版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》同步訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在中,,,AD平分,E是AD中點(diǎn),若,則CE的長為()A. B. C. D.2、如圖,把矩形紙片沿對角線折疊,若重疊部分為,那么下列說法錯(cuò)誤的是()A.是等腰三角形 B.和全等C.折疊后得到的圖形是軸對稱圖形 D.折疊后和相等3、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點(diǎn),且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o4、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(
)A.②④ B.①②④
C.①②③④
D.②③④5、如圖,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,則∠BDE的度數(shù)為()A.36° B.30° C.27° D.18°6、如圖,點(diǎn)E是長方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長為()A.5 B.12 C.5 D.137、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm8、如圖,已知在正方形ABCD中,厘米,,點(diǎn)E在邊AB上,且厘米,如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上以a厘米/秒的速度由C點(diǎn)向D點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.若存在a與t的值,使與全等時(shí),則t的值為()A.2 B.2或1.5 C.2.5 D.2.5或29、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個(gè)四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形10、如圖,將矩形紙片ABCD沿BD折疊,得到△BC′D,C′D與AB交于點(diǎn)E,若∠1=40°,則∠2的度數(shù)為()A.25° B.20° C.15° D.10°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個(gè)全等的直角三角形____()____2、如果一個(gè)矩形較短的邊長為5cm,兩條對角線的夾角為60°,則這個(gè)矩形的對角線長是_________cm.3、如圖,矩形ABCD的兩條對角線AC,BD交于點(diǎn)O,∠AOB=60°,AB=3,則矩形的周長為_____.4、一個(gè)三角形三邊長之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長為30cm,則原三角形最大邊長為_________cm.5、已知長方形ABCD中,AB=4,BC=10,M為BC中點(diǎn),P為AD上的動(dòng)點(diǎn),則以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長是______________________.6、若一個(gè)菱形的兩條對角線的長為3和4,則菱形的面積為___________.7、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)E作EF⊥AB于點(diǎn)F,EG⊥BC于點(diǎn)G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號(hào)為__.8、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點(diǎn),將?ABCD沿EH翻折,使得AD的對應(yīng)線段FG經(jīng)過點(diǎn)C,若FG⊥CD,CG=4,則EF的長度為_____.9、如圖,正方形ABCD中,BD為對角線,且BE為∠ABD的角平分線,并交CD延長線于點(diǎn)E,則∠E=______°.10、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點(diǎn)O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.三、解答題(5小題,每小題6分,共計(jì)30分)1、(1)如圖1中,∠A=90°,請用直尺和圓規(guī)作一條直線,把ABC分割成兩個(gè)等腰三角形(不寫作法,但須保留作圖痕跡).(2)已知內(nèi)角度數(shù)的兩個(gè)三角形如圖2、圖3所示.請你判斷,能否分別畫一條直線把它們分割成兩個(gè)等腰三角形?若能,請畫出直線,并標(biāo)注底角的度數(shù).(3)一個(gè)三角形有一內(nèi)角為48°,如果經(jīng)過其一個(gè)頂點(diǎn)作直線能把其分成兩個(gè)等腰三角形,那么它的最大的內(nèi)角可能值為.2、閱讀探究小明遇到這樣一個(gè)問題:在中,已知,,的長分別為,,,求的面積.小明是這樣解決問題的:如圖1所示,先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)(即的3個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),從而借助網(wǎng)格就能計(jì)算出的面積.他把這種解決問題的方法稱為構(gòu)圖法,(1)圖1中的面積為________.實(shí)踐應(yīng)用參考小明解決問題的方法,回答下列問題:(2)圖2是一個(gè)的正方形網(wǎng)格(每個(gè)小正方形的邊長為1).①利用構(gòu)圖法在答題卡的圖2中畫出三邊長分別為,,的格點(diǎn).②的面積為________(寫出計(jì)算過程).拓展延伸(3)如圖3,已知,以,為邊向外作正方形和正方形,連接.若,,,則六邊形的面積為________(在圖4中構(gòu)圖并填空).3、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),,M關(guān)于直線AF對稱.
(1)求證:B,M關(guān)于AE對稱;(2)若的平分線交AE的延長線于G,求證:.4、在ABC中,D、E、F分別是AB、AC、BC的中點(diǎn),連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長線于點(diǎn)G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.5、如圖1,在平面直角坐標(biāo)系中,且;(1)試說明是等腰三角形;(2)已知.寫出各點(diǎn)的坐標(biāo):A(,),B(,),C(,).(3)在(2)的條件下,若一動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BA向點(diǎn)A運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止.①若的一條邊與BC平行,求此時(shí)點(diǎn)M的坐標(biāo);②若點(diǎn)E是邊AC的中點(diǎn),在點(diǎn)M運(yùn)動(dòng)的過程中,能否成為等腰三角形?若能,求出此時(shí)點(diǎn)M的坐標(biāo);若不能,請說明理由.-參考答案-一、單選題1、B【解析】【分析】根據(jù)三角形內(nèi)角和定理求出∠BAC,根據(jù)角平分線的定義∠DAB=∠B,求出AD,根據(jù)直角三角形的性質(zhì)解答即可.【詳解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中點(diǎn),∴CE=AD=,故選:B.【點(diǎn)睛】本題考查的是直角三角形的性質(zhì)、角平分線的定義,掌握直角三角形斜邊上的中線是斜邊的一半是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)題意結(jié)合圖形可以證明EB=ED,進(jìn)而證明△ABE≌△CDE;此時(shí)可以判斷選項(xiàng)A、B、D是成立的,問題即可解決.【詳解】解:由題意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四邊形ABCD為矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD為等腰三角形;在△ABE與△CDE中,∵,∴△ABE≌△CDE(HL);又∵△EBD為等腰三角形,∴折疊后得到的圖形是軸對稱圖形;綜上所述,選項(xiàng)A、B、C成立,∴不能證明D是正確的,故說法錯(cuò)誤的是D,故選:D.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;解題的關(guān)鍵是靈活運(yùn)用翻折變換的性質(zhì),找出圖中隱含的等量關(guān)系;借助矩形的性質(zhì)、全等三角形的判定等幾何知識(shí)來分析、判斷、推理或解答.3、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因?yàn)椤螧=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點(diǎn)睛】考查菱形的邊的性質(zhì),同時(shí)綜合利用三角形的內(nèi)角和及等腰三角形的性質(zhì),解題關(guān)鍵是利用等腰三角形的性質(zhì)求得∠ADE的度數(shù).4、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對①作出判斷;延長EF,交CD延長線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對②作出判斷;由△AEF≌△DMF可得這兩個(gè)三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯(cuò)誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計(jì)算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長EF,交CD延長線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯(cuò)誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識(shí),構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點(diǎn).5、B【解析】【分析】根據(jù)已知條件可得以及的度數(shù),然后求出各角的度數(shù)便可求出.【詳解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故選:B.【點(diǎn)睛】題目主要考查矩形的性質(zhì),三角形內(nèi)角和及等腰三角形的性質(zhì),理解題意,綜合運(yùn)用各個(gè)性質(zhì)是解題關(guān)鍵.6、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問題.7、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對邊相等是解題的關(guān)鍵.8、D【解析】【分析】根據(jù)題意分兩種情況討論若△BPE≌△CQP,則BP=CQ,BE=CP;若△BPE≌△CPQ,則BP=CP=5厘米,BE=CQ=6厘米進(jìn)行求解即可.【詳解】解:當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度都是2厘米/秒,若△BPE≌△CQP,則BP=CQ,BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴運(yùn)動(dòng)時(shí)間t=4÷2=2(秒);當(dāng),即點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE與△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間t=(秒).綜上t的值為2.5或2.故選:D.【點(diǎn)睛】本題主要考查正方形的性質(zhì)以及全等三角形的判定,解決問題的關(guān)鍵是掌握正方形的四條邊都相等,四個(gè)角都是直角;兩邊及其夾角分別對應(yīng)相等的兩個(gè)三角形全等.同時(shí)要注意分類思想的運(yùn)用.9、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關(guān)系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點(diǎn)睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關(guān)鍵.10、D【解析】【分析】根據(jù)矩形的性質(zhì),可得∠ABD=40°,∠DBC=50°,根據(jù)折疊可得∠DBC′=∠DBC=50°,最后根據(jù)∠2=∠DBC′?∠DBA進(jìn)行計(jì)算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折疊可得∠DBC′=∠DBC=50°,∴∠2=∠DBC′?∠DBA=50°?40°=10°,故選D.【點(diǎn)睛】本題考查了長方形性質(zhì),平行線性質(zhì),折疊性質(zhì),角的有關(guān)計(jì)算的應(yīng)用,關(guān)鍵是求出∠DBC′和∠DBA的度數(shù).二、填空題1、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個(gè)全等的直角三角形.故答案為:(1)×;(2)√【點(diǎn)睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.2、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結(jié)合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點(diǎn)睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對角線相等且互相平分”是解本題的關(guān)鍵.3、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長是AB+BC+CD+AD=6+6.故答案為:6+6.【點(diǎn)睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn),關(guān)鍵是求出AD的長.4、24【解析】【分析】由三邊長之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長求出三中位線長,推出邊長,再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.5、5或或【解析】【分析】分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在BM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長;③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長;即可求解.【詳解】解:BC=10,M為BC中點(diǎn),∴BM=5,當(dāng)△BMP為等腰三角形時(shí),分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在AM的垂直平分線上,取BM的中點(diǎn)N,過點(diǎn)N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長為5②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長是:5或或故答案為:5或或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識(shí),熟練掌握矩形的性質(zhì),進(jìn)行分類討論是解題的關(guān)鍵.6、6【解析】【分析】由題意直接由菱形的面積等于對角線乘積的一半進(jìn)行計(jì)算即可.【詳解】解:菱形的面積.故答案為:6.【點(diǎn)睛】本題考查菱形的性質(zhì),熟練掌握菱形的面積等于對角線乘積的一半是解題的關(guān)鍵.7、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點(diǎn)E為AC上一動(dòng)點(diǎn),當(dāng)DE⊥AC時(shí),根據(jù)垂線段最短可得此時(shí)DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點(diǎn)O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點(diǎn)H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點(diǎn)E為AC上一動(dòng)點(diǎn),∴根據(jù)垂線段最短,當(dāng)DE⊥AC時(shí),DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯(cuò)誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.8、【解析】【分析】延長CF與AB交于點(diǎn)M,由平行四邊形的性質(zhì)得BC長度,GM⊥AB,由折疊性質(zhì)得GF,∠EFM,進(jìn)而得FM,再根據(jù)△EFM是等腰直角三角形,便可求得結(jié)果.【詳解】解:延長CF與AB交于點(diǎn)M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),折疊的性質(zhì),解直角三角形的應(yīng)用,關(guān)鍵是作輔助線構(gòu)造直角三角形.9、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點(diǎn)睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.10、10【解析】【分析】利用矩形性質(zhì),求證,將陰影部分的面積轉(zhuǎn)為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉(zhuǎn)化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點(diǎn)睛】本題主要是考查了矩形的性質(zhì)以全等三角形的判定與性質(zhì)以及中線平分三角形面積,熟練利用矩形性質(zhì),證明三角形全等,將陰影部分面積轉(zhuǎn)化為其他圖形的面積,這是解決本題的關(guān)鍵.三、解答題1、(1)見解析;(2)見解析;(3)108°【分析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,作BC的垂直平分線即可確定點(diǎn)E,連接AE即可;(2)分別以24°為底角,可分割出兩個(gè)等腰三角形;(3)利用圖1、2、3中三角形內(nèi)角之間的關(guān)系進(jìn)行判斷.【詳解】解:(1)如圖,作BC的垂直平分線交BC于E,連接AE,則直線AE即為所求;(2)如圖:(3)根據(jù)(1)(2)中三個(gè)角之間的關(guān)系可知:當(dāng)三角形是直角三角形時(shí),肯定可以分割成兩個(gè)等腰三角形,此時(shí)最大角為90°;當(dāng)一個(gè)角是另一個(gè)三倍時(shí),也肯定可以分割成兩個(gè)等腰三角形,此時(shí)最大角為99°;如圖3,此時(shí)最大角為108°.綜上所述:最大角為108°,故答案為:108°.【點(diǎn)睛】本題主要考查垂直平分線的尺規(guī)作圖、直角三角形斜邊中線定理及等腰三角形的性質(zhì),熟練掌握垂直平分線的尺規(guī)作圖、直角三角形斜邊中線定理及等腰三角形的性質(zhì)是解題的關(guān)鍵.2、(1);(2)①作圖見詳解;②8;(3)在網(wǎng)格中作圖見詳解;31.【分析】(1)根據(jù)網(wǎng)格可直接用割補(bǔ)法求解三角形的面積;(2)①利用勾股定理畫出三邊長分別為、、,然后依次連接即可;②根據(jù)①中圖形,可直接利用割補(bǔ)法進(jìn)行求解三角形的面積;(3)根據(jù)題意在網(wǎng)格中畫出圖形,然后在網(wǎng)格中作出,,進(jìn)而可得,得出,進(jìn)而利用割補(bǔ)法在網(wǎng)格中求解六邊形的面積即可.【詳解】解:(1)△ABC的面積為:,故答案為:;(2)①作圖如下(答案不唯一):②的面積為:,故答案為:8;(3)在網(wǎng)格中作出,,在與中,,∴,∴,,六邊形AQRDEF的面積=正方形PQAF的面積+正方形PRDE的面積+的面積,故答案為:31.【點(diǎn)睛】本題主要考查勾股定理、正方形的性質(zhì)、割補(bǔ)法求解面積及二次根式的運(yùn)算,熟練掌握勾股定理、正方形的性質(zhì)、割補(bǔ)法求解面積及二次根式的運(yùn)算是解題的關(guān)鍵.3、(1)見解析;(2)見解析【分析】(1)由已知可證,,即可得證;(2)由上述結(jié)論可得,再證△AFG為等腰直角三角形.【詳解】解:連結(jié)AM,DM,BM,
∵D、M關(guān)于直線AF對稱,∴AF垂直平分DM,∴AD=AM,F(xiàn)D=FM,∴△DAF≌△MAF,∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,∴△BAE≌△MAE,∴EM=EB,∴AE垂直平分BM,∴B、M關(guān)于AE對稱;(2)由(1)知△BAE≌△MAE,∴AE平分∠BEF,∴∠EAF=∠BAD=45°,又AF平分∠DFE,F(xiàn)G平分∠EFC,∴∠AFG=90°.∴△AFG為等腰直角三角形,∴.【點(diǎn)睛】本題是四邊形綜合題,主要考查了軸對稱的性質(zhì),等腰直角三角形的判定,勾股定理,三角形的面積等知識(shí),綜合性較強(qiáng),有一定難度.準(zhǔn)確作出輔助線是解題的關(guān)鍵.有關(guān)45°角的問題,往往利用全等,構(gòu)造等腰直角三角形,使問題迅速獲解.4、(1)見解析;(2)DECF,DEFB,EGCF,AEFD【分析】(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防洪防澇設(shè)施檔案資料管理手冊
- 供應(yīng)部年終工作總結(jié)
- 職業(yè)健康監(jiān)護(hù)中的患者隱私保護(hù)措施
- 職業(yè)健康慕課師資團(tuán)隊(duì)建設(shè)
- 達(dá)州四川達(dá)州宣漢縣鄉(xiāng)鎮(zhèn)事業(yè)單位面向服務(wù)期滿“三支一扶”志愿者招聘筆試歷年參考題庫附帶答案詳解
- 蘇州2025年江蘇蘇州張家港市衛(wèi)生健康系統(tǒng)事業(yè)單位招聘衛(wèi)技人員103人筆試歷年參考題庫附帶答案詳解
- 眉山2025年四川眉山市公安局高新區(qū)(甘眉園區(qū))分局招聘警務(wù)輔助人員21人筆試歷年參考題庫附帶答案詳解
- 濟(jì)寧2025年山東濟(jì)寧鄒城市“杏林歸巢”人才回引(29人)筆試歷年參考題庫附帶答案詳解
- 江西2025年江西省榮軍優(yōu)撫醫(yī)院招聘合同制護(hù)理人員筆試歷年參考題庫附帶答案詳解
- 昆明云南昆明市呈貢區(qū)應(yīng)急管理局招聘公益性崗位工作人員筆試歷年參考題庫附帶答案詳解
- 醫(yī)學(xué)課件-發(fā)紺教學(xué)課件
- 汽車CAN總線介紹課件
- 關(guān)于婚內(nèi)協(xié)議書范本
- 亳州《中央名園》項(xiàng)目融資計(jì)劃書-1
- 歷史七年級上冊知識(shí)點(diǎn)匯總
- isbp745中英文版解析
- 姑姑去世追悼詞
- 文物古建筑修繕工程施工組織設(shè)計(jì)
- 蘇教版語文《唐詩宋詞選讀》選修(教材上全部詩歌,已全部校對無誤)
- 全國現(xiàn)場管理星級評價(jià)標(biāo)準(zhǔn)
- 住院病案首頁填寫說明
評論
0/150
提交評論