版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合測(cè)試考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、下列說法正確的是(
)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.42、如圖,AB是⊙O的弦,等邊三角形OCD的邊CD與⊙O相切于點(diǎn)P,連接OA,OB,OP,AD.若∠COD+∠AOB=180°,AB=6,則AD的長(zhǎng)是()A.6 B.3 C.2 D.3、一個(gè)等腰直角三角形的內(nèi)切圓與外接圓的半徑之比為(
)A. B. C. D.4、如圖,點(diǎn)A,B,C,D,E是⊙O上5個(gè)點(diǎn),若AB=AO=2,將弧CD沿弦CD翻折,使其恰好經(jīng)過點(diǎn)O,此時(shí),圖中陰影部分恰好形成一個(gè)“鉆戒型”的軸對(duì)稱圖形,則“鉆戒型”(陰影部分)的面積為()A. B.4π﹣3 C.4π﹣4 D.5、一個(gè)點(diǎn)到圓的最大距離為11cm,最小距離為5cm,則圓的半徑為(
)A.16cm或6cm B.3cm或8cm C.3cm D.8cm6、丁丁和當(dāng)當(dāng)用半徑大小相同的圓形紙片分別剪成扇形(如圖)做圓錐形的帽子,請(qǐng)你判斷哪個(gè)小朋友做成的帽子更高一些()A.丁丁 B.當(dāng)當(dāng) C.一樣高 D.不確定7、如圖,已知在中,是直徑,,則下列結(jié)論不一定成立的是(
)A. B.C. D.到、的距離相等8、已知點(diǎn)在上.則下列命題為真命題的是(
)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦9、如圖,點(diǎn)在上,,則(
)A. B. C. D.10、如圖,⊙O的半徑為5,AB為弦,點(diǎn)C為的中點(diǎn),若∠ABC=30°,則弦AB的長(zhǎng)為()A. B.5 C. D.5第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長(zhǎng)等于10cm,則PA=__________cm.2、如圖,⊙O的直徑AB=4,P為⊙O上的動(dòng)點(diǎn),連結(jié)AP,Q為AP的中點(diǎn),若點(diǎn)P在圓上運(yùn)動(dòng)一周,則點(diǎn)Q經(jīng)過的路徑長(zhǎng)是______.3、如圖,AB是⊙O的直徑,C是⊙O上的點(diǎn),過點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.若∠A=32°,則∠D=_____度.4、若一個(gè)扇形的弧長(zhǎng)是,面積是,則扇形的圓心角是__________度.5、如圖,△ABC內(nèi)接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點(diǎn)D,若☉O的半徑為2,則CD的長(zhǎng)為_____6、劉徽是我國(guó)魏晉時(shí)期卓越的數(shù)學(xué)家,他在《九章算術(shù)》中提出了“割圓術(shù)”,利用圓的內(nèi)接正多邊形逐步逼近圓來近似計(jì)算圓的面積,如圖,若用圓的內(nèi)接正十二邊形的面積來近似估計(jì)的面積,設(shè)的半徑為1,則__________.7、如圖,已知是的直徑,是的切線,連接交于點(diǎn),連接.若,則的度數(shù)是_________.8、如圖:四邊形ABCD內(nèi)接于⊙O,E為BC延長(zhǎng)線上一點(diǎn),若∠A=n°,則∠DCE=_____°.9、如圖,在中,半徑,是半徑上一點(diǎn),且.,是上的兩個(gè)動(dòng)點(diǎn),,是的中點(diǎn),則的長(zhǎng)的最大值等于__________.10、如圖,在中,的半徑為點(diǎn)是邊上的動(dòng)點(diǎn),過點(diǎn)作的一條切線(其中點(diǎn)為切點(diǎn)),則線段長(zhǎng)度的最小值為____.三、解答題(5小題,每小題6分,共計(jì)30分)1、已知四邊形內(nèi)接于⊙O,,垂足為E,,垂足為F,交于點(diǎn)G,連接.(1)求證:;(2)如圖1,若,,求⊙O的半徑;(3)如圖2,連接,交于點(diǎn)H,若,,試判斷是否為定值,若是,求出該定值;若不是,說明理由.2、如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸相交于點(diǎn)C.(1)用配方法將拋物線的解析式化為頂點(diǎn)式:(),并指出頂點(diǎn)M的坐標(biāo);(2)在拋物線的對(duì)稱軸上找點(diǎn)R,使得CR+AR的值最小,并求出其最小值和點(diǎn)R的坐標(biāo);(3)以AB為直徑作⊙N交拋物線于點(diǎn)P(點(diǎn)P在對(duì)稱軸的左側(cè)),求證:直線MP是⊙N的切線.3、我們知道,與三角形各邊都相切的圓叫做三角形的內(nèi)切圓,則三角形可以稱為圓的外切三角形.如圖1,與的三邊分別相切于點(diǎn)則叫做的外切三角形.以此類推,各邊都和圓相切的四邊形稱為圓外切四邊形.如圖2,與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)則四邊形叫做的外切四邊形.(1)如圖2,試探究圓外切四邊形的兩組對(duì)邊與之間的數(shù)量關(guān)系,猜想:(橫線上填“>”,“<”或“=”);(2)利用圖2證明你的猜想(寫出已知,求證,證明過程);(3)用文字?jǐn)⑹錾厦孀C明的結(jié)論:;(4)若圓外切四邊形的周長(zhǎng)為相鄰的三條邊的比為,求此四邊形各邊的長(zhǎng).4、(1)課本再現(xiàn):在中,是所對(duì)的圓心角,是所對(duì)的圓周角,我們?cè)跀?shù)學(xué)課上探索兩者之間的關(guān)系時(shí),要根據(jù)圓心O與的位置關(guān)系進(jìn)行分類.圖1是其中一種情況,請(qǐng)你在圖2和圖3中畫出其它兩種情況的圖形,并從三種位置關(guān)系中任選一種情況證明;(2)知識(shí)應(yīng)用:如圖4,若的半徑為2,分別與相切于點(diǎn)A,B,,求的長(zhǎng).5、如圖,內(nèi)接于,,,則的直徑等于多少?-參考答案-一、單選題1、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識(shí)點(diǎn),是解題的關(guān)鍵.2、C【解析】【分析】如圖,過作于過作于先證明三點(diǎn)共線,再求解的半徑,證明四邊形是矩形,再求解從而利用勾股定理可得答案.【詳解】解:如圖,過作于過作于是的切線,三點(diǎn)共線,為等邊三角形,四邊形是矩形,故選:【考點(diǎn)】本題考查的是等腰三角形,等邊三角形的性質(zhì),勾股定理的應(yīng)用,矩形的判定與性質(zhì),切線的性質(zhì),銳角三角函數(shù)的應(yīng)用,靈活應(yīng)用以上知識(shí)是解題的關(guān)鍵.3、D【解析】【分析】設(shè)等腰直角三角形的直角邊是1,則其斜邊是.根據(jù)直角三角形的內(nèi)切圓半徑是兩條直角邊的和與斜邊的差的一半,得其內(nèi)切圓半徑是;其外接圓半徑是斜邊的一半,得其外接圓半徑是.所以它們的比為=.【詳解】解:設(shè)等腰直角三角形的直角邊是1,則其斜邊是;∵內(nèi)切圓半徑是,外接圓半徑是,∴所以它們的比為=.故選:D.【考點(diǎn)】本題考查三角形的內(nèi)切圓與外接圓的知識(shí),解題的關(guān)鍵是熟記直角三角形外接圓的半徑和內(nèi)切圓的半徑公式:直角三角形的內(nèi)切圓半徑等于兩條直角邊的和與斜邊的差的一半;直角三角形外接圓的半徑是斜邊的一半.4、A【解析】【分析】連接CD、OE,根據(jù)題意證明四邊形OCED是菱形,然后分別求出扇形OCD和菱形OCED以及△AOB的面積,最后利用割補(bǔ)法求解即可.【詳解】解:連接CD、OE,由題意可知OC=OD=CE=ED,?。交?,∴S扇形ECD=S扇形OCD,四邊形OCED是菱形,∴OE垂直平分CD,由圓周角定理可知∠COD=∠CED=120°,∴CD=2×2×=2,∵AB=OA=OB=2,∴△AOB是等邊三角形,∴S△AOB=×2××2=,∴S陰影=2S扇形OCD﹣2S菱形OCED+S△AOB=2(2×2)+=2(π﹣2)+=π﹣3,故選:A.【考點(diǎn)】此題考查了菱形的性質(zhì)和判定,等邊三角形的性質(zhì),圓周角定理,求解圓中陰影面面積等知識(shí),解題的關(guān)鍵是根據(jù)題意做出輔助線,利用割補(bǔ)法求解.5、B【解析】【分析】最大距離與最小距離的和是直徑;當(dāng)點(diǎn)P在圓外時(shí),點(diǎn)到圓的最大距離與最小距離的差是直徑,由此得解.【詳解】當(dāng)點(diǎn)P在圓內(nèi)時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是16cm,因而半徑是8cm;當(dāng)點(diǎn)P在圓外時(shí),最近點(diǎn)的距離為5cm,最遠(yuǎn)點(diǎn)的距離為11cm,則直徑是6cm,因而半徑是3cm;故選B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,利用線段的和差得出直徑是解題關(guān)鍵,分類討論,以防遺漏.6、B【解析】【分析】由圖形可知,丁丁扇形的弧長(zhǎng)大于當(dāng)當(dāng)扇形的弧長(zhǎng),根據(jù)弧長(zhǎng)與圓錐底面圓的周長(zhǎng)相等,可得丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,由扇形的半徑相等,即母線長(zhǎng)相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,根據(jù)勾股定理由即,可得丁丁的h小于當(dāng)當(dāng)?shù)膆即可.【詳解】解:由圖形可知,丁丁扇形的弧長(zhǎng)大于當(dāng)當(dāng)扇形的弧長(zhǎng),根據(jù)弧長(zhǎng)與圓錐底面圓的周長(zhǎng)相等,∴丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,∵扇形的半徑相等,即母線長(zhǎng)相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,,根據(jù)勾股定理由即,∴丁丁的h小于當(dāng)當(dāng)?shù)膆,∴由勾股定理可得當(dāng)當(dāng)做成的圓錐形的帽子更高一些.故選:B.【考點(diǎn)】本題考查扇形作圓錐帽子的應(yīng)用,利用圓錐的母線底面圓的半徑,和圓錐的高三者之間關(guān)系,根據(jù)勾股定理確定出當(dāng)當(dāng)?shù)拿弊痈呤墙忸}關(guān)鍵.7、A【解析】【分析】根據(jù)圓心角、弧、弦之間的關(guān)系即可得出答案.【詳解】在中,弦弦,則其所對(duì)圓心角相等,即,所對(duì)優(yōu)弧和劣弧分別相等,所以有,故B項(xiàng)和C項(xiàng)結(jié)論正確,∵,AO=DO=BO=CO∴(SSS)可得出點(diǎn)到弦,的距離相等,故D項(xiàng)結(jié)論正確;而由題意不能推出,故A項(xiàng)結(jié)論錯(cuò)誤.故選:A【考點(diǎn)】此題主要考查圓的基本性質(zhì),解題的關(guān)鍵是熟知圓心角、弧、弦之間的關(guān)系.8、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對(duì)各項(xiàng)判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時(shí),半徑平分弦,所以是假命題,故選:B.【考點(diǎn)】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí),解答的關(guān)鍵是會(huì)利用所學(xué)的知識(shí)進(jìn)行推理證明命題的真假.9、D【解析】【分析】先證明再利用等弧的性質(zhì)及圓周角定理可得答案.【詳解】解:點(diǎn)在上,,故選:【考點(diǎn)】本題考查的兩條弧,兩個(gè)圓心角,兩條弦之間的關(guān)系,圓周角定理,等弧的概念與性質(zhì),掌握同弧或等弧的概念與性質(zhì)是解題的關(guān)鍵.10、D【解析】【分析】連接OC、OA,利用圓周角定理得出∠AOC=60°,再利用垂徑定理得出AB即可.【詳解】連接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB為弦,點(diǎn)C為的中點(diǎn),∴OC⊥AB,在Rt△OAE中,AE=,∴AB=,故選D.【考點(diǎn)】此題考查圓周角定理,關(guān)鍵是利用圓周角定理得出∠AOC=60°.二、填空題1、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點(diǎn)為E,∵PA、PB分別是⊙O的切線,且切點(diǎn)為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長(zhǎng)=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.2、【解析】【分析】連接OQ,以O(shè)A為直徑作⊙C,確定出點(diǎn)Q的運(yùn)動(dòng)路徑即可求得路徑長(zhǎng).【詳解】解:連接OQ.在⊙O中,∵AQ=PQ,OQ經(jīng)過圓心O,∴OQ⊥AP.∴∠AQO=90°.∴點(diǎn)Q在以O(shè)A為直徑的⊙C上.∴當(dāng)點(diǎn)P在⊙O上運(yùn)動(dòng)一周時(shí),點(diǎn)Q在⊙C上運(yùn)動(dòng)一周.∵AB=4,∴OA=2.∴⊙C的周長(zhǎng)為.∴點(diǎn)Q經(jīng)過的路徑長(zhǎng)為.故答案為:【考點(diǎn)】本題考查了垂徑定理的推論、圓周角定理的推論、圓周長(zhǎng)的計(jì)算等知識(shí)點(diǎn),熟知相關(guān)定理及其推論是解題的基礎(chǔ),確定點(diǎn)Q的運(yùn)動(dòng)路徑是解題的關(guān)鍵.3、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計(jì)算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點(diǎn)睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.4、60【解析】【分析】根據(jù)扇形的面積公式求出半徑,然后根據(jù)弧長(zhǎng)公式求出圓心角即可.【詳解】解:扇形的面積==6π,解得:r=6,又∵=2π,∴n=60.故答案為:60.【考點(diǎn)】此題考查了扇形的面積和弧長(zhǎng)公式,解題的關(guān)鍵是掌握運(yùn)算方法.5、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長(zhǎng).【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點(diǎn)】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關(guān)鍵.6、【解析】【分析】如圖,過點(diǎn)A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過點(diǎn)A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內(nèi)接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內(nèi)接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點(diǎn)】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關(guān)鍵.7、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對(duì)的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點(diǎn)】本題考查了切線的性質(zhì)和圓周角定理,掌握?qǐng)A周角定理是解題的關(guān)鍵.8、n【解析】【分析】利用圓內(nèi)接四邊形的對(duì)角互補(bǔ)和鄰補(bǔ)角的性質(zhì)求解.【詳解】∵四邊形ABCD是⊙O的內(nèi)接四邊形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案為n【考點(diǎn)】本題考查了圓內(nèi)接四邊形的性質(zhì).解決本題的關(guān)鍵是掌握:圓內(nèi)接四邊形的對(duì)角互補(bǔ).9、【解析】【分析】當(dāng)點(diǎn)F與點(diǎn)D運(yùn)動(dòng)至共線時(shí),OF長(zhǎng)度最大,此時(shí)F是AB的中點(diǎn),則OF⊥AB,設(shè)OF為x,則DF=x﹣4,在Rt△BOF中,利用勾股定理進(jìn)行求解即可.【詳解】∵當(dāng)點(diǎn)F與點(diǎn)D運(yùn)動(dòng)至共線時(shí),OF長(zhǎng)度最大,如圖所示,∵F是AB的中點(diǎn),∴OC⊥AB,設(shè)OF為x,則DF=x﹣4,∵△ABD是等腰直角三角形,∴DF=AB=BF=x﹣4,在Rt△BOF中,OB2=OF2+BF2,∵OB=OC=6,∴,解得,或(舍去),∴OF的長(zhǎng)的最大值等于,故答案為:.【考點(diǎn)】本題考查了垂徑定理,直角三角形斜邊中線的性質(zhì),勾股定理等知識(shí),確定點(diǎn)F與點(diǎn)D運(yùn)動(dòng)至共線時(shí),OF長(zhǎng)度最大是解題的關(guān)鍵.10、【解析】【分析】如圖:連接OP、OQ,根據(jù),可得當(dāng)OP⊥AB時(shí),PQ最短;在中運(yùn)用含30°的直角三角形的性質(zhì)和勾股定理求得AB、AQ的長(zhǎng),然后再運(yùn)用等面積法求得OP的長(zhǎng),最后運(yùn)用勾股定理解答即可.【詳解】解:如圖:連接OP、OQ,∵是的一條切線∴PQ⊥OQ∴∴當(dāng)OP⊥AB時(shí),如圖OP′,PQ最短在Rt△ABC中,∴AB=2OB=,AO=cos∠A·AB=∵S△AOB=∴,即OP=3在Rt△OPQ中,OP=3,OQ=1∴PQ=.故答案為.【考點(diǎn)】本題考查了切線的性質(zhì)、含30°直角三角形的性質(zhì)、勾股定理等知識(shí)點(diǎn),此正確作出輔助線、根據(jù)勾股定理確定當(dāng)PO⊥AB時(shí)、線段PQ最短是解答本題的關(guān)鍵.三、解答題1、(1)證明見詳解(2)(3)為定值,【解析】【分析】(1)由,,可證明,由圓周角定理可知,可證明,再借助對(duì)頂角相等可知,進(jìn)而證明,即可推導(dǎo)出;(2)由(1)可知,AC為DG的垂直平分線,即有,連接OA、OB、OC、OD,過點(diǎn)O作,,垂足分別為M、N,利用垂徑定理和圓周角定理推導(dǎo),,,;再借助,可證明,進(jìn)而得到,即可證明,即有;在中,利用勾股定理計(jì)算OC的長(zhǎng),即可得到⊙O的半徑;(3)過點(diǎn)H作,垂足分別為P、Q,過點(diǎn)D作于點(diǎn)K,由已知條件、三角函數(shù)函數(shù)及含30°角的直角三角形的性質(zhì),先計(jì)算出,,再根據(jù),可得出,整理可得.(1)證明:∵,,∴,∴,,∵,∴,∴,∵,∴,∴;(2)解:由(1)可知,,,∴,即AC為DG的垂直平分線,∴,如圖1,連接OA、OB、OC、OD,過點(diǎn)O作,,垂足分別為M、N,則有,,,,,∴,同理,,∵,即,,∵,∴,在和中,,∴,∴,在中,,即圓⊙O的半徑為;(3)為定值,且,證明如下:如圖2,過點(diǎn)H作,垂足分別為P、Q,過點(diǎn)D作于點(diǎn)K,∵,∴,∵,,∴,即,∴,∵,,且,∴,∵,∴在中,,即有,∵,∴,即∴,∴.【考點(diǎn)】本題主要考查了圓周角定理、垂徑定理、等腰三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、角平分線的性質(zhì)及利用三角函數(shù)解直角三角形等知識(shí),綜合性較強(qiáng),解題關(guān)鍵是熟練掌握相關(guān)知識(shí)并能夠綜合運(yùn)用.2、(1),M(,);(2),(,);(3)證明見試題解析.【解析】【詳解】試題分析:(1)利用配方法把一般式轉(zhuǎn)化為頂點(diǎn)式,然后根據(jù)二次函數(shù)的性質(zhì)求出拋物線的頂點(diǎn)坐標(biāo);(2)連接BC,則BC與對(duì)稱軸的交點(diǎn)為R,此時(shí)CR+AR的值最?。幌惹蟪鳇c(diǎn)A、B、C的坐標(biāo),再利用待定系數(shù)法求出直線BC的解析式,進(jìn)而求出其最小值和點(diǎn)R的坐標(biāo);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).根據(jù)NPAB=,列出方程,解方程得到點(diǎn)P坐標(biāo),再計(jì)算得出,由勾股定理的逆定理得出∠MPN=90°,然后利用切線的判定定理即可證明直線MP是⊙N的切線.試題解析:(1)∵=,∴拋物線的解析式化為頂點(diǎn)式為:,頂點(diǎn)M的坐標(biāo)是(,);(2)∵,∴當(dāng)y=0時(shí),,解得x=1或6,∴A(1,0),B(6,0),∵x=0時(shí),y=﹣3,∴C(0,﹣3).連接BC,則BC與對(duì)稱軸x=的交點(diǎn)為R,連接AR,則CR+AR=CR+BR=BC,根據(jù)兩點(diǎn)之間線段最短可知此時(shí)CR+AR的值最小,最小值為BC==.設(shè)直線BC的解析式為,∵B(6,0),C(0,﹣3),∴,解得:,∴直線BC的解析式為:,令x=,得y==,∴R點(diǎn)坐標(biāo)為(,);(3)設(shè)點(diǎn)P坐標(biāo)為(x,).∵A(1,0),B(6,0),∴N(,0),∴以AB為直徑的⊙N的半徑為AB=,∴NP=,即,移項(xiàng)得,,得:,整理得:,解得(與A重合,舍去),,(在對(duì)稱軸的右側(cè),舍去),(與B重合,舍去),∴點(diǎn)P坐標(biāo)為(2,2).∵M(jìn)(,),N(,0),∴==,==,==,∴,∴∠MPN=90°,∵點(diǎn)P在⊙N上,∴直線MP是⊙N的切線.考點(diǎn):1.二次函數(shù)綜合題;2.最值問題;3.切線的判定;4.壓軸題.3、(1)=;(2)答案見解析;(3)圓外切四邊形的對(duì)邊之和相等;(4)4;10;12;6【解析】【分析】(1)根據(jù)圓外切四邊形的定義猜想得出結(jié)論;(2)根據(jù)切線長(zhǎng)定理即可得出結(jié)論;(3)由(2)可得出答案;(4)根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長(zhǎng)建立方程求解即可得出結(jié)論.【詳解】(1)∵⊙O與四邊形ABCD的邊AB,BC,CD,DA分別相切于點(diǎn)E,F(xiàn),G,H,∴猜想AB+CD=AD+BC,故答案為:=.(2)已知:四邊形ABCD的四邊AB,BC,CD,DA都于⊙O相切于G,F(xiàn),E,H,求證:AD+BC=AB+CD,證明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圓外切四邊形的對(duì)邊和相等.(3)由(2)可知:圓外切四邊形的對(duì)邊和相等.故答案為:圓外切四邊形的對(duì)邊和相等;(4)∵相鄰的三條邊的比為2:5:6,∴設(shè)此三邊為2x,5x,6x,根據(jù)圓外切四邊形的性質(zhì)得,第四邊為2x+6x?5x=3x,∵圓外切四邊形的周長(zhǎng)為32,∴2x+5x+6x+3x=16x=32,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)和備考題庫化部工業(yè)文化發(fā)展中心2025年公開招聘社會(huì)在職人員備考題庫及參考答案詳解
- 2026年電工期末試題大題及參考答案
- 巴州區(qū)2026年赴高校招聘79名教師、教練員備考題庫及完整答案詳解1套
- 2026年桂林醫(yī)學(xué)院心理考試題庫附答案
- 企業(yè)員工職業(yè)素養(yǎng)提升路徑手冊(cè)
- 2026年太原城市職業(yè)技術(shù)學(xué)院?jiǎn)握芯C合素質(zhì)考試題庫必考題
- 平?jīng)鍪徐o寧縣公開招聘2026屆國(guó)家公費(fèi)師范生和國(guó)家優(yōu)師計(jì)劃師范生13人備考題庫及參考答案詳解
- 廣東醫(yī)科大學(xué)附屬醫(yī)院2026年專業(yè)技術(shù)人員招聘132人備考題庫及答案詳解1套
- 廣州市衛(wèi)生健康委員會(huì)直屬事業(yè)單位廣州醫(yī)科大學(xué)附屬市八醫(yī)院2025年第一次公開招聘?jìng)淇碱}庫及1套完整答案詳解
- 廣州市天河區(qū)昌樂幼兒園2026年1月公開招聘編外聘用制專任教師備考題庫及參考答案詳解1套
- 《新綱要云南省實(shí)驗(yàn)教材 信息技術(shù) 四年級(jí)第3冊(cè)(第2版)》教案(全)
- 塑料注塑流長(zhǎng)比與型腔壓力數(shù)據(jù)表
- 單體澆鑄尼龍
- 職業(yè)生涯規(guī)劃-體驗(yàn)式學(xué)習(xí)智慧樹知到答案章節(jié)測(cè)試2023年
- 譯林版初中七年級(jí)翻譯題專項(xiàng)訓(xùn)練100題(含答案)
- GB/T 20853-2007金屬和合金的腐蝕人造大氣中的腐蝕暴露于間歇噴灑鹽溶液和潮濕循環(huán)受控條件下的加速腐蝕試驗(yàn)
- GB/T 10193-1997電子設(shè)備用壓敏電阻器第1部分:總規(guī)范
- GA 802-2019道路交通管理機(jī)動(dòng)車類型
- FZ/T 80002-2016服裝標(biāo)志、包裝、運(yùn)輸和貯存
- 室上速護(hù)理查房課件整理
- 護(hù)理文件書寫原因魚骨圖
評(píng)論
0/150
提交評(píng)論