版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學上冊《軸對稱》專題練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在中,,,,,則的長為(
).A. B. C. D.2、如圖,在中,DE是AC的垂直平分線,,的周長為13cm,則的周長為(
)A.16cm B.13cm C.19cm D.10cm3、已知在△ABC中,點P在三角形內(nèi)部,點P到三個頂點的距離相等,則點P是(
)A.三條角平分線的交點 B.三條高線的交點C.三條中線的交點 D.三條邊垂直平分線的交點4、如圖,在Rt△ABC中,∠ABC=90°,分別以點A和點B為圓心,大于AB的長為半徑作弧相交于點D和點E,直線DE交AC于點F,交AB于點G,連接BF,若BF=3,AG=2,則BC=()A.5 B.4 C.2 D.25、如圖,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm速度向點A運動,點Q從點A同時出發(fā)以每秒2cm速度向點C運動,其中一個動點到達端點,另一個動點也隨之停止,當△APQ是以PQ為底的等腰三角形時,運動的時間是(
)秒A.2.5 B.3 C.3.5 D.46、如圖,在小正三角形組成的網(wǎng)格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.7、如圖,D是等邊的邊AC上的一點,E是等邊外一點,若,,則對的形狀最準確的是(
).A.等腰三角形 B.直角三角形 C.等邊三角形 D.不等邊三角形8、如圖,中,∠BCA=90°,∠ABC=22.5°,將沿直線BC折疊,得到點A的對稱點A′,連接BA′,過點A作AH⊥BA′于H,AH與BC交于點E.下列結(jié)論一定正確的是(
)A.A′C=A′H B.2AC=EB C.AE=EH D.AE=A′H9、等腰三角形的一個內(nèi)角是80°,則它的底角是(
)A.50° B.80° C.50°或80° D.20°或80°10、如圖,若是等邊三角形,,是的平分線,延長到,使,則(
)A.7 B.8 C.9 D.10第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,等邊三角形紙片ABC的邊長為6,E,F(xiàn)是邊BC上的三等分點.分別過點E,F(xiàn)沿著平行于BA,CA方向各剪一刀,則剪下的△DEF的周長是_____.2、如圖,在中,,,以點為圓心,以小于的長為半徑作弧,分別交于點,交于點,再分別以點,為圓心,大于的長為半徑作弧,兩弧交于點,作射線交于點,連接,則______.3、正五邊形ABCDE中,對角線AC、BD相較于點P,則∠APB的度數(shù)為_______.4、如圖,等邊ABC的邊長為6,點D是AB上一動點,過點D作DEAC交BC于E,將BDE沿著DE翻折得到,連接,則的最小值為________.5、如圖,在中,,,分別以點A,B為圓心,大于的長為半徑作弧,兩弧分別相交于點M,N,作直線,交于點D,連接,則的度數(shù)為_____.6、如圖,在△ABC中,AB<AC,BC邊上的垂直平分線DE交BC于點D,交AC于點E,BD=4,△ABE的周長為14,則△ABC的周長為_____.7、如圖,在△ABC中,AB=AC=10,BC=12,AD⊥BC于點D,點E、F分別是線段AB、AD上的動點,且BE=AF,則BF+CE的最小值為_____.8、如圖,屋頂鋼架外框是等腰三角形,其中,立柱,且頂角,則的大小為_______.9、如圖,為內(nèi)部一條射線,點為射線上一點,,點分別為邊上動點,則周長的最小值為______.10、如圖,在中,,點在延長線上,于點,交于點,若,,則的長度為______.三、解答題(5小題,每小題6分,共計30分)1、在中,,在的外部作等邊三角形,E為的中點,連接并延長交于點F,連接.(1)如圖1,若,求和的度數(shù);(2)如圖2,的平分線交于點M,交于點N,連接.①補全圖2;②若,求證:.2、如圖,在△ABC中,AB=AC,點D是BC的中點,連接AD,過點C作CE∥AD,交BA的延長線于點E.(1)求證:EC⊥BC;(2)若∠BAC=120°,試判定△ACE的形狀,并說明理由.3、等腰三角形一腰上的中線把該三角形的周長分為13.5cm和11.5cm兩部分,求這個等腰三角形各邊的長.莉莉的解答過程如下:設(shè)在中,,BD是中線.∵中線將三角形的周長分為13.5cm和11.5cm,如圖所示,,,∴,解得,,∴三角形三邊的長為9cm,9cm,7cm.請問莉莉的解法正確嗎?如果不正確,請給出理由.4、請僅用無刻度的直尺完成下列畫圖,不寫畫法,保留畫圖痕跡.(1)如圖①,四邊形ABCD中,AB=AD,B=D,畫出四邊形ABCD的對稱軸m;(2)如圖②,四邊形ABCD中,AD∥BC,A=D,畫出邊BC的垂直平分線n.5、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).(1)畫出△ABC的各點縱坐標不變,橫坐標乘﹣1后得到的△;(2)畫出△的各點橫坐標不變,縱坐標乘﹣1后得到的△;(3)點的坐標是;點的坐標是.-參考答案-一、單選題1、B【解析】【分析】根據(jù)等腰三角形性質(zhì)求出∠B,求出∠BAC,求出∠DAC=∠C,求出AD=DC=4cm,根據(jù)含30度角的直角三角形性質(zhì)求出BD,即可求出答案.【詳解】∵AB=AC,∠C=30°,∴∠B=30°,∵AB⊥AD,AD=4cm,∴BD=8cm,∵∠ADB=60°∠C=30°,∴∠DAC=∠C=30°,∴CD=AD=4cm,∴BC=BD+CD=8+4=12cm.故選B.【考點】本題考查了等腰三角形的性質(zhì),含30度角的直角三角形性質(zhì),三角形的內(nèi)角和定理的應(yīng)用,解此題的關(guān)鍵是求出BD和DC的長.2、C【解析】【分析】根據(jù)線段垂直平分線性質(zhì)得出,求出AC和的長,即可求出答案.【詳解】解:∵DE是AC的垂直平分線,,∴,,∵的周長為13cm,∴,∴,∴的周長為,故選:C.【考點】考查垂直平分線的性質(zhì),三角形周長問題,解題的關(guān)鍵是掌握垂直平分線的性質(zhì).3、D【解析】【分析】根據(jù)線段垂直平分線的性質(zhì)解答即可.【詳解】解:∵在△ABC中,三角形內(nèi)部的點P到三個頂點的距離相等,∴點P是三條邊垂直平分線的交點,故選:D.【考點】本題考查了線段垂直平分線的性質(zhì),熟練掌握線段垂直平分線上的點到線段的兩個端點的距離相等是解答的關(guān)鍵.4、C【解析】【分析】利用線段垂直平分線的性質(zhì)得到,,再證明,利用勾股定理即可解決問題.【詳解】解:由作圖方法得垂直平分,∴,,∴,∵,∴,,∴,∴,∴,∴,,∴.故選:.【考點】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)方法是解題關(guān)鍵,同時還考查了線段垂直平分線的性質(zhì).5、D【解析】【分析】設(shè)運動時間為x秒時,AP=AQ,根據(jù)點P、Q的出發(fā)點及速度,即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.【詳解】設(shè)運動的時間為x秒,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm的速度向點A運動,點Q從點A同時出發(fā)以每秒2cm的速度向點C運動,當△APQ是以PQ為底的等腰三角形時,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=4故選:D.【考點】此題主要考查學生對等腰三角形的性質(zhì)這一知識點的理解和掌握,此題涉及到動點,有一定的拔高難度,屬于中檔題.6、C【解析】【分析】由等邊三角形有三條對稱軸可得答案.【詳解】如圖所示,n的最小值為3.故選C.【考點】本題考查了利用軸對稱設(shè)計圖案,解題的關(guān)鍵是掌握常見圖形的性質(zhì)和軸對稱圖形的性質(zhì).7、C【解析】【分析】先根據(jù)已知利用SAS判定△ABD≌△ACE得出AD=AE,∠BAD=∠CAE=60°,從而推出△ADE是等邊三角形.【詳解】解:∵三角形ABC為等邊三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等邊三角形.故選:C.【考點】本題考查了等邊三角形的判定和全等三角形的判定方法,掌握等邊三角形的判定和全等三角形的判定是本題的關(guān)鍵,做題時要對這些知識點靈活運用.8、B【解析】【分析】證明,即可得出正確答案.【詳解】證明:∵∠BCA=90°,∠ABC=22.5°∴,∵沿直線BC折疊,得到點A的對稱點A′,連接BA′,∴,∴,∵∠BCA=90°,∴,∵∴,即:,∴,∵AH⊥BA′,∴是等腰直角三角形,∴,,∴,在和中,∵,∴,∴,故選項正確,故選;.【考點】本題考查了折疊、等腰三角形、等腰直角三角形、三角形全等,解決本題的關(guān)鍵是證明全等,得出線段.9、C【解析】【分析】先分情況討論:80°是等腰三角形的底角或80°是等腰三角形的頂角,再根據(jù)三角形的內(nèi)角和定理進行計算.【詳解】解:當80°是等腰三角形的頂角時,則頂角就是80°,底角為(180°80°)=50°;當80°是等腰三角形的底角時,則頂角是180°80°×2=20°.∴等腰三角形的底角為50°或80°;故選:C.【考點】本題考查了等腰三角形的性質(zhì)及三角形的內(nèi)角和定理;若題目中沒有明確頂角或底角的度數(shù),做題時要注意分情況進行討論,這是十分重要的,也是解答問題的關(guān)鍵.10、C【解析】【分析】根據(jù)等邊三角形三線合一得到BD垂直平分CA,所以CD=,另有,從而求出BE的長度.【詳解】解:由于△ABC是等邊三角形,則其三邊相等,BD也是AC的垂直平分線,即AB=BC=CA=6,AD=DC=3,已知CE=CD,則CE=3.而BE=BC+CE,因此BE=6+3=9.故答案選C.【考點】本題考查了等邊三角形性質(zhì),看到等邊三角形應(yīng)想到三條邊相等,三線合一.二、填空題1、CE=故答案為6.【考點】本題主要考查全等三角形的性質(zhì)與判定及等腰三角形的性質(zhì)與判定,熟練掌握全等三角形的判定方法及等腰三角形的性質(zhì)與判定是解題的關(guān)鍵.6.6【解析】【分析】先說明△DEF是等邊三角形,再根據(jù)E,F(xiàn)是邊BC上的三等分求出BC的長,最后求周長即可.【詳解】解:∵等邊三角形紙片ABC∴∠B=∠C=60°∵DE∥AB,DF∥AC∴∠DEF=∠DFE=60°∴△DEF是等邊三角形∴DE=EF=DF∵E,F(xiàn)是邊BC上的三等分點,BC=6∴EF=2∴DE=EF=DF=2∴△DEF=DE+EF+DF=6故答案為6.【考點】本題考查了等邊三角形的判定和性質(zhì)、三等分點的意義,靈活應(yīng)用等邊三角形的性質(zhì)是正確解答本題的關(guān)鍵.2、【解析】【分析】利用基本作圖得到AG平分∠BAC,則可計算出∠BAG=∠CAG=∠B=30,所以AG=BG;根據(jù)直角形三角形30角所對直角邊是斜邊的一半,知AG=2CG,則BG=BC,然后根據(jù)三角形面積與(底)高的關(guān)系計算的值.【詳解】解:由作法得,AG平分∠BAC∴∠BAG=∠CAG=30∵∠B=90-∠BAC=30∴∠B=∠BAG∴AG=BG在RtACG中,AG=2CG∴BG=2CG∴BG=BC∴=故答案為:.【考點】本題考查了作圖-復(fù)雜作圖,角平分線的性質(zhì),等腰三角形的性質(zhì),含30角的直角三角形三邊的關(guān)系及三角形面積與底(高)的關(guān)系.解題的關(guān)鍵是熟悉基本幾何圖形的性質(zhì).3、72°##72度【解析】【分析】根據(jù)正五邊形的性質(zhì),可得,AB=BC=CD,從而得到∠ACB=∠CBD=36°,再由三角形外角的性質(zhì),即可求解.【詳解】解:∵多邊形ABCDE是正五邊形,∴,AB=BC=CD,∴∠ACB=∠CBD=36°,∴∠APB=∠ACB+∠CBD=72°.故答案為:72°【考點】本題主要考查了正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì),熟練掌握正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì)是解題的關(guān)鍵.4、3【解析】【分析】先找出B'點變化的規(guī)律,可發(fā)現(xiàn)B'在∠ABC的角平分線上運動,故AB'取最小值時,B'點在AC中點上.【詳解】如圖,∵DE∥AC,△ABC是等邊三角形,∴△BDE是等邊三角形,折疊后的△B′DE也是等邊三角形,過B作DE的垂直平分線,∵BD=BE,B′D=B′E,∴BB′都在DE的垂直平分線上,∵AB′最小,即A到DE的垂直平分線的距離最小,此時AB′⊥BB′,∴AB′=AC=12×6=3,即AB′的最小值是3.故答案為:3.【考點】本題主要考查等邊三角形和垂直平分線的性質(zhì),掌握和理解等邊三角形性質(zhì)是本題關(guān)鍵.5、##50度【解析】【分析】根據(jù)作圖可知,,根據(jù)直角三角形兩個銳角互余,可得,根據(jù)即可求解.【詳解】解:∵在中,,,∴,由作圖可知是的垂直平分線,,,,故答案為:.【考點】本題考查了基本作圖,垂直平分線的性質(zhì),等邊對等角,直角三角形的兩銳角互余,根據(jù)題意分析得出是的垂直平分線,是解題的關(guān)鍵.6、22【解析】【詳解】【分析】根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得BE=CE,然后求出△ABE的周長=AB+AC,再求出BC的長,然后根據(jù)三角形的周長定義計算即可得解.【詳解】∵BC邊上的垂直平分線DE交BC于點D,交AC于點E,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE的周長為14,∴AB+AE+BE=AB+AE+EC=AB+AC=14,∴△ABC的周長是:AB+AC+BC=14+8=22,故答案是:22.【考點】本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),三角形的周長,熟記性質(zhì)是解題的關(guān)鍵.7、【解析】【分析】過點作,使,連接,,可證明,則當、、三點共線時,的值最小,最小值為,求出即可求解.【詳解】解:過點作,使,連接,,,,,,,,,當、、三點共線時,的值最小,,,,在中,,故答案為:.【考點】本題考查軸對稱求最短距離,熟練掌握軸對稱求最短距離的方法,通過構(gòu)造三角形全等,將所求的問題轉(zhuǎn)化為將軍飲馬求最短距離是解題的關(guān)鍵.8、30°##30度【解析】【分析】先由等邊對等角得到,再根據(jù)三角形的內(nèi)角和進行求解即可.【詳解】,,,,,故答案為:30°.【考點】本題考查了等腰三角形的性質(zhì)及三角形的內(nèi)角和定理,熟練掌握知識點是解題的關(guān)鍵.9、6【解析】【分析】作點P關(guān)于OA的對稱點P1,點P關(guān)于OB的對稱點P2,連結(jié)P1P2,與OA的交點即為點M,與OB的交點即為點N,則此時M、N符合題意,求出線段P1P2的長即可.【詳解】解:作點P關(guān)于OA的對稱點P1,點P關(guān)于OB的對稱點P2,連結(jié)P1P2與OA的交點即為點M,與OB的交點即為點N,△PMN的最小周長為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長,連結(jié)OP1、OP2,則OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等邊三角形,∴P1P2=OP1=6,即△PMN的周長的最小值是6.故答案是:6.【考點】本題考查了等邊三角形的性質(zhì)和判定,軸對稱?最短路線問題的應(yīng)用,關(guān)鍵是確定M、N的位置.10、4【解析】【分析】根據(jù)等邊對等角得出∠B=∠C,再根據(jù)EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,從而得出∠E=∠BFP,再根據(jù)對頂角相等得出∠E=∠AFE,最后根據(jù)等角對等邊即可得出答案.【詳解】證明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE=3,∴△AEF是等腰三角形.又∵CE=10,∴CA=AB=7,∴BF=AB-AF=7-3=4,故答案為:4.【考點】本題考查了等腰三角形的判定和性質(zhì),解題的關(guān)鍵是證明∠E=∠AFE,注意等邊對等角,以及等角對等邊的使用.三、解答題1、(1),;(2)①作圖見解析;②見解析【解析】【分析】(1)結(jié)合等腰三角形和等邊三角形的性質(zhì),可得∠ABD=∠ADB,從而求解出角度后,再計算∠BDF即可;(2)①根據(jù)尺規(guī)作圖作角平分線的方法畫出的平分線即可;②設(shè)∠ACM=∠BCM=α,由AB=AC,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN≌△ADN(SSS),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC中,根據(jù)∠BAC+∠ACB+∠ABC=180°,構(gòu)建方程求出α,再證明∠MNB=∠MBN即可解決問題.【詳解】(1)∵,為等邊三角形,∴,,,∵,∴,∴,又∵E為的中點,∴由“三線合一”知,,∴;(2)①如圖所示:利用尺規(guī)作圖的方法得到CP,交于點M,交于點N;②如圖所示,連接,∵平分,∴設(shè),∵,∴,在等邊三角形中,∵為的中點,∴,∴,∴,∴,在和中,∴,∴,,∴,在中,,∴,∴,∴,∴,∴,∴.【考點】本題考查全等三角形的判定和性質(zhì),等邊三角形的性質(zhì),等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活運用各類圖形的性質(zhì)進行綜合分析.2、(1)見詳解(2)見詳解【解析】【分析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到AD⊥BC,然后根據(jù)CE∥AD即可得到結(jié)論;(2)根據(jù)∠BAC=120°,得到∠BAD=60°,∠EAC=60°,由CE∥AD得到∠EAC=∠E=∠ECA=60°,即可證得結(jié)論.(1)證明:∵AB=AC,點D是BC的中點,∴AD⊥BC,又∵CE∥AD,∴EC⊥BC;(2)解:△ACE是等邊三角形,理由如下:∵∠BAC=120°,∴∠BAD=∠BAC=60°,∠EAC=60°,又∵CE∥AD,∴∠E=60°,∴∠EAC=∠E=∠ECA=60°,∴△ACE是等邊三角形.【考點】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),等邊三角形的判定,熟練
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年體育教練員培訓(xùn)運動訓(xùn)練與競賽指導(dǎo)模擬試題
- 2026年職業(yè)培訓(xùn)試題庫掌握石油化工管道盲板抽堵技術(shù)
- 2026年環(huán)保工程中污泥處理技術(shù)員試題
- 2026年兒童玩具安全設(shè)計與創(chuàng)意題集
- 2026年國學經(jīng)典文化考試試題及答案詳解
- 2026年法律實務(wù)與法律文書寫作考題
- 2026年國際財務(wù)審計師CFAudit專業(yè)資格考試題目
- 員工崗位調(diào)動管理制度
- 2026年人力資源面試中常用心理學試題
- 2026年軟件測試工程師筆試預(yù)測模擬題
- 破產(chǎn)管理人業(yè)務(wù)培訓(xùn)制度
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責任公司社會成熟人才招聘備考題庫完整答案詳解
- 環(huán)境應(yīng)急培訓(xùn)課件
- 2026年大連雙D高科產(chǎn)業(yè)發(fā)展有限公司公開選聘備考題庫及答案詳解(奪冠系列)
- 2026河南鄭州信息工程職業(yè)學院招聘67人參考題庫含答案
- 團隊建設(shè)與協(xié)作能力提升工作坊指南
- 客房清掃流程培訓(xùn)課件
- 醫(yī)療機構(gòu)藥品配送服務(wù)評價體系
- 醫(yī)療資源合理分配
- 婦科微創(chuàng)術(shù)后護理新進展
- 幼兒園大蝦課件
評論
0/150
提交評論