版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》難點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(4,3),以原點(diǎn)O為圓心,5為半徑作⊙O,則()A.點(diǎn)A在⊙O上B.點(diǎn)A在⊙O內(nèi)C.點(diǎn)A在⊙O外D.點(diǎn)A與⊙O的位置關(guān)系無(wú)法確定2、如圖,在△ABC中,AG平分∠CAB,使用尺規(guī)作射線CD,與AG交于點(diǎn)E,下列判斷正確的是(
)
A.AG平分CDB.C.點(diǎn)E是△ABC的內(nèi)心D.點(diǎn)E到點(diǎn)A,B,C的距離相等3、已知扇形的圓心角為,半徑為,則弧長(zhǎng)為(
)A. B. C. D.4、如圖,點(diǎn)B,C,D在⊙O上,若∠BCD=130°,則∠BOD的度數(shù)是()A.50° B.60° C.80° D.100°5、如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.216、如圖,AB是⊙O的直徑,BC與⊙O相切于點(diǎn)B,AC交⊙O于點(diǎn)D,若∠ACB=50°,則∠BOD等于()A.40° B.50° C.60° D.80°7、下列說(shuō)法正確的是(
)①近似數(shù)精確到十分位;②在,,,中,最小的是;③如圖所示,在數(shù)軸上點(diǎn)所表示的數(shù)為;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角”;⑤如圖,在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn).A.1 B.2 C.3 D.48、如圖,⊙O的半徑為5cm,直線l到點(diǎn)O的距離OM=3cm,點(diǎn)A在l上,AM=3.8cm,則點(diǎn)A與⊙O的位置關(guān)系是(
)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能9、如圖,在四邊形ABCD中,則AB=(
)A.4 B.5 C. D.10、如圖,公園內(nèi)有一個(gè)半徑為18米的圓形草坪,從地走到地有觀賞路(劣?。┖捅忝衤罚ň€段).已知、是圓上的點(diǎn),為圓心,,小強(qiáng)從走到,走便民路比走觀賞路少走(
)米.A. B.C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,在中,,,,將繞順時(shí)針旋轉(zhuǎn)后得,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得線段,分別以,為圓心,、長(zhǎng)為半徑畫弧和弧,連接,則圖中陰影部分面積是________.2、如圖,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,分別以點(diǎn)A,C為圓心,AO長(zhǎng)為半徑畫弧,分別交AB,CD于點(diǎn)E,F(xiàn).若BD=4,∠CAB=36°,則圖中陰影部分的面積為_(kāi)__________.(結(jié)果保留π).3、如圖,正方形ABCD,邊長(zhǎng)為4,點(diǎn)P和點(diǎn)Q在正方形的邊上運(yùn)動(dòng),且PQ=4,若點(diǎn)P從點(diǎn)B出發(fā)沿B→C→D→A的路線向點(diǎn)A運(yùn)動(dòng),到點(diǎn)A停止運(yùn)動(dòng);點(diǎn)Q從點(diǎn)A出發(fā),沿A→B→C→D的路線向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D停止運(yùn)動(dòng).它們同時(shí)出發(fā),且運(yùn)動(dòng)速度相同,則在運(yùn)動(dòng)過(guò)程中PQ的中點(diǎn)O所經(jīng)過(guò)的路徑長(zhǎng)為_(kāi)____.4、如圖,在四邊形中,.若,則的內(nèi)切圓面積________(結(jié)果保留).5、如圖,PA,PB分別切⊙O于A,B,并與⊙O的切線,分別相交于C,D,已知△PCD的周長(zhǎng)等于10cm,則PA=__________cm.6、如圖1是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖2所示,盒子上方是一段圓?。ɑN).D,E為手提帶的固定點(diǎn),DE與弧MN所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN交于點(diǎn)F,G.若△CDE是等腰直角三角形,且點(diǎn)C,F(xiàn)到盒子底部AB的距離分別為1,,則弧MN所在的圓的半徑為_(kāi)____.7、如圖,已知是的直徑,是的切線,連接交于點(diǎn),連接.若,則的度數(shù)是_________.8、如圖1,將一個(gè)正三角形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正六邊形;如圖2,將一個(gè)正方形繞其中心最少旋轉(zhuǎn)45°,所得圖形與原圖形的重疊部分是正八邊形;依此規(guī)律,將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)______,所得圖形與原圖的重疊部分是正多邊形.在圖2中,若正方形的邊長(zhǎng)為,則所得正八邊形的面積為_(kāi)______.9、如圖,正五邊形ABCDE和正三角形AMN都是⊙O的內(nèi)接多邊形,則∠BOM=_______.10、如圖,A、D是⊙O上的兩點(diǎn),BC是直徑,若∠D=32°,則∠OAC=_______度.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,AD、BC是⊙O的兩條弦,且AB=CD,求證:AD=BC.2、如圖,為⊙的直徑,過(guò)圓上一點(diǎn)作⊙的切線交的延長(zhǎng)線與點(diǎn),過(guò)點(diǎn)作交于點(diǎn),連接.(1)直線與⊙相切嗎?并說(shuō)明理由;(2)若,,求的長(zhǎng).3、如圖,的兩條弦(AB不是直徑),點(diǎn)E為AB中點(diǎn),連接EC,ED.(1)直線EO與AB垂直嗎?請(qǐng)說(shuō)明理由;(2)求證:.4、如圖,已知⊙O為Rt△ABC的內(nèi)切圓,切點(diǎn)分別為D,E,F(xiàn),且∠C=90°,AB=13,BC=12.(1)求BF的長(zhǎng);(2)求⊙O的半徑r.5、如圖,點(diǎn)A,B,C,D在⊙O上,=.求證:(1)AC=BD;(2)△ABE∽△DCE.-參考答案-一、單選題1、A【解析】【分析】先求出點(diǎn)A到圓心O的距離,再根據(jù)點(diǎn)與圓的位置依據(jù)判斷可得.【詳解】解:∵點(diǎn)A(4,3)到圓心O的距離,∴OA=r=5,∴點(diǎn)A在⊙O上,故選:A.【考點(diǎn)】本題考查了對(duì)點(diǎn)與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為,點(diǎn)到圓心的距離為,則有:當(dāng)時(shí),點(diǎn)在圓外;當(dāng)時(shí),點(diǎn)在圓上,當(dāng)時(shí),點(diǎn)在圓內(nèi),也考查了勾股定理的應(yīng)用.2、C【解析】【分析】根據(jù)作法可得CD平分∠ACB,結(jié)合題意即可求解.【詳解】解:由作法得CD平分∠ACB,
∵AG平分∠CAB,∴E點(diǎn)為△ABC的內(nèi)心故答案為:C.【考點(diǎn)】此題考查了尺規(guī)作圖(角平分線),以及三角形角平分線的性質(zhì),熟練掌握相關(guān)基本性質(zhì)是解題的關(guān)鍵.3、D【解析】【分析】根據(jù)扇形的弧長(zhǎng)公式計(jì)算即可.【詳解】∵扇形的圓心角為30°,半徑為2cm,∴弧長(zhǎng)cm故答案為:D.【考點(diǎn)】本題主要考查扇形的弧長(zhǎng),熟記扇形的弧長(zhǎng)公式是解題的關(guān)鍵.4、D【解析】【分析】首先圓上取一點(diǎn)A,連接AB,AD,根據(jù)圓的內(nèi)接四邊形的性質(zhì),即可得∠BAD+∠BCD=180°,即可求得∠BAD的度數(shù),再根據(jù)圓周角的性質(zhì),即可求得答案.【詳解】圓上取一點(diǎn)A,連接AB,AD,∵點(diǎn)A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故選D.【考點(diǎn)】此題考查了圓周角的性質(zhì)與圓的內(nèi)接四邊形的性質(zhì).此題比較簡(jiǎn)單,解題的關(guān)鍵是注意數(shù)形結(jié)合思想的應(yīng)用,注意輔助線的作法.5、A【解析】【分析】根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長(zhǎng),即可得出三角形的面積.【詳解】解:過(guò)點(diǎn)A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,∵sinC===,∴AD=3,∴CD==4,∴BD=3,則△ABC的面積是:×AD×BC=×3×(3+4)=.故選A.【考點(diǎn)】此題主要考查了解直角三角形的知識(shí),作出AD⊥BC,進(jìn)而得出相關(guān)線段的長(zhǎng)度是解決問(wèn)題的關(guān)鍵.6、D【解析】【分析】根據(jù)切線的性質(zhì)得到∠ABC=90°,根據(jù)直角三角形的性質(zhì)求出∠A,根據(jù)圓周角定理計(jì)算即可.【詳解】∵BC是⊙O的切線,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圓周角定理得,∠BOD=2∠A=80°,故選D.【考點(diǎn)】本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.7、B【解析】【分析】根據(jù)近似數(shù)的精確度定義,可判斷①;根據(jù)實(shí)數(shù)的大小比較,可判斷②;根據(jù)點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),即可判斷③;根據(jù)反證法的概念,可判斷④;根據(jù)角平分線的性質(zhì),可判斷⑤.【詳解】①近似數(shù)精確到十位,故本小題錯(cuò)誤;②,,,,最小的是,故本小題正確;③在數(shù)軸上點(diǎn)所表示的數(shù)為,故本小題錯(cuò)誤;④用反證法證明命題“一個(gè)三角形最多有一個(gè)鈍角”時(shí),首先應(yīng)假設(shè)“這個(gè)三角形中有兩個(gè)鈍角或三個(gè)鈍角”,故本小題錯(cuò)誤;⑤在內(nèi)一點(diǎn)到這三條邊的距離相等,則點(diǎn)是三個(gè)角平分線的交點(diǎn),故本小題正確.故選B【考點(diǎn)】本題主要考查近似數(shù)的精確度定義,實(shí)數(shù)的大小比較,點(diǎn)在數(shù)軸上所對(duì)應(yīng)的實(shí)數(shù),反證法的概念,角平分線的性質(zhì),熟練掌握上述知識(shí)點(diǎn),是解題的關(guān)鍵.8、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.9、D【解析】【分析】延長(zhǎng)AD,BC交于點(diǎn)E,則∠E=30°,先在Rt△CDE中,求得CE的長(zhǎng),然后在Rt△ABE中,根據(jù)∠E的正切函數(shù)求得AB的長(zhǎng)【詳解】如圖,延長(zhǎng)AD,BC交于點(diǎn)E,則∠E=30°,在Rt△CDE中,CE=2CD=6(30°銳角所對(duì)直角邊等于斜邊的一半),∴BE=BC+CE=8,在Rt△ABE中,AB=BE·tanE=8×=.故選D.【考點(diǎn)】本題考查了解直角三角形,特殊角的三角函數(shù)值,解此題的關(guān)鍵在于構(gòu)造一個(gè)直角三角形,然后利用銳角三角函數(shù)進(jìn)行解答.10、D【解析】【分析】作OC⊥AB于C,如圖,根據(jù)垂徑定理得到AC=BC,再利用等腰三角形的性質(zhì)和三角形內(nèi)角和計(jì)算出∠A,從而得到OC和AC,可得AB,然后利用弧長(zhǎng)公式計(jì)算出的長(zhǎng),最后求它們的差即可.【詳解】解:作OC⊥AB于C,如圖,則AC=BC,∵OA=OB,∴∠A=∠B=(180°-∠AOB)=30°,在Rt△AOC中,OC=OA=9,AC=,∴AB=2AC=,又∵=,∴走便民路比走觀賞路少走米,故選D.【考點(diǎn)】本題考查了垂徑定理:垂徑定理和勾股定理相結(jié)合,構(gòu)造直角三角形,可解決計(jì)算弦長(zhǎng)、半徑、弦心距等問(wèn)題.二、填空題1、【解析】【分析】作DH⊥AE于H,根據(jù)勾股定理求出AB,根據(jù)陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積計(jì)算即可得到答案.【詳解】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴,由旋轉(zhuǎn)得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,,∴△DHE≌△BOA(AAS),∴DH=OB=1,,∴陰影部分面積=△ADE的面積+△EOF的面積+扇形AOF的面積-扇形DEF的面積,故答案為:.【考點(diǎn)】本題考查的是扇形面積的計(jì)算、旋轉(zhuǎn)的性質(zhì)、全等三角形的判定和性質(zhì),掌握扇形的面積公式和旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.2、【解析】【分析】利用矩形的性質(zhì)求得OA=OC=OB=OD=2,再利用扇形的面積公式求解即可.【詳解】解:∵矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴,故答案為:.【考點(diǎn)】本題考查了矩形的性質(zhì),扇形的面積等知識(shí),正確的識(shí)別圖形是解題的關(guān)鍵.3、【解析】【分析】【詳解】解:畫出點(diǎn)O運(yùn)動(dòng)的軌跡,如圖虛線部分,則點(diǎn)P從B到A的運(yùn)動(dòng)過(guò)程中,PQ的中點(diǎn)O所經(jīng)過(guò)的路線長(zhǎng)等于3π,故答案為:3π.4、【解析】【分析】根據(jù),得出為的垂直平分線;利用等腰三角形的三線合一可得,進(jìn)而得出為等邊三角形;利用,得出為直角三角形,解直角三角形,求得等邊三角形的邊長(zhǎng),再利用內(nèi)心的性質(zhì)求出圓的半徑,圓的面積可求.【詳解】解:如圖,設(shè)與交于點(diǎn)F,的內(nèi)心為O,連接.∵,∴是線段的垂直平分線.∴.∵,∴.∴.∴為等邊三角形.∴.∵,∴.∵,∴∴.∴.∵,∴.∵O為的內(nèi)心,∴.∴.∴的內(nèi)切圓面積為.故答案為.【考點(diǎn)】本題考查了垂直平分線的判定、三角形內(nèi)切圓、等邊三角形判定與性質(zhì)、解直角三角形,解題關(guān)鍵是根據(jù)垂直平分線的判定確定為等邊三角形,根據(jù)解直角三角形求出內(nèi)切圓半徑.5、5【解析】【詳解】如圖,設(shè)DC與⊙O的切點(diǎn)為E,∵PA、PB分別是⊙O的切線,且切點(diǎn)為A、B,∴PA=PB,同理,可得:DE=DA,CE=CB,則△PCD的周長(zhǎng)=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm),∴PA=PB=5cm,故答案為:5.6、.【解析】【分析】以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)拋物線的表達(dá)式為y=ax2+1,因?yàn)椤鰿DE是等腰直角三角形,DE=2,得點(diǎn)E的坐標(biāo)為(1,2),可得拋物線的表達(dá)式為y=x2+1,把當(dāng)y代入拋物線表達(dá)式,求得MH的長(zhǎng),再在Rt△FHM中,用勾股定理建立方程,求得所在的圓的半徑.【詳解】如圖,以DE的垂直平分線為y軸,AB所在的直線為x軸建立平面直角坐標(biāo)系,設(shè)所在的圓的圓心為P,半徑為r,過(guò)F作y軸的垂線交y軸于H,設(shè)拋物線的表達(dá)式為y=ax2+1.∵△CDE是等腰直角三角形,DE=2,∴點(diǎn)E的坐標(biāo)為(1,2),代入拋物線的表達(dá)式,得:2=a+1,a=1,∴拋物線的表達(dá)式為y=x2+1,當(dāng)y時(shí),即,解得:,∴FH.∵∠FHM=90°,DE與所在的圓相切,∴,解得:,∴所在的圓的半徑為.故答案為.【考點(diǎn)】本題考查了圓的切線的性質(zhì),待定系數(shù)法求拋物線的表達(dá)式,垂徑定理.解題的關(guān)鍵是建立合適的平面直角坐標(biāo)系得出拋物線的表達(dá)式.7、25【解析】【分析】先由切線的性質(zhì)可得∠OAC=90°,再根據(jù)三角形的內(nèi)角和定理可求出∠AOD=50°,最后根據(jù)“同弧所對(duì)的圓周角等于圓心角的一半”即可求出∠B的度數(shù).【詳解】解:∵是的切線,∴∠OAC=90°∵,∴∠AOD=50°,∴∠B=∠AOD=25°故答案為:25.【考點(diǎn)】本題考查了切線的性質(zhì)和圓周角定理,掌握?qǐng)A周角定理是解題的關(guān)鍵.8、
【解析】【分析】根據(jù)題意,可以發(fā)現(xiàn)正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個(gè)全等的等腰直角三角形,設(shè)等腰直角三角形的邊長(zhǎng)為x,則正八邊形的邊長(zhǎng)為x;然后根據(jù)x+x+x=4求得x;最后用正方形的面積減去這八個(gè)等腰直角三角形的面積即可.【詳解】解:由題意得:正n邊形繞其中心最少旋轉(zhuǎn),所得圖形與原圖的重疊部分是正2n邊形;則將一個(gè)正七邊形繞其中心最少旋轉(zhuǎn)所得圖形與原圖的重疊部分是正多邊形;由題意得:旋轉(zhuǎn)后的正八變形相當(dāng)于將正方形剪掉了的4個(gè)全等的等腰直角三角形,設(shè)等腰直角三角形的邊長(zhǎng)為x,則正八邊形的邊長(zhǎng)為x∴x+x+x=4,解得x=4-2∴減去的每個(gè)等腰直角三角形的面積為:∴正八邊形的面積為:正方形的面積-4×等腰直角三角形的面積=4×4-4()=.故答案為,.【考點(diǎn)】本題考查了旋轉(zhuǎn)變換、圖形規(guī)律以及勾股定理等知識(shí),根據(jù)題意找到旋轉(zhuǎn)規(guī)律是解答本題的關(guān)鍵.9、48°【解析】【分析】連接OA,分別求出正五邊形ABCDE和正三角形AMN的中心角,結(jié)合圖形計(jì)算即可.【詳解】連接OA,∵五邊形ABCDE是正五邊形,∴∠AOB==72°,∵△AMN是正三角形,∴∠AOM==120°,∴∠BOM=∠AOM-∠AOB=48°,故答案為48°.點(diǎn)睛:本題考查的是正多邊形與圓的有關(guān)計(jì)算,掌握正多邊形的中心角的計(jì)算公式是解題的關(guān)鍵.10、58【解析】【分析】根據(jù)∠D的度數(shù),可以得到∠ABC的度數(shù),然后根據(jù)BC是直徑,從而可以得到∠BAC的度數(shù),然后可以得到∠OCA的度數(shù),再根據(jù)OA=OC,從而可以得到∠OAC的度數(shù).【詳解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC是直徑∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案為58.【考點(diǎn)】本題考查了圓周角定理,圓心角、弧、弦的關(guān)系.解題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.三、解答題1、證明見(jiàn)解析.【解析】【分析】根據(jù)AB=CD,得出,進(jìn)而得出,即可解答.【詳解】證明:∵AB,CD是⊙O的兩條弦,且AB=CD,∴,∴,∴,∴AD=BC.【考點(diǎn)】此題考查圓心角、弧、弦的關(guān)系,關(guān)鍵是利用三者的關(guān)系解答.2、(1)相切,見(jiàn)解析(2)【解析】【分析】(1)先證得:,再證,得到,即可求出答案;(2)設(shè)半徑為;則:,即可求得半徑,再在直角三角形中,利用勾股定理,求解即可.(1)證明:連接.∵為切線,∴,又∵,∴,,且,∴,在與中;∵,∴,∴,∴直線與相切.(2)設(shè)半徑為;則:,得;在直角三角形中,,,解得【考點(diǎn)】本題主要考查與圓相關(guān)的綜合題型,涉及全等三角形的判定和性質(zhì)等知識(shí),熟練掌握
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030日用化學(xué)品行業(yè)消費(fèi)者環(huán)保意識(shí)產(chǎn)品線創(chuàng)新
- 2025-2030無(wú)人駕駛汽車系統(tǒng)行業(yè)市場(chǎng)供需分析及投資評(píng)估規(guī)劃分析研究報(bào)告
- 2025-2030無(wú)人零售領(lǐng)域市場(chǎng)供需場(chǎng)景創(chuàng)新分析及智能終端投資
- 2025-2030無(wú)人機(jī)航拍技術(shù)與測(cè)繪行業(yè)應(yīng)用需求分析研究
- 2025-2030無(wú)人機(jī)智能巡檢設(shè)備行業(yè)市場(chǎng)深度調(diào)研及發(fā)展趨勢(shì)與投資前景研究報(bào)告
- 2025-2030無(wú)人機(jī)巡檢技術(shù)應(yīng)用市場(chǎng)供需現(xiàn)狀及產(chǎn)業(yè)發(fā)展評(píng)估
- 2025-2030無(wú)人農(nóng)機(jī)行業(yè)市場(chǎng)現(xiàn)在競(jìng)爭(zhēng)及投資評(píng)估發(fā)展趨勢(shì)分析報(bào)告
- 2025-2030新能源科技發(fā)展市場(chǎng)分析投資評(píng)估規(guī)劃
- 2025-2030新能源電動(dòng)汽車應(yīng)用推廣核心技術(shù)與投資要點(diǎn)研究報(bào)告
- 工會(huì)活動(dòng)方案及創(chuàng)新舉措
- 2026秋招:華夏銀行筆試題及答案
- 便攜式血糖儀培訓(xùn)課件
- 醫(yī)院物價(jià)制度培訓(xùn)課件
- 2026年通遼職業(yè)學(xué)院?jiǎn)握新殬I(yè)技能考試題庫(kù)附答案
- 2025年精麻藥品考試試題附答案
- 山東省青島嶗山區(qū)2024-2025學(xué)年上學(xué)期八年級(jí)數(shù)學(xué)期末試題(含答案)
- 眼外傷課件教學(xué)課件
- 顎式破碎機(jī)機(jī)構(gòu)優(yōu)化設(shè)計(jì)
- 人力資源人才盤點(diǎn)表型模板
- 老年醫(yī)學(xué)發(fā)展與挑戰(zhàn)
- 江蘇徐州泉華置業(yè)有限公司招聘筆試題庫(kù)2025
評(píng)論
0/150
提交評(píng)論