考點解析-人教版8年級數(shù)學上冊《軸對稱》專題練習練習題(詳解)_第1頁
考點解析-人教版8年級數(shù)學上冊《軸對稱》專題練習練習題(詳解)_第2頁
考點解析-人教版8年級數(shù)學上冊《軸對稱》專題練習練習題(詳解)_第3頁
考點解析-人教版8年級數(shù)學上冊《軸對稱》專題練習練習題(詳解)_第4頁
考點解析-人教版8年級數(shù)學上冊《軸對稱》專題練習練習題(詳解)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》專題練習考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、下列三角形中,等腰三角形的個數(shù)是(

A.4個 B.3個 C.2個 D.1個2、如圖,在的正方形網(wǎng)格中有兩個格點A、B,連接,在網(wǎng)格中再找一個格點C,使得是等腰直角三角形,滿足條件的格點C的個數(shù)是(

)A.2 B.3 C.4 D.53、2020年初,新冠狀病毒引發(fā)肺炎疫情,全國多家醫(yī)院紛紛派醫(yī)護人員馳援武漢.下面是四家醫(yī)院標志得圖案,其中是軸對稱圖形得是(

)A. B.C. D.4、等腰三角形兩邊長為3,6,則第三邊的長是(

)A.3 B.6 C. D.3或65、如圖,在中,,,點是邊上任意一點,過點作交于點,則的度數(shù)是(

).A. B. C. D.第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、如圖,在△ABC中,AB=AC,外角∠ACD=110°,則∠A=__________.2、如圖,在四邊形中,,,,點為邊上一點,連接.,與交于點,且,若,,則的長為_______________.3、如圖,將一張直角三角形紙片對折,使點B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.4、等腰三角形的兩邊長分別是3cm和6cm,則它的周長是_________cm.5、如圖,已知△ABC≌△ADE,且點B與點D對應,點C與點E對應,點D在BC上,∠BAE=114°,∠BAD=40°,則∠E的度數(shù)是______°.三、解答題(5小題,每小題10分,共計50分)1、如圖,已知AB=AC,AD=AE,BD和CE相交于點O.(1)求證:△ABD≌△ACE;(2)判斷△BOC的形狀,并說明理由.2、如圖,點D是等邊三角形ABC的邊BC上一點,以AD為邊作等邊△ADE,連接CE.(1)求證:;(2)若∠BAD=20°,求∠AEC的度數(shù).3、如圖,在ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.(1)當∠BDA=115°時,∠EDC=______°,∠AED=______°;(2)線段DC的長度為何值時,△ABD≌△DCE,請說明理由;(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由.4、如圖,已知∠AOB=20°,點C是AO上一點,在射線OB上求作一點F,使得∠CFO=40°.(尺規(guī)作圖,保留作圖痕跡,并說明理由)5、如圖,在△ABC中,AB=AC,D,E是BC邊上的點,連接AD,AE,以△ADE的邊AE所在直線為對稱軸作△ADE的軸對稱圖形△AD'E,連接D'C,若BD=CD'.(1)求證:△ABD≌△ACD'.(2)若∠BAC=100°,求∠DAE的度數(shù).-參考答案-一、單選題1、B【解析】【分析】根據(jù)題圖所給信息,根據(jù)邊或角分析即可【詳解】解:第一個圖形中有兩邊相等,故第一個三角形是等腰三角形,第二個圖形中的三個角分別為50°,35°,95°,故第二個三角形不是等腰三角形;第三個圖形中的三個角分別為100°,40°,40°,故第三個三角形是等腰三角形;第四個圖形中的三個角分別為90°,45°,45°,故第四個三角形是等腰三角形;故答案為:B.【考點】本題考查了等腰三角形的判定,掌握等腰三角形的判定是解題的關鍵.2、B【解析】【分析】根據(jù)題意,結合圖形,分兩種情況討論:①AB為等腰直角△ABC底邊;②AB為等腰直角△ABC其中的一條腰.【詳解】解:如圖:分情況討論:①AB為等腰直角△ABC底邊時,符合條件的C點有0個;②AB為等腰直角△ABC其中的一條腰時,符合條件的C點有3個.故共有3個點,故選:B.【考點】本題考查了等腰三角形的判定;解答本題關鍵是根據(jù)題意,畫出符合實際條件的圖形,數(shù)形結合的思想是數(shù)學解題中很重要的解題思想.3、B【解析】【分析】根據(jù)軸對稱圖形的概念對各選項分析判斷即可得解.如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:選項B能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以是做軸對稱圖形;選項A、C、D不能找到這樣的一條直線,使圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,所以不是做軸對稱圖形;故選:B.【考點】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、B【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】由等腰三角形的概念,得第三邊的長可能為3或6,當?shù)谌吺?時,而3+3=6,所以應舍去;則第三邊長為6.故選B.【考點】此題考查等腰三角形的性質和三角形的三邊關系解題關鍵在于已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答.5、B【解析】【分析】根據(jù)等腰三角形的性質可得∠B=∠C,進而可根據(jù)三角形的內角和定理求出∠A的度數(shù),然后根據(jù)平行線的性質可得∠DEC=∠A,進一步即可求出結果.【詳解】解:∵,,∴∠B=∠C=65°,∴∠A=180°-∠B-∠C=50°,∵DF∥AB,∴∠DEC=∠A=50°,∴∠FEC=130°.故選:B.【考點】本題考查了等腰三角形的性質、平行線的性質和三角形的內角和定理等知識,屬于??碱}型,熟練掌握上述基礎知識是解題的關鍵.二、填空題1、40°【解析】【分析】由∠ACD=110,可知∠ACB=70;由AB=AC,可知∠B=∠ACB=70;利用三角形外角的性質可求出∠A.【詳解】解:∵∠ACD=110,∴∠ACB=180-110=70;∵AB=AC,∴∠B=∠ACB=70;∴∠A=∠ACD-∠B=110-70=40.故答案為40.【考點】本題考查了等邊對等角和三角形外角的性質.2、【解析】【分析】由,知點A,C都在BD的垂直平分線上,因此,可連接交于點,易證是等邊三角形,是等邊三角形,根據(jù)等邊三角形的性質對三角形中的線段進行等量轉換即可求出OB,OC的長度,應用勾股定理可求解.【詳解】解:如圖,連接交于點∵,,,∴垂直平分,是等邊三角形∴,,∵∴,∴∴∴∵∴是等邊三角形∴∴,∴∴【考點】本題主要考查了等邊三角形的判定與性質、勾股定理,綜合運用等邊三角形的判定與性質進行線段間等量關系的轉換是解題的關鍵.3、18【解析】【分析】【詳解】解:根據(jù)折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.4、15【解析】【分析】題目給出等腰三角形有兩條邊長為和,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】解:當腰為時,,不能構成三角形,因此這種情況不成立.當腰為時,,能構成三角形;此時等腰三角形的周長為.故答案為:.【考點】本題考查了等腰三角形的性質和三角形的三邊關系;解題的關鍵是題目從邊的方面考查三角形,涉及分類討論的思想方法.求三角形的周長,不能盲目地將三邊長相加起來,而應養(yǎng)成檢驗三邊長能否組成三角形的好習慣,把不符合題意的舍去.5、36【解析】【分析】根據(jù)全等三角形的性質得出AB=AD,∠ABD=∠ADE,根據(jù)等腰三角形的性質和三角形內角和定理求出∠ABD=70°,求出∠DAE和∠ADE,再根據(jù)三角形內角和定理求出∠E即可.【詳解】解:∵△ABC≌△ADE,∴AB=AD,∴∠ABD=∠ADB,∵∠BAD=40°,∴∠ABD=∠ADB=(180°-∠BAD)=70°,∵△ABC≌△ADE,∴∠ADE=∠ABD=70°,∵∠BAE=114°,∠BAD=40°,∴∠DAE=∠BAE-∠BAD=114°-40°=74°,∴∠E=180°-∠ADE-∠DAE=180°-70°-74°=36°,故答案為:36.【考點】本題考查了全等三角形的性質,等腰三角形的性質,三角形內角和定理等知識點,能熟記全等三角形的對應邊相等和全等三角形的對應角相等是解此題的關鍵.三、解答題1、(1)見解析;(2)等腰三角形,理由見解析.【解析】【分析】(1)由“SAS”可證△ABD≌△ACE;(2)由全等三角形的性質可得∠ABD=∠ACE,由等腰三角形的性質可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得結論.【詳解】證明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【考點】本題考查了全等三角形的判定與性質,等腰三角形的判定,熟記相關定理是解題關鍵.2、(1)見解析;(2)100°.【解析】【分析】(1)根據(jù)△ADE與△ABC都是等邊三角形,得到AC=AB,AE=AD,∠DAE=∠BAC=60°,從而得到∠DAE+∠CAD=∠BAC+∠CAD,即∠CAE=∠BAD,利用SAS證得△ABD≌△ACE;(2)由△ABD≌△ACE,得到∠ACE=∠B=60°,∠BAD=∠CAE=20°,再由三角形內角和為180°即可求出∠AEC的度數(shù).【詳解】(1)證明:∵△ADE與△ABC都是等邊三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°,∴∠DAE+∠CAD=∠BAC+∠CAD,即∠CAE=∠BAD,在△CAE與△BAD中,,∴△ABD≌△ACE(SAS);(2)∵△ABD≌△ACE,∴∠ACE=∠B=60°,∠BAD=∠CAE=20°,∴∠AEC=180°-60°-20°=100°.【考點】此題考查全等三角形的判定與性質及等邊三角形的性質,根據(jù)等邊三角形中隱含的條件可以得到證明三角形全等的一些條件是解題關鍵.3、(1)25°,65°;(2)2,理由見詳解;(3)可以,110°或80°.【解析】【分析】(1)利用鄰補角的性質和三角形內角和定理解題;(2)當DC=2時,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE.(3)當∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形.【詳解】解:(1)∵∠B=40°,∠ADB=115°,∴∠BAD=180°-∠B-∠ADB=180°-115°-40°=25°,∵AB=AC,∴∠C=∠B=40°,∵∠EDC=180°-∠ADB-∠ADE=25°,∴∠DEC=180°-∠EDC-∠C=115°,∴∠AED=180°-∠DEC=180°-115°=65°;(2)當DC=2時,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∴△ABD≌△DCE(AAS);(3)當∠BDA的度數(shù)為110°或80°時,△ADE的形狀是等腰三角形,∵∠BDA=110°時,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形狀是等腰三角形;∵當∠BDA的度數(shù)為80°時,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形狀是等腰三角形.【考點】本題主要考查學生對等腰三角形的判定與性質,全等三角形的判定與性質,三角形外角的性質等知識點的理解和掌握,此題涉及到的知識點較多,綜合性較強,但難度不大,屬于基礎題.4、見解析【解析】【分析】先作OC的垂直平分線交OB于D,再以C點為圓心,CD為半徑畫弧交OB于F,則DO=DC,CD=CF,然后根據(jù)等腰三角形的性質可判斷∠CFO=40°.【詳解】解:如圖,點F為所作.理由如下:∵點D為OC的垂直平分線與OB的交點,∴DO=DC,∴∠DCO=∠DOC=20°,∴∠CDF=∠DCO+∠DOC=40°,∵CF=CD,∴∠CFD=∠CDF=40°,即∠CFO=40°.【考點】本題考查基本作圖-作線段的垂直平分線、作圖-作線段、線段垂直平分線的性質、等腰三角形的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論