難點詳解人教版8年級數(shù)學上冊《全等三角形》專題練習試題(含解析)_第1頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》專題練習試題(含解析)_第2頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》專題練習試題(含解析)_第3頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》專題練習試題(含解析)_第4頁
難點詳解人教版8年級數(shù)學上冊《全等三角形》專題練習試題(含解析)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《全等三角形》專題練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,平行四邊形ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件使△ABE≌△CDF,則添加的條件不能是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠22、如圖,已知,,,則的長為(

)A.7 B.3.5 C.3 D.23、如圖①,已知,用尺規(guī)作它的角平分線.如圖②,步驟如下:第一步:以B為圓心,以a為半徑畫弧,分別交射線,于點D,E;第二步:分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P;第三步;畫射線,射線即為所求.下列敘述不正確的是(

)A. B.作圖的原理是構(gòu)造三角形全等C.由第二步可知, D.的長4、如圖,小敏做了一個角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點A與∠PRQ的頂點R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過點A、C畫一條射線AE,AE就是∠PRQ的平分線.此角平分儀的畫圖原理是()A.SSS B.SAS C.ASA D.AAS5、作平分線的作圖過程如下:作法:(1)在和上分別截取、,使.(2)分別以,為圓心,大于的長為半徑作弧,兩弧交于點.(3)作射線,則就是的平分線.用下面的三角形全等的判定解釋作圖原理,最為恰當?shù)氖牵?/p>

)A. B. C. D.6、如圖:,,則此題可利用下列哪種方法來判定(

)A.ASA B.AAS C.HL D.缺少條件,不可判定7、如圖,把沿線段折疊,使點落在點處;若,,,則的度數(shù)為(

)A. B. C. D.8、如圖,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,連接AC,BD交于點M,連接OM,下列結(jié)論:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正確的個數(shù)為()A.4 B.3 C.2 D.19、如圖,在中,,,點E在BC的延長線上,的平分線BD與的平分線CD相交于點D,連接AD,則下列結(jié)論中,正確的是A. B. C. D.10、“經(jīng)過已知角一邊上的一點作“個角等于已知角”的尺規(guī)作圖過程如下:已知:如圖(1),∠AOB和OA上一點C.求作:一個角等于∠AOB,使它的頂點為C,一邊為CA.作法:如圖(2),(1)在0A上取一點D(OD<OC),以點O為圓心,OD長為半徑畫弧,交OB于點E;(2)以點C為圓心,OD長為半徑畫弧,交CA于點F,以點F為圓心,DE長為半徑畫弧,兩弧交于點C;(3)作射線CC.所以∠CCA就是所求作的角此作圖的依據(jù)中不含有()A.三邊分別相等的兩個三角形全等 B.全等三角形的對應角相等C.兩直線平行同位角相等 D.兩點確定一條直線第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,點B,F(xiàn),C,E在一條直線上,,,請?zhí)砑右粋€條件,使≌,這個添加的條件可以是______(只需寫一個,不添加輔助線).2、如圖,是一個中心對稱圖形,A為對稱中心,若,則________,________.3、已知:如圖,是上一點,平分,,若,則________.(用的代數(shù)式表示)4、在△ABC中,AB=5,BC邊上的中線AD=4,則AC的長m的取值范圍是_______.5、如圖,小明與小紅玩蹺蹺板游戲,如果蹺蹺板的支點O(即蹺蹺板的中點)至地面的距離是50cm,當小紅從水平位置CD下降30cm時,這時小明離地面的高度是___cm.6、如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2,BE=1.則DE=________.7、如圖,在△ABC中,,AC=8cm,BC=10cm.點C在直線l上,動點P從A點出發(fā)沿A→C的路徑向終點C運動;動點Q從B點出發(fā)沿B→C→A路徑向終點A運動.點P和點Q分別以每秒1cm和2cm的運動速度同時開始運動,其中一點到達終點時另一點也停止運動,分別過點P和Q作PM⊥直線l于M,QN⊥直線l于N.則點P運動時間為____秒時,△PMC與△QNC全等.8、我們定義:一個三角形最小內(nèi)角的角平分線將這個三角形分割得到的兩個三角形它們的面積之比稱為“最小角割比Ω”(),那么三邊長分別為7,24,25的三角形的最小角割比Ω是______.9、如圖,在△ABC中,AD⊥BC于點D,過A作AEBC,且AE=AB,AB上有一點F,連接EF.若EF=AC,CD=4BD,則=_____.10、如圖,圖中由實線圍成的圖形與①是全等形的有______.(填番號)三、解答題(5小題,每小題6分,共計30分)1、如圖,在四邊形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求證:AD=CD.2、如圖,在中,且,點是斜邊的中點,E、F分別是AB、AC邊上的點,且.連接.(1)求證:;(2)如圖,若,,則的面積為________.3、【閱讀理解】課外興趣小組活動時,老師提出了如下問題:如圖,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:如圖,延長AD到點E,使DE=AD,連結(jié)BE.請根據(jù)小明的方法思考:(1)由已知和作圖能得到的理由是(

).A.SSS

B.SAS

C.AAS

D.ASA(2)AD的取值范圍是(

).A.

B.

C.

D.(3)【感悟】解題時,條件中若出現(xiàn)“中點”、“中線”字樣,可以考慮延長中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論轉(zhuǎn)化到同一個三角形中.【問題解決】如圖,AD是△ABC的中線,BE交AC于點E,交AD于F,且AE=EF.求證:AC=BF.4、如圖,沿AC方向開山修路,為了加快施工進度,要在山的另一邊同時施工,工人師傅在AC上取一點B,在小山外取一點D,連接BD,并延長使DF=BD,過F點作AB的平行線段MF,連接MD,并延長,在其延長線上取一點E,使DE=DM,在E點開工就能使A、C、E成一條直線,請說明其中的道理;5、已知:如圖,AB=DE,AB∥DE,BE=CF,且點B、E、C、F都在一條直線上,求證:AC∥DF.-參考答案-一、單選題1、A【解析】【分析】利用平行四邊形的性質(zhì)以及全等三角形的判定分別得出即可.【詳解】解:A、若添加條件:AE=CF,因為∠ABD=∠CDB,不是兩邊的夾角,所以不能證明△ABE≌△CDF,所以錯誤,符合題意,B、若添加條件:BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;C、若添加條件:BF=DE,可以得到BE=FD,可以利用SAS證明△ABE≌△CDF,所以正確,不符合題意;D、若添加條件:∠1=∠2,可以利用ASA證明△ABE≌△CDF,所以正確,不符合題意;故選:A.【考點】本題考查了平行四邊形的性質(zhì)、全等三角形的判定,解題的關(guān)鍵是掌握三角形的判定定理.2、C【解析】【分析】利用全等三角形的性質(zhì)求解即可.【詳解】解:∵△ABC≌△DAE,∴AC=DE=5,AE=BC=2,∴CE=AC-AE=3,故選C.【考點】本題主要考查了全等三角形的性質(zhì),熟知全等三角形對應邊相等是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)用尺規(guī)作圖法畫已知角的角平分線的基本步驟判斷即可【詳解】解:A、∵以a為半徑畫弧,∴,故正確B、根據(jù)作圖步驟可知BD=BE,PD=PE,BP=BP,∴△BDP≌△BEP(SSS),故正確C、∵分別以D,E為圓心,以b為半徑畫弧,兩弧在內(nèi)部交于點P,∴,故正確D、分別以D,E為圓心,以b為半徑畫弧,其中,否則兩個圓弧沒有交點,故錯誤故選:D【考點】本題考查用尺規(guī)作圖法畫已知角的角平分線及理論依據(jù),熟練尺規(guī)作圖的基本步驟是關(guān)鍵4、A【解析】【分析】根據(jù)題意兩個三角形的三條邊分別對應相等,即可利用“邊邊邊”證明這兩個三角形全等,即可選擇.【詳解】在和中,,∴,∴,即.∴此角平分儀的畫圖原理是SSS.故選:A.【考點】本題考查了三角形全等的判定和性質(zhì).根據(jù)題意找到可證明兩三角形全等的條件是解答本題的關(guān)鍵.5、A【解析】【分析】根據(jù)作圖過程可得OD=OE,CE=CD,根據(jù)OC為公共邊,利用SSS即可證明△OCE≌△OCD,即可得答案.【詳解】∵分別以,為圓心,大于的長為半徑作弧,兩弧交于點;∴CE=CD,在△OCE和△OCD中,,∴△OCE≌△OCD(SSS),故選:A.【考點】本題考查全等三角形的判定,正確找出相等的線段并熟練掌握全等三角形的判定定理是解題關(guān)鍵.6、C【解析】【分析】根據(jù)全等三角形的判定定理直接求解.【詳解】解:在Rt△ABC和Rt△DCB中,∴(HL),故選C.【考點】本題考查了全等三角形的判定定理,牢記全等三角形的判定定理是解題的關(guān)鍵.7、C【解析】【分析】由于折疊,可得三角形全等,運用三角形全等得出,利用平行線的性質(zhì)可得出則即可求.【詳解】解:∵沿線段折疊,使點落在點處,∴,∴,∵,,∴,∵,∴,∴,故選:C.【考點】本題考查了全等三角形的性質(zhì)及三角形內(nèi)角和定理、平行線的性質(zhì);解題的關(guān)鍵是,理解折疊就是得到全等的三角形,根據(jù)全等三角形的對應角相等就可以解決.8、A【解析】【分析】由題意易得∠AOC=∠BOD,然后根據(jù)三角形全等的性質(zhì)及角平分線的判定定理可進行求解.【詳解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正確;過點O作OE⊥AC于點E,OF⊥BD于點F,BD與OA相交于點H,如圖所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正確;所以正確的個數(shù)有4個;故選A.【考點】本題主要考查全等三角形的性質(zhì)與判定及角平分線的判定定理,熟練掌握全等三角形的性質(zhì)與判定及角平分線的判定定理是解題的關(guān)鍵.9、B【解析】【分析】由∠ABC=50°,∠ACB=60°,可判斷出AC≠AB,根據(jù)三角形內(nèi)角和定理可求出∠BAC的度數(shù),根據(jù)鄰補角定義可求出∠ACE度數(shù),由BD平分∠ABC,CD平分∠ACE,根據(jù)角平分線的定義以及三角形外角的性質(zhì)可求得∠BDC的度數(shù),繼而根據(jù)三角形內(nèi)角和定理可求得∠DOC的度數(shù),據(jù)此對各選項進行判斷即可得.【詳解】∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=70°,∠ACE=180°-∠ACB=120°,AC≠AB,∵BD平分∠ABC,CD平分∠ACE,∴∠DBC=∠ABC=25°,∠DCE=∠ACD=∠ACE=60°,∴∠BDC=∠DCE-∠DBC=35°,∴∠DOC=180°-∠OCD-∠ODC=180°-60°-35°=85°,∵∠DBC=25°,∠BDC=35°,∴BC≠CD,故選B.【考點】本題考查了三角形內(nèi)角和定理,等腰三角形判定,角平分線的定義等,熟練掌握角平分線的定義以及三角形內(nèi)角和定理是解本題的關(guān)鍵.10、C【解析】【分析】根據(jù)題意知,作圖依據(jù)有全等三角形的判定定理SSS,全等三角形的性質(zhì)和兩點確定一條直線,直接判斷即可.【詳解】解:由題意可得:由全等三角形的判定定理SSS可以推知△EOD≌△GCF,故A正確;結(jié)合該全等三角形的性質(zhì)對應角相等,故B正確;作射線CG,利用兩點確定一條直線,故D正確;故選:C.【考點】本題考查作一個角等于已知角和三角形全等的判定與性質(zhì),解題關(guān)鍵是明確作圖原理,準確進行判斷.二、填空題1、(還可以添加∠A=∠D或∠ACB=∠EFD或AC∥DF,答案不唯一)【解析】【分析】根據(jù)等式的性質(zhì)可得BC=EF,再添加AB=DE,可利用SAS判定△ABC≌△DEF.【詳解】添加的條件是,∵,∴,即.∵在中中,.故答案為:.(還可以添加或或,答案不唯一)【考點】本題主要考查了三角形全等的判定,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.2、

30°

2【解析】【分析】根據(jù)中心對稱圖形的性質(zhì),得到,再由全等三角形的性質(zhì)解題即可.【詳解】解:∵A為對稱中心,∴繞點A旋轉(zhuǎn)能與重合,∴,∴,,∴.【考點】本題考查中心對稱圖形的性質(zhì)、全等三角形的性質(zhì)等知識,是基礎考點,掌握相關(guān)知識是解題關(guān)鍵.3、【解析】【分析】過點D分別作DE⊥AB,DF⊥AC,根據(jù)角平分線的性質(zhì)得到DE=DF,根據(jù)表示出DE的長度,進而得到DF的長度,然后即可求出的值.【詳解】如圖,過點D分別作DE⊥AB,DF⊥AC,∵平分,∴DE=DF,∵,∴,∴∴,故答案為:.【考點】此題考查了角平分線的性質(zhì)定理,三角形面積的表示方法,解題的關(guān)鍵是根據(jù)題意正確作出輔助線.4、3<m<13【解析】【分析】延長AD至E,使DE=AD=4,連接CE,利用SAS證明△ABD≌△ECD,可得CE=AB,再根據(jù)三角形的三邊的關(guān)系即可解決問題.【詳解】解:如圖,延長AD至E,使DE=AD=4,連接CE,∵AD是BC邊上的中線,∴BD=CD,在△ADB和△CDE中,,∴△ABD≌△ECD(SAS),∴CE=AB,在△ACE中,AE-CE<AC<AE+CE,∵CE=AB=5,AE=8,∴8-5<AC<8+5,∴3<AC<13,∴3<m<13.故答案為:3<m<13.【考點】此題考查了全等三角形的性質(zhì)與判定,三角形的三邊的關(guān)系,解題的關(guān)鍵是利用已知條件構(gòu)造全等三角形,然后利用三角形的三邊的關(guān)系解決問題.5、80【解析】【分析】根據(jù)題意可得:OF=OG,OC=OD,利用已知條件判斷出△OFC≌△OGD,得到CF=DG,即可求出答案.【詳解】∵O是FG和CD的中點∴OF=OG,OC=OD在△OFC和△OGD中∴△OFC≌△OGD(SAS)∴CF=DG又DG=30cm∴CF=DG=30cm∴小明離地面的高度=支點到地面的高度+CF=50+30=80cm故答案為80【考點】本題主要考查了三角形全等知識的應用,用數(shù)學方法解決生活中有關(guān)的實際問題,把實際問題轉(zhuǎn)換成數(shù)學問題,用數(shù)學方法加以論證,最后進行求解,是一種十分重要的方法.6、1【解析】【分析】先證明△ACD≌△CBE,再求出DE的長,解決問題.【詳解】解:∵BE⊥CE于E,AD⊥CE于D∴∵∴∵∴∴,∴.故答案為:1【考點】此題考查三角形全等的判定和性質(zhì),掌握再全等三角形的判定和性質(zhì)是解題的關(guān)鍵.7、2或6或6或2【解析】【分析】設點P運動時間為t秒,根據(jù)題意化成兩種情況,由全等三角形的性質(zhì)得出,列出關(guān)于t的方程,求解即可.【詳解】解:設運動時間為t秒時,△PMC≌△CNQ,∴斜邊,分兩種情況:①如圖1,點P在AC上,點Q在BC上,圖1∵,,∴,,∵,∴,∴;②如圖2,點P、Q都在AC上,此時點P、Q重合,圖2∵,,∴,∴;綜上所述,點P運動時間為2或6秒時,△PMC與△QNC全等,故答案為:2或6.【考點】本題考查了全等三角形的性質(zhì)和判定的應用,根據(jù)題意判斷兩三角形全等的條件是解題關(guān)鍵,同時要注意分情況討論,解題時避免遺漏答案.8、.【解析】【分析】根據(jù)題意作出圖形,然后根據(jù)角平分線的性質(zhì)得到,再根據(jù)三角形的面積和最小角割比Ω的定義計算即可.【詳解】解:如圖示,,,,則,根據(jù)題意,作的角平分線交于點,過點,作交于點,過點,作交于點,則∵,,則()故答案是:.【考點】本題考查了三角形角平分線的性質(zhì)和三角形的面積計算,熟悉相關(guān)性質(zhì)是解題的關(guān)鍵.9、【解析】【分析】在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,先證明△AEH≌△GAD,得EH=AD,AH=GD,再證明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,則,得S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,則,,得,于是得到問題的答案.【詳解】解:如圖,在CD上取一點G,使GD=BD,連接AG,作EH⊥AB交BA的延長線于點H,∵AD⊥BC于點D,∴AG=AB,∠H=∠ADG=90°∴∠AGD=∠B,∵AE//BC,∴∠EAH=∠B,∴∠EAH=∠AGD,∵AE=AB,∴AE=AG,在△AEH和△GAD中,,∴△AEH≌△GAD(AAS),∴EH=AD,AH=GD,在Rt△EHF和Rt△ADC中,,∴Rt△EHF≌Rt△ADC(HL),∴FH=CD,∴FH-AH=CD-GD,∴AF=GC,∴,∴S△AEF=S△GAC,設GD=BD=m,則CD=4BD=4m,∴CG=4m-m=3m,BC=4m+m=5m,∴,∴,故答案為:.【考點】此題考查平行線的性質(zhì)、全等三角形的判定與性質(zhì)、有關(guān)面積比問題的求解等知識與方法,正確地作出所需要的輔助線是解題的關(guān)鍵.10、②③【解析】【分析】根據(jù)全等圖形的定義,兩個圖形必須能夠完全重合才行.【詳解】觀察圖形,發(fā)現(xiàn)②③圖形可以和①圖形完全重合故答案為:②③.【考點】本題考查全等的概念,任何一組圖形,要想全等,則這組圖形必須能夠完全重合.三、解答題1、見解析【解析】【詳解】試題分析:在邊BC上截取BE=BA,連接DE,根據(jù)SAS證△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.試題解析:證明:在邊BC上截取BE=BA,連接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.點睛:本題考查了等腰三角形的判定,全等三角形的性質(zhì)和判定等知識點的應用,解答此題的關(guān)鍵是正確作輔助線,又是難點,解題的思路是把AD和CD放到一個三角形中,根據(jù)等腰三角形的判定進行證明,題型較好,有一定的難度.2、(1)見解析;(2).【解析】【分析】(1)易證∠ADE=∠CDF,即可證明△ADE≌△CDF;(2)由(1)可得AE=CF,BE=AF,,再根據(jù)△DEF的面積=,即可解題.【詳解】(1)證明:∵AB=AC,D是BC中點,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,∴△ADE≌△CDF(ASA).(2)解:∵△ADE≌△CDF∴AE=CF=5,BE=AF=12,AB=AC=17,∴∴∴△DEF的面積=.【考點】本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質(zhì),本題中求證△ADE≌△CDF是解題的關(guān)鍵.3、(1)B(2)C(3)見解析【解析】【分析】(1)根據(jù)AD=DE,∠ADC=∠BDE,BD=DC推出△ADC和△EDB全等即可;(2)根據(jù)全

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論