絕對值的性質(zhì)是解題的關(guān)鍵.4、A【解析】

根據(jù)絕對值的性質(zhì)進(jìn)行解答即可【詳解】解:﹣1的絕對值是:1.故選:A.此題考查絕對值,難度不大5、C【解析】

由在矩形ABCD中,AE⊥BD于E,BE:ED=1:3,易證得△OAB是等邊三角形,繼而求得∠BAE的度數(shù),由△OAB是等邊三角形,求出∠ADE的度數(shù),又由AE=3,即可求得AB的長.【詳解】∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵BE:ED=1:3,∴BE:OB=1:2,∵AE⊥BD,∴AB=OA,∴OA=AB=OB,即△OAB是等邊三角形,∴∠ABD=60°,∵AE⊥BD,AE=3,∴AB=,故選C.此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)以及含30°角的直角三角形的性質(zhì),結(jié)合已知條件和等邊三角形的判定方法證明△OAB是等邊三角形是解題關(guān)鍵.6、C【解析】

利用折線統(tǒng)計(jì)圖結(jié)合相應(yīng)數(shù)據(jù),分別分析得出符合題意的答案.【詳解】A選項(xiàng):年最高溫度呈上升趨勢,正確;

B選項(xiàng):2014年出現(xiàn)了這6年的最高溫度,正確;

C選項(xiàng):年的溫差成下降趨勢,錯誤;

D選項(xiàng):2016年的溫差最大,正確;

故選C.考查了折線統(tǒng)計(jì)圖,利用折線統(tǒng)計(jì)圖獲取正確信息是解題關(guān)鍵.7、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數(shù)為則第⑥個圖形中的鮮花盆數(shù)為故選C.8、B【解析】

根據(jù)反比例函數(shù)的性質(zhì),可得m+1<0,從而得出m的取值范圍.【詳解】∵函數(shù)的圖象在其象限內(nèi)y的值隨x值的增大而增大,∴m+1<0,解得m<-1.故選B.9、A【解析】

設(shè)這個正多邊形的邊數(shù)是n,就得到方程,從而求出邊數(shù),即可求出答案.【詳解】設(shè)這個多邊形的邊數(shù)為n,依題意得:180(n-2)=360×3-180,解之得n=7.故選A.本題主要考查多邊形內(nèi)角與外角的知識點(diǎn),此題要結(jié)合多邊形的內(nèi)角和與外角和,根據(jù)題目中的等量關(guān)系,構(gòu)建方程求解即可.10、C【解析】

科學(xué)記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:將9500000000000km用科學(xué)記數(shù)法表示為.故選C.本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、2.58×1【解析】科學(xué)記數(shù)法就是將一個數(shù)字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數(shù).即從左邊第一位開始,在首位非零的后面加上小數(shù)點(diǎn),再乘以10的n次冪.258000=2.58×1.12、6【解析】

根據(jù)等角對等邊,可得AC=BC,由等腰三角形的“三線合一”可得AD=BD=AB,利用直角三角形斜邊的中線等于斜邊的一半,可得CD=AB,由AP2-PB2=48

,利用平方差公式及線段的和差公式將其變形可得CD·PD=12,利用△PCD的面積=CD·PD可得.【詳解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB

,∴AD=BD=CD=AB,∵AP2-PB2=48

,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48,∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面積=CD·PD=6.故答案為6.此題考查等腰三角形的性質(zhì),直角三角形的性質(zhì),解題關(guān)鍵在于利用等腰三角形的“三線合一13、2.【解析】試題解析:由于關(guān)于x的一元二次方程的一個根是2,把x=2代入方程,得,解得,k2=2,k2=2當(dāng)k=2時,由于二次項(xiàng)系數(shù)k﹣2=2,方程不是關(guān)于x的二次方程,故k≠2.所以k的值是2.故答案為2.14、(答案不唯一)【解析】

根據(jù)二次函數(shù)的性質(zhì),拋物線開口向下a<0,與y軸交點(diǎn)的縱坐標(biāo)即為常數(shù)項(xiàng),然后寫出即可.【詳解】∵拋物線開口向下,并且與y軸交于點(diǎn)(0,1)∴二次函數(shù)的一般表達(dá)式中,a<0,c=1,∴二次函數(shù)表達(dá)式可以為:(答案不唯一).本題考查二次函數(shù)的性質(zhì),掌握開口方向、與y軸的交點(diǎn)與二次函數(shù)二次項(xiàng)系數(shù)、常數(shù)項(xiàng)的關(guān)系是解題的關(guān)鍵.15、x+y=200(1-15%)x+(1-10%)y=174【解析】

甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)甲、乙兩廠5月份用水量與6月份用水量列出關(guān)于x、y的方程組即可.【詳解】甲工廠5月份用水量為x噸,乙工廠5月份用水量為y噸,根據(jù)題意得:x+y=200(1-15%)x+(1-10%)y=174故答案為:x+y=200(1-15%)x+(1-10%)y=174本題考查了二元一次方程組的應(yīng)用,弄清題意,找準(zhǔn)等量關(guān)系是解題的關(guān)鍵.16、1【解析】

根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,據(jù)此進(jìn)行計(jì)算即可.【詳解】解:∵直線m∥n,∴∠2=∠ABC+∠1=30°+20°=1°,故答案為:1.本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1);(2)P(1,);(3)3或5.【解析】

(1)將點(diǎn)A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對稱軸為直線x=1,過點(diǎn)P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標(biāo).(3)新拋物線的表達(dá)式為,由題意可得DE=2,過點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點(diǎn)D在y軸的正半軸上和在y軸的負(fù)半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點(diǎn)P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設(shè)新拋物線的表達(dá)式為則,,DE=2過點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點(diǎn)D在y軸的正半軸上,則,∴,∴,∴m=3,點(diǎn)D在y軸的負(fù)半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學(xué)會靈活運(yùn)用是關(guān)鍵.18、4﹣【解析】

原式利用絕對值的代數(shù)意義,特殊角的三角函數(shù)值,負(fù)整數(shù)指數(shù)冪的法則計(jì)算即可.【詳解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.19、(1)證明見解析;(2)AC=,CD=,【解析】分析:(1)延長AO交BC于H,連接BO,證明A、O在線段BC的垂直平分線上,得出AO⊥BC,再由等腰三角形的性質(zhì)即可得出結(jié)論;(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑,由圓周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,證出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位線定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的長即可.本題解析:解:(1)證明:延長AO交BC于H,連接BO.∵AB=AC,OB=OC,∴A,O在線段BC的垂直平分線上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延長CD交⊙O于E,連接BE,則CE是⊙O的直徑.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位線.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.點(diǎn)睛:本題考查了等腰三角形的判定與性質(zhì)、三角函數(shù)及圓的有關(guān)計(jì)算,(1)中由三線合一定理求解是解題的關(guān)鍵,(2)中由圓周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函數(shù)及三角形中位線定理求出AC即可,本題綜合性強(qiáng),有一定難度.20、(1)該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①進(jìn)貨方案有3種,具體見解析;②當(dāng)m=78時,所獲利潤最大,最大利潤為1390元.【解析】【分析】(1)設(shè)甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,由條件可列方程組,則可求得答案;(2)①設(shè)購進(jìn)甲種羽毛球m筒,則乙種羽毛球?yàn)椋?00﹣m)筒,由條件可得到關(guān)于m的不等式組,則可求得m的取值范圍,且m為整數(shù),則可求得m的值,即可求得進(jìn)貨方案;②用m可表示出W,可得到關(guān)于m的一次函數(shù),利用一次函數(shù)的性質(zhì)可求得答案.【詳解】(1)設(shè)甲種羽毛球每筒的售價為x元,乙種羽毛球每筒的售價為y元,根據(jù)題意可得,解得,答:該網(wǎng)店甲種羽毛球每筒的售價為60元,乙種羽毛球每筒的售價為45元;(2)①若購進(jìn)甲種羽毛球m筒,則乙種羽毛球?yàn)椋?00﹣m)筒,根據(jù)題意可得,解得75<m≤78,∵m為整數(shù),∴m的值為76、77、78,∴進(jìn)貨方案有3種,分別為:方案一,購進(jìn)甲種羽毛球76筒,乙種羽毛球?yàn)?24筒,方案二,購進(jìn)甲種羽毛球77筒,乙種羽毛球?yàn)?23筒,方案一,購進(jìn)甲種羽毛球78筒,乙種羽毛球?yàn)?22筒;②根據(jù)題意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,∵5>0,∴W隨m的增大而增大,且75<m≤78,∴當(dāng)m=78時,W最大,W最大值為1390,答:當(dāng)m=78時,所獲利潤最大,最大利潤為1390元.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、一元一次不等式組的應(yīng)用、一次函數(shù)的應(yīng)用,弄清題意找準(zhǔn)等量關(guān)系列出方程組、找準(zhǔn)不等關(guān)系列出不等式組、找準(zhǔn)各量之間的數(shù)量關(guān)系列出函數(shù)解析式是解題的關(guān)鍵.21、(1)(2)證明見解析(3)F在直徑BC下方的圓弧上,且【解析】

(1)由直線l與以BC為直徑的圓O相切于點(diǎn)C,即可得∠BCE=90°,∠BFC=∠CFE=90°,則可證得△CEF∽△BEC,然后根據(jù)相似三角形的對應(yīng)邊成比例,即可求得EF的長;(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根據(jù)同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,則可證得△CDF∽△BAF;②由△CDF∽△BAF與△CEF∽△BCF,根據(jù)相似三角形的對應(yīng)邊成比例,易證得,又由AB=BC,即可證得CD=CE;(3)由CE=CD,可得BC=CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度數(shù),則可得F在⊙O的下半圓上,且.【詳解】(1)解:∵直線l與以BC為直徑的圓O相切于點(diǎn)C.∴∠BCE=90°,又∵BC為直徑,∴∠BFC=∠CFE=90°,∵∠FEC=∠CEB,∴△CEF∽△BEC,∴,∵BE=15,CE=9,即:,解得:EF=;(2)證明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,∴∠ABF=∠FCD,同理:∠AFB=∠CFD,∴△CDF∽△BAF;②∵△CDF∽△BAF,∴,又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,∴△CEF∽△BCF,∴,∴,又∵AB=BC,∴CE=CD;(3)解:∵CE=CD,∴BC=CD=CE,在Rt△BCE中,tan∠CBE=,∴∠CBE=30°,故為60°,∴F在直徑BC下方的圓弧上,且.考查了相似三角形的判定與性質(zhì),圓的切線的性質(zhì),圓周角的性質(zhì)以及三角函數(shù)的性質(zhì)等知識.此題綜合性很強(qiáng),解題的關(guān)鍵是方程思想與數(shù)形結(jié)合思想的應(yīng)用.22、證明見解析.【解析】

不難看

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論