版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,平行四邊形ABCD的周長(zhǎng)為36,對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長(zhǎng)是()A.12 B.15 C.18 D.242、如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)C是y軸正半軸上的點(diǎn),于點(diǎn)C.已知,.點(diǎn)B到原點(diǎn)的最大距離為()A.22 B.18 C.14 D.103、在中,AC與BD相交于點(diǎn)O,要使四邊形ABCD是菱形,還需添加一個(gè)條件,這個(gè)條件可以是()A.AO=CO B.AO=BO C.AO⊥BO D.AB⊥BC4、下列說(shuō)法正確的是()A.平行四邊形的對(duì)角線互相平分且相等 B.矩形的對(duì)角線相等且互相平分C.菱形的對(duì)角線互相垂直且相等 D.正方形的對(duì)角線是正方形的對(duì)稱軸5、如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,F(xiàn)C交AD于點(diǎn)E.若AB=4,BC=8,則圖中陰影部分的面積為()A.8 B.10 C.12.5 D.7.56、如圖,在矩形ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE,點(diǎn)F是AE的中點(diǎn),連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.547、如圖所示,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)O的直線EF分別交AD于點(diǎn)E,BC于點(diǎn)F,,則ABCD的面積為(
)A.24 B.32 C.40 D.488、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.9、已知,四邊形ABCD的對(duì)角線AC和BD相交于點(diǎn)O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④10、已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為60°,則菱形較長(zhǎng)的對(duì)角線長(zhǎng)是()A. B. C.3 D.6第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,矩形ABCD的兩條對(duì)角線AC,BD交于點(diǎn)O,∠AOB=60°,AB=3,則矩形的周長(zhǎng)為_(kāi)____.2、如圖,在四邊形ABCD中,AD//BC,∠B=90°,DE⊥BC于點(diǎn)E,AB=8cm,AD=24cm,BC=26cm,點(diǎn)P從點(diǎn)A出發(fā),沿邊AD以1cm/s的速度向點(diǎn)D運(yùn)動(dòng),與此同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),沿邊CB以3cm/s的速度向點(diǎn)B運(yùn)動(dòng).當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).連接PQ,過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,則當(dāng)運(yùn)動(dòng)到第__________s時(shí),△DEC≌△PFQ.3、已知一直角三角形的兩直角邊長(zhǎng)分別為6和8,則斜邊上中線的長(zhǎng)度是_____.4、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時(shí),四邊形BHDG為菱形.5、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線段AE上的點(diǎn)G處,折痕為AF.若,則CF的長(zhǎng)為_(kāi)____.6、一個(gè)三角形三邊長(zhǎng)之比為4∶5∶6,三邊中點(diǎn)連線組成的三角形的周長(zhǎng)為30cm,則原三角形最大邊長(zhǎng)為_(kāi)________cm.7、已知正方形ABCD的一條對(duì)角線長(zhǎng)為2,則它的面積是______.8、如圖,已知在矩形中,,,將沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)E處,連接,則的長(zhǎng)為_(kāi)________.9、如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),點(diǎn)D為線段BC上一動(dòng)點(diǎn),將△OCD沿OD翻折,使點(diǎn)C落到點(diǎn)E處.當(dāng)B,E兩點(diǎn)之間距離最短時(shí),點(diǎn)D的坐標(biāo)為_(kāi)___.10、如圖,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長(zhǎng)為_(kāi)____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在平行四邊形ABCD中,E為BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長(zhǎng).2、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.3、如圖,在矩形中,為對(duì)角線.(1)用尺規(guī)完成以下作圖:在上找一點(diǎn),使,連接,作的平分線交于點(diǎn);(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,若,求的度數(shù).4、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長(zhǎng)線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長(zhǎng).5、D、分別是不等邊三角形即的邊、的中點(diǎn).是平面上的一動(dòng)點(diǎn),連接、,、分別是、的中點(diǎn),順次連接點(diǎn)、、、.(1)如圖,當(dāng)點(diǎn)在內(nèi)時(shí),求證:四邊形是平行四邊形;(2)若四邊形是菱形,點(diǎn)所在位置應(yīng)滿足什么條件?(直接寫出答案,不需說(shuō)明理由.)-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的對(duì)邊相等和對(duì)角線互相平分可得,OB=OD,又因?yàn)镋點(diǎn)是CD的中點(diǎn),可得OE是△BCD的中位線,可得OE=BC,所以易求△DOE的周長(zhǎng).【詳解】解:∵?ABCD的周長(zhǎng)為36,∴2(BC+CD)=36,則BC+CD=18.∵四邊形ABCD是平行四邊形,對(duì)角線AC,BD相交于點(diǎn)O,BD=12,∴OD=OB=BD=6.又∵點(diǎn)E是CD的中點(diǎn),∴OE是△BCD的中位線,DE=CD,∴OE=BC,∴△DOE的周長(zhǎng)=OD+OE+DE=BD+(BC+CD)=6+9=15,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理、平行四邊形的性質(zhì).解題時(shí),利用了“平行四邊形對(duì)角線互相平分”、“平行四邊形的對(duì)邊相等”的性質(zhì).2、B【解析】【分析】首先取AC的中點(diǎn)E,連接BE,OE,OB,可求得OE與BE的長(zhǎng),然后由三角形三邊關(guān)系,求得點(diǎn)B到原點(diǎn)的最大距離.【詳解】解:取AC的中點(diǎn)E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點(diǎn)O,E,B不在一條直線上,則OB<OE+BE=18.若點(diǎn)O,E,B在一條直線上,則OB=OE+BE=18,∴當(dāng)O,E,B三點(diǎn)在一條直線上時(shí),OB取得最大值,最大值為18.故選:B【點(diǎn)睛】此題考查了直角三角形斜邊上的中線的性質(zhì)以及三角形三邊關(guān)系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.3、C【解析】【分析】根據(jù)菱形的判定分析即可;【詳解】∵四邊形ABCD時(shí)平行四邊形,AO⊥BO,∴是菱形;故選C.【點(diǎn)睛】本題主要考查了菱形的判定,準(zhǔn)確分析判斷是解題的關(guān)鍵.4、B【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì)定理判斷即可.【詳解】解:平行四邊形的對(duì)角線互相平分,不一定相等,A錯(cuò)誤;矩形的對(duì)角線相等且互相平分,B正確;菱形的對(duì)角線互相垂直,不一定相等,C錯(cuò)誤;正方形的對(duì)角線所在的直線是正方形的對(duì)稱軸,D錯(cuò)誤;故選:B.【點(diǎn)睛】本題考查了命題的真假判斷,掌握平行四邊形、矩形、菱形、正方形的性質(zhì)是解題的關(guān)鍵.5、B【解析】【分析】利用折疊的性質(zhì)可得∠ACF=∠ACB,由AD∥BC,可得出∠CAD=∠ACB,進(jìn)而可得出AE=CE,根據(jù)矩形性質(zhì)可得AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,利用勾股定理可求出x的值,再利用三角形的面積公式即可求出△ACE的面積,則可得出答案.【詳解】解:由折疊的性質(zhì),∠ACF=∠ACB.∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACF,∴AE=CE.∵四邊形ABCD為矩形,∴AB=CD=4,BC=AD=8,∠D=90°,設(shè)AE=CE=x,則ED=8﹣x,在Rt△CDE中,根據(jù)勾股定理得,即42+(8﹣x)2=x2,∴x=5,∴圖中陰影部分的面積=S△ACEAE?AB=×5×4=10.故選:B【點(diǎn)睛】本題考查了翻折變換、矩形的性質(zhì)、勾股定理以及三角形的面積,利用勾股定理求出AE的長(zhǎng)是解題的關(guān)鍵.6、C【解析】【分析】過(guò)點(diǎn)F作,分別交于M、N,由F是AE中點(diǎn)得,根據(jù),計(jì)算即可得出答案.【詳解】如圖,過(guò)點(diǎn)F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點(diǎn)E是BC的中點(diǎn),∴,∵F是AE中點(diǎn),∴,∴.故選:C.【點(diǎn)睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.7、B【解析】【分析】先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,然后根據(jù)平行四邊形的性質(zhì)即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),熟練掌握平行四邊形的性質(zhì)是解題關(guān)鍵.8、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.9、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對(duì)選項(xiàng)進(jìn)行分析判斷即可.【詳解】解:A、①④可以說(shuō)明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說(shuō)明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說(shuō)明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯(cuò)誤.D、③可以說(shuō)明四邊形是平行四邊形,再由②可得:對(duì)角線相等的平行四邊形為矩形,故D正確.故選:C.【點(diǎn)睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.10、B【解析】【分析】根據(jù)一個(gè)內(nèi)角為60°可以判斷較短的對(duì)角線與兩鄰邊構(gòu)成等邊三角形,求出較長(zhǎng)的對(duì)角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長(zhǎng)為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長(zhǎng)的對(duì)角線長(zhǎng)BD是:2×3=6.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運(yùn)用菱形的性質(zhì)和等邊三角形的判定求出對(duì)角線長(zhǎng).二、填空題1、##【解析】【分析】根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長(zhǎng)是AB+BC+CD+AD=6+6.故答案為:6+6.【點(diǎn)睛】本題考查了矩形性質(zhì),等邊三角形的性質(zhì)和判定,勾股定理等知識(shí)點(diǎn),關(guān)鍵是求出AD的長(zhǎng).2、6或7【解析】【分析】分兩種情況進(jìn)行討論,當(dāng)在點(diǎn)的右側(cè)時(shí),在點(diǎn)的左側(cè)時(shí),根據(jù)△DEC≌△PFQ,可得,求解即可.【詳解】解:由題意可得,四邊形、為矩形,,、∴,∵△DEC≌△PFQ∴當(dāng)在點(diǎn)的右側(cè)時(shí),∴,解得當(dāng)在點(diǎn)的左側(cè)時(shí),∴,解得故答案為:或【點(diǎn)睛】此題考查了全等三角形的性質(zhì),矩形的判定與性質(zhì),解題的關(guān)鍵是根據(jù)題意,求得對(duì)應(yīng)線段的長(zhǎng),分情況討論列方程求解.3、5【解析】【分析】直角三角形中,斜邊長(zhǎng)為斜邊中線長(zhǎng)的2倍,所以求斜邊上中線的長(zhǎng)求斜邊長(zhǎng)即可.【詳解】解:在直角三角形中,兩直角邊長(zhǎng)分別為6和8,則斜邊長(zhǎng)==10,∴斜邊中線長(zhǎng)為×10=5,故答案為5.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半,勾股定理,根據(jù)勾股定理求得斜邊長(zhǎng)是解題的關(guān)鍵.4、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.5、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.6、24【解析】【分析】由三邊長(zhǎng)之比得到三角形的三條中位線之比,再由這三條中位線組成的三角形周長(zhǎng)求出三中位線長(zhǎng),推出邊長(zhǎng),再比大小判斷即可.【詳解】∵如圖,H、I、J分別為BC,AC,AB的中點(diǎn)∴,,又∵∴∵AB:AC:BC=4:5:6,即BC邊最長(zhǎng)∴故填24.【點(diǎn)睛】本題考查了三角形中位線的性質(zhì),即三角形的中位線平行于第三邊且等于第三邊的一半.7、6【解析】【分析】正方形的面積:邊長(zhǎng)的平方或兩條對(duì)角線之積的一半,根據(jù)公式直接計(jì)算即可.【詳解】解:正方形ABCD的一條對(duì)角線長(zhǎng)為2,故答案為:【點(diǎn)睛】本題考查的是正方形的性質(zhì),掌握“正方形的面積等于兩條對(duì)角線之積的一半”是解題的關(guān)鍵.8、【解析】【分析】過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,先證明CG=AG,再利用勾股定理列方程,求出AG的值,結(jié)合三角形的面積法和勾股定理,即可求解.【詳解】解:如圖所示:過(guò)點(diǎn)E作EF⊥AD于點(diǎn)F,有折疊的性質(zhì)可知:∠ACB=∠ACE,∵AD∥BC,∴∠ACB=∠CAD,∴∠CAD=∠ACE,∴CG=AG,設(shè)CG=x,則DG=8-x,∵在中,,∴x=5,∴AG=5,在中,EG=,EF⊥AD,∠AEG=90°,∴,∵在中,,、∴DF=8-=,∴在中,,故答案是:.【點(diǎn)睛】本題主要考查矩形的性質(zhì),折疊的性質(zhì),勾股定理,等腰三角形的判定定理,添加輔助線構(gòu)造直角三角形,是解題的關(guān)鍵.9、(3,6)【解析】【分析】連接OB,證得當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,再利用勾股定理構(gòu)造方程求解即可.【詳解】解:連接OB,∵點(diǎn)A,B,C的坐標(biāo)分別為(8,0),(8,6),(0,6),∴OA=8,AB=6,BC=8,OC=6,∵∠COA=90°,∴四邊形OABC為矩形,OB=,由折疊的性質(zhì)知:OC=OE=6,CD=DE,∴BEOB-OE=10-6=4,∴當(dāng)O、E、B在同一直線上時(shí),BE取得最小值,此時(shí)BE=4,∠DEB=90°,設(shè)CD=DE=x,則BD=8-x,∵,解得:x=3,即CD=3,∴點(diǎn)D的坐標(biāo)為(3,6).【點(diǎn)睛】本題考查了矩形的判定和性質(zhì),坐標(biāo)與圖形,折疊的性質(zhì),勾股定理,解題的關(guān)鍵是學(xué)會(huì)利用參數(shù)構(gòu)建方程解決問(wèn)題,10、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.三、解答題1、(1)矩形,見(jiàn)解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,從而得到AB=CF;由已知可得四邊形ABFC是平行四邊形,BC=AF,根據(jù)對(duì)角線相等的平行四邊形是矩形,可得到四邊形ABFC是矩形;(2)先證△ABE是等邊三角形,可得AB=AE=EF=3.【詳解】解:(1)四邊形ABFC是矩形,理由如下:∵四邊形ABCD是平行四邊形,∴,∴∠BAE=∠CFE,∠ABE=∠FCE,∵E為BC的中點(diǎn),∴EB=EC,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF.∵,∴四邊形ABFC是平行四邊形,∵AD=BC,AD=AF,∴BC=AF,∴四邊形ABFC是矩形.(2)∵四邊形ABFC是矩形,∴BC=AF,AE=EF,BE=CE,∴AE=BE,∵∠ABC=60°,∴△ABE是等邊三角形,∴AB=AE=3,∴EF=3.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)與判定,矩形的判定,三角形全等的性質(zhì)與判定,等邊三角形的性質(zhì)與判定,掌握以上性質(zhì)定理是解題的關(guān)鍵.2、見(jiàn)解析【分析】根據(jù)正方形的面積為10,可得其邊長(zhǎng)為,據(jù)此可得正方形DEFG.【詳解】解:由勾股定理可得:如圖所示,四邊形DEFG即為所求.
【點(diǎn)睛】本題主要考查了應(yīng)用與設(shè)計(jì)作圖以及勾股定理的運(yùn)用,首先要理解題意,弄清問(wèn)題中對(duì)所作圖形的要求,結(jié)合對(duì)應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.3、(1)圖形見(jiàn)解析;(2)【分析】(1)利用尺規(guī)根據(jù)題意即可完成作圖;
(2)結(jié)合(1)根據(jù)等腰三角形的性質(zhì)和三角形外角定理可得的度數(shù).【詳解】(1)如圖,點(diǎn)E和點(diǎn)F即為所求;
(2)∵,∠ABD=68°,
∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,
∴∠EAD=90°-44°=46°,
∵AF平分∠DAE,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新高一化學(xué)暑假銜接(人教版):第10講 氣體摩爾體積【教師版】
- 邊境安全課件
- 車險(xiǎn)銷售培訓(xùn)課件教學(xué)
- 車隊(duì)進(jìn)藏安全培訓(xùn)總結(jié)課件
- 煤礦壓力管路的全面排查方案
- 車隊(duì)夏季安全培訓(xùn)課件
- 保安員證考試題庫(kù)(OCR)
- 銀行合規(guī)管理制度修訂
- 車間班組級(jí)安全培訓(xùn)記錄課件
- 車間工藝安全培訓(xùn)總結(jié)課件
- 2024城口縣國(guó)企招聘考試真題及答案
- 淋巴的生成和回流
- 冬季幼兒園暖氣安全培訓(xùn)課件
- 血管外科護(hù)理進(jìn)修課件
- 張力電子圍欄施工方案
- 建筑施工圖設(shè)計(jì)方案
- 2025年GMAT邏輯推理能力強(qiáng)化模擬試卷解析
- 聲樂(lè)教學(xué)課課件
- 醫(yī)院護(hù)理服務(wù)之星
- 《種子里孕育著新生命》課件
- 信訪接待課件
評(píng)論
0/150
提交評(píng)論