2024年江蘇省太倉市中考數(shù)學(xué)考試綜合練習(xí)附完整答案詳解(各地真題)_第1頁
2024年江蘇省太倉市中考數(shù)學(xué)考試綜合練習(xí)附完整答案詳解(各地真題)_第2頁
2024年江蘇省太倉市中考數(shù)學(xué)考試綜合練習(xí)附完整答案詳解(各地真題)_第3頁
2024年江蘇省太倉市中考數(shù)學(xué)考試綜合練習(xí)附完整答案詳解(各地真題)_第4頁
2024年江蘇省太倉市中考數(shù)學(xué)考試綜合練習(xí)附完整答案詳解(各地真題)_第5頁
已閱讀5頁,還剩26頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省太倉市中考數(shù)學(xué)考試綜合練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、將一元二次方程化成(a,b為常數(shù))的形式,則a,b的值分別是(

)A.,21 B.,11 C.4,21 D.,692、對于拋物線,下列說法正確的是()A.拋物線開口向上B.當(dāng)時,y隨x增大而減小C.函數(shù)最小值為﹣2D.頂點坐標(biāo)為(1,﹣2)3、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.4、一個不透明的盒子里裝有a個除顏色外完全相同的球,其中有6個白球,每次將球充分?jǐn)噭蚝?,任意摸?個球記下顏色然后再放回盒子里,通過如此大量重復(fù)試驗,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定在0.4左右,則a的值約為()A.10 B.12 C.15 D.185、如圖,⊙O的半徑為5cm,直線l到點O的距離OM=3cm,點A在l上,AM=3.8cm,則點A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能二、多選題(5小題,每小題3分,共計15分)1、如圖,是的直徑,,交于點,交于點,是的中點,連接.則下列結(jié)論正確的是(

)A. B. C. D.是的切線2、運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線.不考慮空氣阻力,足球距離地面的高度h(單位:m)與足球被踢出后經(jīng)過的時間t(單位:s)之間的關(guān)系如下表:t01234567…h(huán)08141820201814…下列結(jié)論正確的是(

)A.足球距離地面的最大高度為20mB.足球飛行路線的對稱軸是直線C.足球被踢出9s時落地D.足球被踢出1.5s時,距離地面的高度是11m3、下列關(guān)于x的方程的說法正確的是()A.一定有兩個實數(shù)根 B.可能只有一個實數(shù)根C.可能無實數(shù)根 D.當(dāng)時,方程有兩個負(fù)實數(shù)根4、下列說法中,不正確的是(

)A.平分一條直徑的弦必垂直于這條直徑B.平分一條弧的直線垂直于這條弧所對的弦C.弦的垂線必經(jīng)過這條弦所在圓的圓心D.在一個圓內(nèi)平分一條弧和平分它所對的弦的直線必經(jīng)過這個圓的圓心5、以圖①(以點O為圓心,半徑為1的半圓)作為“基本圖形”,分別經(jīng)歷如下變換能得到圖②的有(

)A.只要向右平移1個單位 B.先以直線為對稱軸進(jìn)行翻折,再向右平移1個單位C.先繞著點O旋轉(zhuǎn),再向右平移1個單位 D.繞著的中點旋轉(zhuǎn)即可第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、在平面直角坐標(biāo)系中,點,圓C與x軸相切于點A,過A作一條直線與圓交于A,B兩點,AB中點為M,則OM的最大值為______.2、已知關(guān)于x的一元二次方程的一個根比另一個根大2,則m的值為_____.3、如圖,點A,B,C在⊙O上,四邊形OABC是平行四邊形,若對角線AC=2,則的長為_____.4、如果一個扇形的弧長等于它所在圓的半徑,那么此扇形叫做“完美扇形”.已知某個“完美扇形”的周長等于6,那么這個扇形的面積等于_____.5、已知一個扇形的半徑是1,圓心角是120°,則這個扇形的面積是___________.四、簡答題(2小題,每小題10分,共計20分)1、內(nèi)接于⊙O,在劣弧上,連交于,連,.(1)如圖1,求證:;(2)如圖2,平分,求證:;(3)如圖3,在(2)條件下,點在延長線上,連,于,,,,求⊙O半徑的長.2、拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點A的坐標(biāo)為(﹣1,0),點C的坐標(biāo)為(0,﹣3).點P為拋物線y=x2+bx+c上的一個動點.過點P作PD⊥x軸于點D,交直線BC于點E.(1)求b、c的值;(2)設(shè)點F在拋物線y=x2+bx+c的對稱軸上,當(dāng)△ACF的周長最小時,直接寫出點F的坐標(biāo);(3)在第一象限,是否存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍?若存在,求出點P所有的坐標(biāo);若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、已知拋物線y=ax2+3ax+c(a≠0)與y軸交于點A(1)若a>0①當(dāng)a=1,c=-1,求該拋物線與x軸交點坐標(biāo);②點P(m,n)在二次函數(shù)拋物線y=ax2+3ax+c的圖象上,且n-c>0,試求m的取值范圍;(2)若拋物線恒在x軸下方,且符合條件的整數(shù)a只有三個,求實數(shù)c的最小值;(3)若點A的坐標(biāo)是(0,1),當(dāng)-2c<x<c時,拋物線與x軸只有一個公共點,求a的取值范圍.2、在所給的的正方形網(wǎng)格中,按下列要求操作:(單位正方形的邊長為1)(1)請在第二象限內(nèi)的格點上找一點,使是以為底的等腰三角形,且腰長是無理數(shù),求點的坐標(biāo);(2)畫出以點為中心,旋轉(zhuǎn)180°后的,并求的面積.3、小明和小麗先后從A地出發(fā)同一直道去B地,設(shè)小麗出發(fā)第時,小麗、小明離B地的距離分別為、,與x之間的數(shù)表達(dá)式,與x之間的函數(shù)表達(dá)式是.(1)小麗出發(fā)時,小明離A地的距離為.(2)小麗發(fā)至小明到達(dá)B地這段時間內(nèi),兩人何時相距最近?最近距離是多少?4、如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點P⊙O上,∠1=∠C.(1)求證:CB∥PD;(2)若∠ABC=55°,求∠P的度數(shù).-參考答案-一、單選題1、A【解析】【分析】根據(jù)配方法步驟解題即可.【詳解】解:移項得,配方得,即,∴a=-4,b=21.故選:A【考點】本題考查了配方法解一元二次方程,解題關(guān)鍵是配方:在二次項系數(shù)為1時,方程兩邊同時加上一次項系數(shù)一半的平方.2、B【解析】【分析】根據(jù)二次函數(shù)圖象的性質(zhì)對各項進(jìn)行分析判斷即可.【詳解】解:拋物線解析式可知,A、由于,故拋物線開口方向向下,選項不符合題意;B、拋物線對稱軸為,結(jié)合其開口方向向下,可知當(dāng)時,y隨x增大而減小,選項說法正確,符合題意;C、由于拋物線開口方向向下,故函數(shù)有最大值,且最大值為-2,選項不符合題意;D、拋物線頂點坐標(biāo)為(-1,-2),選項不符合題意.故選:B.【考點】本題主要考查了二次函數(shù)的性質(zhì),解題關(guān)鍵是熟練運用拋物線的開口方向、對稱軸、頂點坐標(biāo)以及二次函數(shù)圖象的增減性解題.3、B【分析】把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.4、C【分析】在同樣條件下,大量反復(fù)試驗時,隨機(jī)事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從摸到白球的頻率穩(wěn)定在0.4左右得到比例關(guān)系,列出方程求解即可.【詳解】解:由題意可得,,解得,a=15.經(jīng)檢驗,a=15是原方程的解故選:C.【點睛】本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)白球的頻率得到相應(yīng)的等量關(guān)系.5、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點A與⊙O的位置關(guān)系是:點A在⊙O內(nèi).故選A.二、多選題1、BCD【解析】【分析】首先由是的直徑,得出,推出,根據(jù)是的中點,得出是的中位線,得到,,再由,推出是的中位線,得,即是的切線,最后由假設(shè)推出不正確.【詳解】解:連接,.是的直徑,(直徑所對的圓周角是直角),;而在中,,是邊上的中線,選項符合題意);是的直徑,,,,,,選項符合題意),是的中位線,即:,是的中點,是的中位線,,.是的切線選項符合題意);只有當(dāng)是等腰直角三角形時,,故選項錯誤,不符合題意,故選:BCD.【考點】本題考查的知識點是切線的判定與性質(zhì)、等腰三角形的性質(zhì)及圓周角定理,解題的關(guān)鍵是運用等腰三角形性質(zhì)及圓周角定理及切線性質(zhì)作答.2、BC【解析】【分析】由題意,拋物線經(jīng)過(0,0),(9,0),所以可以假設(shè)拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判斷.【詳解】解:由題意,拋物線的解析式為h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距離地面的最大高度為20.25m,故A錯誤,∴拋物線的對稱軸t=4.5,故B正確,∵t=9時,h=0,∴足球被踢出9s時落地,故C正確,∵t=1.5時,h=11.25,故D錯誤.∴正確的有②③,故選:BC【考點】本題考查二次函數(shù)的應(yīng)用、求出拋物線的解析式是解題的關(guān)鍵,屬于中考??碱}型.3、BD【解析】【分析】直接利用方程根與系數(shù)的關(guān)系以及根的判別式分析求出即可.【詳解】解:當(dāng)a=0時,方程整理為解得,∴選項B正確;故選項A錯誤;當(dāng)時,方程是一元二次方程,∴∴此時的方程表兩個不相等的實數(shù)根,故選項C錯誤;若時,,∴當(dāng)時,方程有兩個負(fù)實數(shù)根∴選項D正確,故選:BD【考點】此題主要考查了一元二次方程根的判別式和根與系數(shù)的關(guān)系,正確把握相關(guān)知識是解題關(guān)鍵.4、ABC【解析】【分析】根據(jù)垂徑定理的推論,即如果一條直線滿足:①垂直于弦,②平分弦,③過圓心,④平分優(yōu)弧,⑤平分劣弧中的兩個條件,即可推論出其余三個,逐一進(jìn)行判斷即可.【詳解】解:A、由于直徑也是弦,所以平分一條直徑的弦不一定垂直這條直徑,選項說法錯誤,符合題意;B、平分一條弧的直線不一定垂直于這條弧,應(yīng)該是:過圓心,且平分一條弧的直線垂直于這條弧所對的弦,選項說法錯誤,符合題意;C、弦的垂線不一定經(jīng)過這條弦所在的圓心,應(yīng)該是:弦的垂直平分線必經(jīng)過這條弦所在的圓心,選項說法錯誤,符合題意;D、在一個圓內(nèi),平分一條弧和它所對弦的直線必經(jīng)過這個圓的圓心,選項說法正確,不符合題意;故選ABC.【考點】本題考查了垂徑定理,解題的關(guān)鍵是掌握垂徑定理及其推論.5、BCD【解析】【分析】觀察兩個半圓的位置關(guān)系,再確定能否通過圖象變換得到,以及旋轉(zhuǎn)、平移的方法.【詳解】解:由圖可知,圖(1)先以直線AB為對稱軸進(jìn)行翻折,再向右平移1個單位,或先繞著點O旋轉(zhuǎn)180°,再向右平移1個單位,或繞著OB的中點旋轉(zhuǎn)180°即可得到圖(2)故選BCD【考點】本題考查了旋轉(zhuǎn)、軸對稱、平移的性質(zhì).關(guān)鍵是根據(jù)變換圖形的位置關(guān)系,確定變換規(guī)律.三、填空題1、##【分析】如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點,先求出A點坐標(biāo),從而可證OM是△ABD的中位線,得到,則當(dāng)BD最小時,OM也最小,即當(dāng)B運動到時,BD有最小值,由此求解即可.【詳解】解:如圖所示,取D(-2,0),連接BD,連接CD與圓C交于點∵點C的坐標(biāo)為(2,2),圓C與x軸相切于點A,∴點A的坐標(biāo)為(2,0),∴OA=OD=2,即O是AD的中點,又∵M(jìn)是AB的中點,∴OM是△ABD的中位線,∴,∴當(dāng)BD最小時,OM也最小,∴當(dāng)B運動到時,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案為:.【點睛】本題主要考查了坐標(biāo)與圖形,一點到圓上一點的距離得到最小值,兩點距離公式,三角形中位線定理,把求出OM的最小值轉(zhuǎn)換成求BD的最小值是解題的關(guān)鍵.2、1【解析】【分析】利用因式分解法求出x1,x2,再根據(jù)根的關(guān)系即可求解.【詳解】解(x-3m)(x-m)=0∴x-3m=0或x-m=0解得x1=3m,x2=m,∴3m-m=2解得m=1故答案為:1.【考點】此題主要考查解一元二次方程,解題的關(guān)鍵是熟知因式分解法的運用.3、【分析】連接OB,交AC于點D,根據(jù)有一組鄰邊相等的平行四邊形是菱形,可得四邊形OABC為菱形,根據(jù)菱形的性質(zhì)可得:,,,根據(jù)等邊三角形的判定得出為等邊三角形,由此得出,在直角三角形中利用勾股定理即可確定圓的半徑,然后代入弧長公式求解即可.【詳解】解:如圖所示,連接OB,交AC于點D,∵四邊形OABC為平行四邊形,,∴四邊形OABC為菱形,∴,,,∵,∴為等邊三角形,∴,∴,在中,設(shè),則,∴,即,解得:或(舍去),∴的長為:,故答案為:.【點睛】題目主要考查菱形的判定和性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,弧長公式等,熟練掌握各個定理和公式是解題關(guān)鍵.4、2【分析】根據(jù)扇形的面積公式S=,代入計算即可.【詳解】解:∵“完美扇形”的周長等于6,∴半徑r為=2,弧長l為2,這個扇形的面積為:==2.答案為:2.【點睛】本題考查了扇形的面積公式,扇形面積公式與三角形面積公式十分類似,為了便于記憶,只要把扇形看成一個曲邊三角形,把弧長l看成底,R看成底邊上的高即可.5、【分析】根據(jù)圓心角為的扇形面積是進(jìn)行解答即可得.【詳解】解:這個扇形的面積.故答案是:.【點睛】本題考查了扇形的面積,解題的關(guān)鍵是掌握扇形的面積公式.四、簡答題1、(1)見解析;(2)見解析;(3)【解析】【分析】(1)如圖,連接,由和分別是弧所對的圓心角和圓周角,利用圓周角定理可得,由,可得,OC平分,由,利用三線合一可證即可.

(2)如圖,過點作于,由平分,,,可得,,,由勾股定理得,,可求即可.(3)由,可得,由,可得,由,,可得,由平分,可得,由,可得,可證,可得,即,可求,由勾股定理,可求即可得到答案.【詳解】證明(1)如圖,連接,∵和分別是弧所對的圓心角和圓周角,∴,∵,∴,∴,∵,∴.

(2)如圖,過點作于,∵平分,,,∴,,,

∵,,∴,∴.

(3)∵,∴,∵,∴,

∵,,∴,∴,∵平分,∴,∵,∴,∴,

∵,∴,∴,∵,∴,∴,∵,,∴,解得:,(舍去),∴,∴,∴,即半徑的長是.【考點】本題考查圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì),掌握圓周角定理,等腰三角形性質(zhì),角平分線性質(zhì),勾股定理,相似三角形判定與性質(zhì)是解題關(guān)鍵.2、(1)(2)(3)存在,P的坐標(biāo)為【解析】【分析】(1)把A、C點的坐標(biāo)代入拋物線的解析式列出b、c的方程組,解得b、c便可.(2)連接BC與對稱軸交于點F,此時ΔACF的周長最小,求得BC的解析式,再求得BC與對稱軸的交點坐標(biāo)便可.(3)設(shè)P(m,m2-2m-3)(m>3),根據(jù)相似三角形的比例式列出m的方程解答便可.(1)解:把A、C點的坐標(biāo)代入拋物線的解析式得,解得(2)解:直線BC與拋物線的對稱軸交于點F,連接AF,如圖1,此時,AF+CF=BF+CF=BC的值最小,∵AC為定值,∴此時ΔAFC的周長最小,由(1)知,∴拋物線的解析式為:∴對稱軸為直線令,得解得或設(shè)直線BC的解析式為得解得∴直線BC的解析式為:∴當(dāng)時,(3)解:設(shè)P(m,m2-2m-3)(m>3),過P作PH⊥BC于H,過D作DG⊥BC于G,如圖2,則PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,經(jīng)檢驗,,即故m=5∴點P的坐標(biāo)為P(5,12).故存在點P,使點P到直線BC的距離是點D到直線BC的距離的5倍,其P點坐標(biāo)為【考點】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法,二次函數(shù)的圖象與性質(zhì),相似三角形的性質(zhì)與判定,軸對稱的性質(zhì)應(yīng)用求線段的最值,第(2)題關(guān)鍵是確定F的位置,第(3)題關(guān)鍵在于構(gòu)建相似三角形.五、解答題1、(1)①,,,②m>0或m<-3(2)-9(3)或或【解析】【分析】(1)當(dāng),時,,令時,求解方程的解即可;②將P(m,n)代入y=ax2+3ax+c中,要使n-c>0,即可得,解出不等式即可;(2)根據(jù)拋物線恒在x軸下方,可得,求出a的取值范圍,根據(jù)符合條件的整數(shù)a只有三個,判斷并求出c的取值范圍,從而求出c的最小值;(3)根據(jù)點A的坐標(biāo)得到拋物線解析式為,然后根據(jù)-2c<x<c時,拋物線與x軸只有一個公共點,分三種情況:①當(dāng)時,②當(dāng)時,③當(dāng)時,進(jìn)行分類討論求出符合題意的a的取值范圍.(1)解:①當(dāng),時,,當(dāng)時,,解得:,,拋物線與軸的交點坐標(biāo),,,;②,,,,解得:或;(2)解:∵拋物線恒在x軸下方,,解得:,∵符合條件的整數(shù)a只有三個,,解得:,的最小值為,(3)解:∵點A的坐標(biāo)是(0,1),,,又∵當(dāng)時,拋物線與x軸只有一個公共點,當(dāng)時,,當(dāng)時,,①當(dāng)時,,解得:,或者,無解②當(dāng)時,,無解,或者,解得:,③當(dāng)時,解得:,此時,,令時,則,解得:,,符合題意,綜合上述可知:a的取值范圍為:或或.【考點】此題主要考查的是函數(shù)圖象與x軸的交點問題,在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論