版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊《圓》專項練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,點A、B、C在⊙O上,且∠ACB=100o,則∠α度數(shù)為(
)A.160o B.120o C.100o D.80o2、如圖,AB是的直徑,點B是弧CD的中點,AB交弦CD于E,且,,則(
)A.2 B.3 C.4 D.53、已知扇形的圓心角為,半徑為,則弧長為(
)A. B. C. D.4、如圖,是⊙的直徑,點C為圓上一點,的平分線交于點D,,則⊙的直徑為(
)A. B. C.1 D.25、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°6、如圖,、為⊙O的切線,切點分別為A、B,交于點C,的延長線交⊙O于點D.下列結論不一定成立的是(
)A.為等腰三角形 B.與相互垂直平分C.點A、B都在以為直徑的圓上 D.為的邊上的中線7、如圖,在中,,AB=AC=5,點在上,且,點E是AB上的動點,連結,點,G分別是BC,DE的中點,連接,,當AG=FG時,線段長為(
)A. B. C. D.48、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(
)A.π B.π C.π D.29、如圖,在中,,cm,cm.是邊上的一個動點,連接,過點作于,連接,在點變化的過程中,線段的最小值是(
)A.1 B. C.2 D.10、如圖,是的直徑,,若,則的度數(shù)是(
)A.32° B.60° C.68° D.64°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在矩形中,是邊上一點,連接,將矩形沿翻折,使點落在邊上點處,連接.在上取點,以點為圓心,長為半徑作⊙與相切于點.若,,給出下列結論:①是的中點;②⊙的半徑是2;③;④.其中正確的是________.(填序號)2、如圖,A、B、C、D為一個正多邊形的相鄰四個頂點,O為正多邊形的中心,若∠ADB=12°,則這個正多邊形的邊數(shù)為____________3、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.4、如圖,中,長為,,將繞點A逆時針旋轉至,則邊掃過區(qū)域(圖中陰影部分)的面積為________.5、如圖:四邊形ABCD內接于⊙O,E為BC延長線上一點,若∠A=n°,則∠DCE=_____°.6、如圖,邊長相等的正五邊形和正六邊形拼接在一起,則∠ABC的度數(shù)為________.7、如圖,在四邊形中,.若,則的內切圓面積________(結果保留).8、已知:如圖,半圓O的直徑AB=12cm,點C,D是這個半圓的三等分點,則弦AC,AD和CD圍成的圖形(圖中陰影部分)的面積S是___.9、如圖,在正六邊形ABCDEF中,分別以C,F(xiàn)為圓心,以邊長為半徑作弧,圖中陰影部分的面積為24π,則正六邊形的邊長為_____.10、已知圓錐的底面半徑為,側面展開圖的圓心角是180°,則圓錐的高是______.三、解答題(5小題,每小題6分,共計30分)1、如圖,已知的直徑為,于點,與相交于點,在上取一點,使得.(1)求證:是的切線;(2)填空:①當,時,則___________.②連接,當?shù)亩葦?shù)為________時,四邊形為正方形.2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點P從點A開始沿AD邊向點D以1cm/s的速度運動,動點Q從點C開始沿CB邊向點B以2cm/s的速度運動.P、Q分別從點A、C同時出發(fā),當其中一個動點到達端點時,另一個動點也隨之停止運動,設運動時間為t(s).(1)當t為何值時,四邊形PQCD為平行四邊形?(2)當t為何值時,PQ與⊙O相切?3、如圖,是的直徑,點是上一點,點是延長線上一點,,是的弦,.(1)求證:直線是的切線;(2)若,求的半徑;(3)若于點,點為上一點,連接,,,請找出,,之間的關系,并證明.4、在平面直角坐標系中,⊙C與x軸交于點A,B,且點B的坐標為(8,0),與y軸相切于點D(0,4),過點A,B,D的拋物線的頂點為E.(1)求圓心C的坐標與拋物線的解析式;(2)判斷直線AE與⊙C的位置關系,并說明理由;(3)若點M,N是直線y軸上的兩個動點(點M在點N的上方),且MN=1,請直接寫出的四邊形EAMN周長的最小值.5、如圖,在四邊形中,,.是四邊形內一點,且.求證:(1);(2)四邊形是菱形.-參考答案-一、單選題1、A【解析】【分析】在⊙O取點,連接利用圓的內接四邊形的性質與一條弧所對的圓心角是它所對的圓周角的2倍,可得答案.【詳解】解:如圖,在⊙O取點,連接四邊形為⊙O的內接四邊形,.故選A【考點】本題考查的是圓的內接四邊形的性質,同弧所對的圓心角是它所對的圓周角的2倍,掌握相關知識點是解題的關鍵.2、C【解析】【分析】是的直徑,點是弧的中點,從而可知,然后利用勾股定理即可求出的長度.【詳解】解:設半徑為,連接,是的直徑,點是弧的中點,由垂徑定理可知:,且點是的中點,,,由勾股定理可知:,由勾股定理可知:,解得:,故選:C.【考點】本題考查垂徑定理,解題的關鍵是正確理解垂徑定理以及勾股定理,本題屬于中等題型3、D【解析】【分析】根據(jù)扇形的弧長公式計算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長cm故答案為:D.【考點】本題主要考查扇形的弧長,熟記扇形的弧長公式是解題的關鍵.4、B【解析】【分析】過D作DE⊥AB垂足為E,先利用圓周角的性質和角平分線的性質得到DE=DC=1,再說明Rt△DEB≌Rt△DCB得到BE=BC,然后再利用勾股定理求得AE,設BE=BC=x,AB=AE+BE=x+,最后根據(jù)勾股定理列式求出x,進而求得AB.【詳解】解:如圖:過D作DE⊥AB,垂足為E∵AB是直徑∴∠ACB=90°∵∠ABC的角平分線BD∴DE=DC=1在Rt△DEB和Rt△DCB中DE=DC、BD=BD∴Rt△DEB≌Rt△DCB(HL)∴BE=BC在Rt△ADE中,AD=AC-DC=3-1=2AE=設BE=BC=x,AB=AE+BE=x+在Rt△ABC中,AB2=AC2+BC2則(x+)2=32+x2,解得x=∴AB=+=2故填:2.【考點】本題主要考查了圓周角定理、角平分線的性質以及勾股定理等知識點,靈活應用相關知識成為解答本題的關鍵.5、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內接四邊形的性質求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對的圓周角的度數(shù)是60°或120°,故選D.【考點】本題考查了圓周角定理、圓內接四邊形的對角互補、解直角三角形的應用等,正確畫出圖形,熟練應用相關知識是解題的關鍵.6、B【解析】【分析】連接OB,OC,令M為OP中點,連接MA,MB,證明Rt△OPB≌Rt△OPA,可得BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,可推出為等腰三角形,可判斷A;根據(jù)△OBP與△OAP為直角三角形,OP為斜邊,可得PM=OM=BM=AM,可判斷C;證明△OBC≌△OAC,可得PC⊥AB,根據(jù)△BPA為等腰三角形,可判斷D;無法證明與相互垂直平分,即可得出答案.【詳解】解:連接OB,OC,令M為OP中點,連接MA,MB,∵B,C為切點,∴∠OBP=∠OAP=90°,∵OA=OB,OP=OP,∴Rt△OPB≌Rt△OPA,∴BP=AP,∠OPB=∠OPA,∠BOC=∠AOC,∴為等腰三角形,故A正確;∵△OBP與△OAP為直角三角形,OP為斜邊,∴PM=OM=BM=AM∴點A、B都在以為直徑的圓上,故C正確;∵∠BOC=∠AOC,OB=OA,OC=OC,∴△OBC≌△OAC,∴∠OCB=∠OCA=90°,∴PC⊥AB,∵△BPA為等腰三角形,∴為的邊上的中線,故D正確;無法證明與相互垂直平分,故選:B.【考點】本題考查了全等三角形的判定與性質,等腰三角形的判定與性質,圓的性質,掌握知識點靈活運用是解題關鍵.7、A【解析】【分析】連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB,結合直角三角形斜邊中線等于斜邊的一半求得點A,D,F(xiàn),E四點共圓,∠DFE=90°,然后根據(jù)勾股定理及正方形的判定和性質求得AE的長度,從而求解.【詳解】解:連接DF,EF,過點F作FN⊥AC,F(xiàn)M⊥AB∵在中,,點G是DE的中點,∴AG=DG=EG又∵AG=FG∴點A,D,F(xiàn),E四點共圓,且DE是圓的直徑∴∠DFE=90°∵在Rt△ABC中,AB=AC=5,點是BC的中點,∴CF=BF=,F(xiàn)N=FM=又∵FN⊥AC,F(xiàn)M⊥AB,∴四邊形NAMF是正方形∴AN=AM=FN=又∵,∴∴△NFD≌△MFE∴ME=DN=AN-AD=∴AE=AM+ME=3∴在Rt△DAE中,DE=故選:A.【考點】本題考查直徑所對的圓周角是90°,四點共圓及正方形的判定和性質和用勾股定理解直角三角形,掌握相關性質定理正確推理計算是解題關鍵.8、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以OC為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以OC為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質,勾股定理,正方形的判定與性質,圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.9、A【解析】【分析】由∠AEC=90°知,點E在以AC為直徑的⊙M的上(不含點C、可含點N),從而得BE最短時,即為連接BM與⊙M的交點(圖中點E′點),BE長度的最小值BE′=BM?ME′.【詳解】如圖,由題意知,,在以為直徑的的上(不含點、可含點,最短時,即為連接與的交點(圖中點點),在中,,,則.,長度的最小值,故選:.【考點】本題主要考查了勾股定理,圓周角定理,三角形的三邊關系等知識點,難度偏大,解題時,注意輔助線的作法.10、D【解析】【分析】根據(jù)已知條件和圓心角、弧、弦的關系,可知,然后根據(jù)對頂角相等即可求解.【詳解】,.,,,故選:D.【考點】本題主要考查圓心角、弧、弦的關系、對頂角相等,較簡單,掌握基本概念是解題關鍵.二、填空題1、①②④.【解析】【詳解】解:①∵AF是AB翻折而來,∴AF=AB=6.∵AD=BC=,∴DF==3,∴F是CD中點;∴①正確;②連接OP,∵⊙O與AD相切于點P,∴OP⊥AD.∵AD⊥DC,∴OP∥CD,∴,設OP=OF=x,則,解得:x=2,∴②正確;③∵Rt△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF.∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③錯誤;④連接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊△.同理△OPG為等邊△,∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG==,∴④正確;故答案為①②④.2、15【解析】【分析】連接AO,BO,根據(jù)圓周角定理得到∠AOB=24°,根據(jù)中心角的定義即可求解.【詳解】如圖,連接AO,BO,∴∠AOB=2∠ADB=24°∴這個正多邊形的邊數(shù)為=15故答案為:15.【考點】此題主要考查正多邊形的性質,解題的關鍵是熟知圓周角定理.3、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時
水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.4、【解析】根據(jù)已知的條件和旋轉的性質得出兩個扇形的圓心角的度數(shù),再根據(jù)扇形的面積公式進行計算即可得出答案.【詳解】解:∵∠BAC=60°,∠BCA=90°,△B'AC'是△BAC繞A旋轉120°得到,∴∠B'AB=120°,∠B'AC=60°,∠B'AC'=60°,△B'AC'≌△BAC,∴∠C'B'A=30°,∠C'AC=120°∵AB=1cm,∴AC'=0.5cm,∴S扇形B'AB=,S扇形C'AC=,∴S陰影部分===,故答案為【考點】本題考查圓的綜合應用,熟練掌握旋轉的性質、直角三角形的性質及扇形面積的求法是解題關鍵.5、n【解析】【分析】利用圓內接四邊形的對角互補和鄰補角的性質求解.【詳解】∵四邊形ABCD是⊙O的內接四邊形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=n°故答案為n【考點】本題考查了圓內接四邊形的性質.解決本題的關鍵是掌握:圓內接四邊形的對角互補.6、24°【解析】【分析】根據(jù)正五邊形的內角和和正六邊形的內角和公式求得正五邊形的每個內角為108°和正六邊形的每個內角為120°,然后根據(jù)周角的定義和等腰三角形性質可得結論.【詳解】解:由題意得:正六邊形的每個內角都等于120°,正五邊形的每個內角都等于108°∴∠BAC=360°-120°-108°=132°∵AB=AC∴∠ACB=∠ABC=故答案是:.【考點】考查了正多邊形的內角與外角、等腰三角形的性質,熟練掌握正五邊形的內角和正六邊形的內角求法是解題的關鍵.7、【解析】【分析】根據(jù),得出為的垂直平分線;利用等腰三角形的三線合一可得,進而得出為等邊三角形;利用,得出為直角三角形,解直角三角形,求得等邊三角形的邊長,再利用內心的性質求出圓的半徑,圓的面積可求.【詳解】解:如圖,設與交于點F,的內心為O,連接.∵,∴是線段的垂直平分線.∴.∵,∴.∴.∴為等邊三角形.∴.∵,∴.∵,∴∴.∴.∵,∴.∵O為的內心,∴.∴.∴的內切圓面積為.故答案為.【考點】本題考查了垂直平分線的判定、三角形內切圓、等邊三角形判定與性質、解直角三角形,解題關鍵是根據(jù)垂直平分線的判定確定為等邊三角形,根據(jù)解直角三角形求出內切圓半徑.8、【解析】【分析】如圖,連接OC、OD、CD,OC交AD于點E,由點C,D是這個半圓的三等分點可得,在同圓中,同弧所對的圓周角是圓心角的一半,即可得出,再根據(jù)得,,都是等邊三角形,所以,,可證,故,由扇形的面積公式計算即可.【詳解】如圖所示,連接OC、OD、CD,OC交AD于點E,點C,D是這個半圓的三等分點,,,,,都是等邊三角形,,,在與中,,,,.故答案為:.【考點】本題考查了扇形面積公式的應用,證明,把求陰影部分面積轉化為求扇形面積是解題的關鍵.9、6【解析】【分析】根據(jù)多邊形的內角和公式求出扇形的圓心角,然后按扇形面積公式列方程求解計算即可.【詳解】解:∵正六邊形的內角是120度,陰影部分的面積為24π,設正六邊形的邊長為r,∴,解得r=6.(負根舍去)則正六邊形的邊長為6.故答案為:【考點】本題考查的是正多邊形與圓,扇形面積,掌握以上知識是解題的關鍵.10、【解析】【分析】設圓錐的母線長為Rcm,根據(jù)圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和弧長公式得到2π?5=,然后解方程即可得母線長,然后利用勾股定理求得圓錐的高即可.【詳解】解:設圓錐的母線長為Rcm,根據(jù)題意得2π?5=,解得R=10.即圓錐的母線長為10cm,∴圓錐的高為:(cm).故答案為:.【考點】本題考查了圓錐的計算:圓錐的側面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.三、解答題1、(1)詳見解析;(2)①10;②【解析】【分析】(1)連接OD,證明,得到,根據(jù)切線的判定定理證明;(2)①利用等腰三角形的性質證明E是AC中點,再利用中位線定理得到,再用勾股定理求出OE,從而得到BC;②添加條件,先通過四個邊相等的四邊形是菱形,證明四邊形AODE是菱形,再加上一個直角就是正方形了.【詳解】解:(1)證明:如圖,連接,在和中,,∴,∴,∵,∴,∵,OD是半徑,∴DE是的切線;(2)①證明:∵,∴,∵,∴,∵,∴,∴,∴,∵,∴,即E是AC中點,∵O是AB中點,∴,在中,,∴BC=2OE=10,故答案是:10;②當時,四邊形AODE為正方形,證明:∵,,∴是等腰直角三角形,∴AB=AC,由(2)得AO=AE,∵AO=DO=AE=DE,∴四邊形AODE是菱形,∵,∴四邊形AODE是正方形,故答案是:.【考點】本題考查切線的證明,三角形中位線定理,正方形的證明,解題的關鍵是熟練掌握這些幾何的性質定理并結合題目條件進行證明.2、(1)當時,四邊形PQCD為平行四邊形;(2)當t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ,∴,解得,∴當時,四邊形PQCD為平行四邊形;(2)設PQ與⊙O相切于點H過點P作PE⊥BC,垂足為E.∴∠PEB=90°∵在直角梯形ABCD,AD∥BC,∠ABC=90°,∴∠BAD=90°,∴四邊形ABEP是矩形,∴PE=AB=12cm.∵AP=BE=tcm,CQ=2tcm,∴BQ=BC﹣CQ=(22﹣2t)cm,EQ=BQ﹣BE=22﹣2t﹣t=(22﹣3t)cm;∵AB為⊙O的直徑,∠ABC=∠DAB=90°,∴AD、BC為⊙O的切線,∴AP=PH,HQ=BQ,∴PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,∴122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,∴t2﹣11t+18=0,(t﹣2)(t﹣9)=0,∴t1=2,t2=9;∵P在AD邊運動的時間為秒.∵t=9>8,∴t=9(舍去),∴當t=2秒時,PQ與⊙O相切.【考點】本題主要考查了切線長定理,矩形的性質與判定,勾股定理,平行四邊形的性質等等,解題的關鍵在于能夠熟練掌握切線長定理.3、(1)見解析;(2)3;(3),理由見解析【解析】【分析】(1)先求出∠BAD=120°,再求出∠OAB,進而得出∠OAD=90°,即可得出結論;(2)先判斷出△AOC是等邊三角形,得出AC=OC,再判斷出AC=CD,即可得出結論;(3)先判斷出∠CAP=∠CEM,進而得出△ACP≌△ECM(SAS),進而得出CM=CP,∠APC=∠M=30°,再判斷出,即可得出結論.【詳解】(1)證明:如圖,連接,,,,,,,,,點在上,∴直線是的切線;(2)解:如圖1,連接,由(1)知,,,,是等邊三角形,,,,,,即的半徑為3;(3),理由:如圖,,,連接,延長至,使,連接,,為的直徑,,四邊形是的內接四邊形,,,,,過點作于,,在中,,,,,,,即.【考點】此題是圓的綜合題,主要考查了切線的判定和性質,等邊三角形的判定和勾股定理,構造出直角三角形是解本題的關鍵.4、(1)C(5,4),yx2x+4;(2)AE是⊙C的切線,理由見解析;(3).【解析】【分析】(1)如圖1,連接CD,CB,過點C作于M.設⊙C的半徑為r.在Rt△BCM中,利用勾股定理求出半徑,可得點C的坐標,根據(jù)函數(shù)的對稱性,得,用待定系數(shù)法即可求解.(2)結論:AE是OC的切線.連接AC,CE,由拋物線的解析式推出點E
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年中國華信郵電科技有限公司招聘備考題庫及一套完整答案詳解
- 健康科普政策的社交媒體執(zhí)行效果
- TCCSA 603-2024溫室氣體 產(chǎn)品碳足跡量化方法與要求 光纜
- 健康中國戰(zhàn)略的健康促進政策與社會治理融合路徑
- 疼痛護理中的康復與物理治療
- ESD穿孔縫合術中縫合針的進針角度控制
- DR AI可視化篩查技術在兒童糖尿病中的適用性分析
- 家具知識考試題及答案
- 2026年成都市投資促進中心公開招聘備考題庫及答案詳解1套
- 2026年天津理工大學中環(huán)信息學院單招綜合素質筆試模擬試題帶答案解析
- 物業(yè)保安主管年終述職報告
- 2025年國家開放大學《市場調研方法與實踐》期末考試參考題庫及答案解析
- 招標公司勞動合同范本
- 兒童心肺復蘇操作要點與急救流程
- 水電解制氫設備運行維護手冊
- 無人機專業(yè)英語 第二版 課件 6.1 The Basic Operation of Mission Planner
- 輻射與安全培訓北京課件
- 2025-2030中國生物煉制行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 透析患者營養(yǎng)不良課件
- 國家開放大學《營銷策劃案例分析》形考任務5答案
- 220kv安全培訓課件
評論
0/150
提交評論