版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】必考點(diǎn)解析考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,和都是等腰直角三角形,,四邊形是平行四邊形,下列結(jié)論中錯誤的是(
)A.以點(diǎn)為旋轉(zhuǎn)中心,逆時針方向旋轉(zhuǎn)后與重合B.以點(diǎn)為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn)后與重合C.沿所在直線折疊后,與重合D.沿所在直線折疊后,與重合2、下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.3、如圖,將繞點(diǎn)逆時針旋轉(zhuǎn)得到,若且于點(diǎn),則的度數(shù)為(
)A. B. C. D.4、如圖,在正方形ABCD中,將邊BC繞點(diǎn)B逆時針旋轉(zhuǎn)至,連接,,若,,則線段BC的長度為().A.4 B.5 C. D.5、下列圖形中既是中心對稱圖形,又是軸對稱圖形的是(
)A. B.C. D.6、如圖,邊長為5的等邊三角形中,M是高所在直線上的一個動點(diǎn),連接,將線段繞點(diǎn)B逆時針旋轉(zhuǎn)得到,連接.則在點(diǎn)M運(yùn)動過程中,線段長度的最小值是(
)A. B.1 C.2 D.7、如圖所示,在Rt△ABC中,AB=AC,D、E是斜邊BC上的兩點(diǎn),且∠DAE=45°,將△ADC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°后得到△AFB,連接EF,有下列結(jié)論:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正確的有()A.①②③④ B.②③ C.②③④ D.③④8、如圖,點(diǎn)O為矩形ABCD的對稱中心,點(diǎn)E從點(diǎn)A出發(fā)沿AB向點(diǎn)B運(yùn)動,移動到點(diǎn)B停止,延長EO交CD于點(diǎn)F,則四邊形AECF形狀的變化依次為()A.平行四邊形→正方形→平行四邊形→矩形B.平行四邊形→菱形→平行四邊形→矩形C.平行四邊形→正方形→菱形→矩形D.平行四邊形→菱形→正方形→矩形9、如圖,在矩形中,,,是矩形的對稱中心,點(diǎn)、分別在邊、上,連接、,若,則的值為(
)A. B. C. D.10、如圖,在△ABC中,∠ACB=90°,AC=BC,D是AB邊上一點(diǎn)(點(diǎn)D與A,B不重合),連結(jié)CD,將線段CD繞點(diǎn)C按逆時針方向旋轉(zhuǎn)90°得到線段CE,連結(jié)DE交BC于點(diǎn)F,連接BE.當(dāng)AD=BF時,∠BEF的度數(shù)是()A.45° B.60° C.62.5° D.67.5°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在中,,,,為內(nèi)一點(diǎn),則的最小值為__________.2、如圖,已知:,,以AB為邊作正方形ABCD,使P、D兩點(diǎn)落在直線AB的兩側(cè).當(dāng)時,則PD的長為______.3、如圖,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC為一邊作正方形BDEC設(shè)正方形的對稱中心為O,連接AO,則AO=_____.4、如圖,將繞點(diǎn)O旋轉(zhuǎn)得到,若,則__________,__________,__________.5、將點(diǎn)繞原點(diǎn)O順時針旋轉(zhuǎn)得到點(diǎn),則點(diǎn)落在第____________象限.6、如圖,將正方形網(wǎng)格放置在平面直角坐標(biāo)系中,其中,每個小正方形的邊長均為1,點(diǎn)A,B,C的坐標(biāo)分別為,,.是關(guān)于軸的對稱圖形,將繞點(diǎn)逆時針旋轉(zhuǎn)180°,點(diǎn)的對應(yīng)點(diǎn)為M,則點(diǎn)M的坐標(biāo)為________.7、如圖,△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)50°后的圖形為△AB1C1,則∠ABB1=_______.8、在平面直角坐標(biāo)系中點(diǎn)M(2,﹣4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為_____.9、在△ABC中,∠C=90°,cm,cm,繞點(diǎn)C將△ABC旋轉(zhuǎn)使一直角邊的另一個端點(diǎn)落在直線AB上一點(diǎn)K,則線段BK的長為_________cm10、如圖1所示的圖形是一個軸對稱圖形,且每個角都是直角,長度如圖所示,小明按圖2所示方法玩拼圖游戲,兩兩相扣,相互間不留空隙,那么小明用9個這樣的圖形(圖1)拼出來的圖形的總長度是_______(結(jié)果用含、代數(shù)式表示).三、解答題(6小題,每小題5分,共計30分)1、規(guī)定:在平面內(nèi),如果一個圖形繞一個定點(diǎn)旋轉(zhuǎn)一定的角度α(0°<α≤180°)后能與自身重合,那么就稱這個圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)動的這個角度α稱為這個圖形的一個旋轉(zhuǎn)角.例如:正方形繞著兩條對角線的交點(diǎn)O旋轉(zhuǎn)90°或180°后,能與自身重合(如圖1),所以正方形是旋轉(zhuǎn)對稱圖形,且有兩個旋轉(zhuǎn)角.根據(jù)以上規(guī)定,回答問題:(1)下列圖形是旋轉(zhuǎn)對稱圖形,但不是中心對稱圖形的是________;A.矩形
B.正五邊形
C.菱形
D.正六邊形(2)下列圖形中,是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角是60度的有:________(填序號);
(3)下列三個命題:①中心對稱圖形是旋轉(zhuǎn)對稱圖形;②等腰三角形是旋轉(zhuǎn)對稱圖形;③圓是旋轉(zhuǎn)對稱圖形,其中真命題的個數(shù)有(
)個;A.0
B.1
C.2
D.3(4)如圖2的旋轉(zhuǎn)對稱圖形由等腰直角三角形和圓構(gòu)成,旋轉(zhuǎn)角有45°,90°,135°,180°,將圖形補(bǔ)充完整.2、(1)方法感悟:如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證:DE+BF=EF.感悟解題方法,并完成下列填空:將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°.因此,點(diǎn)G,B,H在同一條直線上.∵∠EAF=45°,∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°,∴∠1+∠3=45°.即∠GAF=∠______.又∵AG=AE,AF=AF,∴______.∴______=EF.故DE+BF=EF.(2)方法遷移:如圖2,將Rt△ABC沿斜邊翻折得到△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.(3)問題拓展:如圖3,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足,試猜想當(dāng)∠B,∠D滿足什么關(guān)系時,可使得DE+BF=EF?請說明理由.3、已知和都是等腰直角三角形,.(1)如圖1,連接,,求證:;(2)將繞點(diǎn)O順時針旋轉(zhuǎn).①如圖2,當(dāng)點(diǎn)M恰好在邊上時,求證:;②當(dāng)點(diǎn)A,M,N在同一條直線上時,若,,請直接寫出線段的長.4、圖1是邊長分別為a和b(a>b)的兩個等邊三角形紙片△ABC和△CDE疊放在一起(C與C'重合)的圖形.(1)感知:固定△ABC,將△CDE繞點(diǎn)C按順時針方向旋轉(zhuǎn)20°,連結(jié)AD,BE,如圖2,則可證△CBE≌△CAD,依據(jù);進(jìn)而得到線段BE=AD,依據(jù).(2)探究:若將圖1中的△CDE,繞點(diǎn)C按順時針方向旋轉(zhuǎn)120°,使點(diǎn)B、C、D在同一條直線上,連結(jié)AD、BE,如圖3.①線段BE與AD之間是否仍存在(1)中的結(jié)論?若是,請證明;若不是,請直接寫出BE與AD之間的數(shù)量關(guān)系;②∠APB的度數(shù)=.(3)應(yīng)用:若將圖1中的△CDE,繞點(diǎn)C按逆時針方向旋轉(zhuǎn)一個角度α(0<α<360°),當(dāng)α等于多少度時,△BCD的面積最大?請直接寫出答案.5、如圖,在中,∠ACB=90°,AC=BC.點(diǎn)D是BC延長線上一點(diǎn),連接AD.將線段AD繞點(diǎn)A逆時針旋轉(zhuǎn)90°,得到線段AE.過點(diǎn)E作,交AB于點(diǎn)F.(1)①直接寫出∠AFE的度數(shù)是______;②求證:∠DAC=∠E;(2)用等式表示線段AF與DC的數(shù)量關(guān)系,并證明.6、在數(shù)學(xué)活動課上,王老師要求學(xué)生將圖1所示的3×3正方形方格紙,剪掉其中兩個方格,使之成為軸對稱圖形.規(guī)定:凡通過旋轉(zhuǎn)能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設(shè)計方案(陰影部分為要剪掉部分)請在圖中畫出4種不同的設(shè)計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)-參考答案-一、單選題1、B【解析】【分析】本題通過觀察全等三角形,找旋轉(zhuǎn)中心,旋轉(zhuǎn)角,逐一判斷.【詳解】解:A.根據(jù)題意可知AE=AB,AC=AD,∠EAC=∠BAD=,△EAC≌△BAD,旋轉(zhuǎn)角∠EAB=90°,不符合題意;B.因?yàn)槠叫兴倪呅问侵行膶ΨQ圖形,要想使△ACB和△DAC重合,△ACB應(yīng)該以對角線的交點(diǎn)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)180°,即可與△DAC重合,符合題意;C.根據(jù)題意可∠EAC=135°,∠EAD=360°﹣∠EAC﹣∠CAD=135°,AE=AE,AC=AD,△EAC≌△EAD,不符合題意;D.根據(jù)題意可知∠BAD=135°,∠EAD=360°﹣∠BAD﹣∠BAE=135°,AE=AB,AD=AD,△EAD≌△BAD,不符合題意.故選B.【考點(diǎn)】本題主要考查平行四邊形的對稱性:平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點(diǎn).2、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項(xiàng)分析判斷即可得解.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)不符合題意;B.既不是軸對稱圖形,又不是中心對稱圖形,故本選項(xiàng)不符合題意;C.既是軸對稱圖形,又是中心對稱圖形,故本選項(xiàng)符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項(xiàng)不符合題意.故選:C.【考點(diǎn)】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.3、C【解析】【分析】由旋轉(zhuǎn)的性質(zhì)可得∠BAD=55°,∠E=∠ACB=70°,由直角三角形的性質(zhì)可得∠DAC=20°,即可求解.【詳解】解:∵將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)55°得△ADE,∴∠BAD=55°,∠E=∠ACB=70°,∵AD⊥BC,∴∠DAC=20°,∴∠BAC=∠BAD+∠DAC=75°.故選C.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.4、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可知BC=BC'.取點(diǎn)O為線段CC'的中點(diǎn),并連接BO.根據(jù)等腰三角形三線合一的性質(zhì)、正方形的性質(zhì)及直角三角形的性質(zhì),可證得Rt△OBC≌Rt△C'CD,從而證得OC=C'D,BO=CC',再利用勾股定理即可求解.【詳解】解:如圖,取點(diǎn)O為線段CC'的中點(diǎn),并連接BO.依題意得,BC=BC'∴BO⊥CC'∴∠BOC=90°在正方形ABCD中,BC=CD,∠BCD=90°∴∠OCB+∠C'CD=90°又∵∠CC'D=90°∴∠C'DC+∠C'CD=90°∴∠OCB=∠C'DC在Rt△OBC和Rt△C'CD中∴Rt△OBC≌Rt△C'CD(AAS)∴OC=C'D=2∴CC'=2OC=2×2=4∴BO=CC'=4在Rt△BOC中BC===故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、等腰三角形的性質(zhì)、直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)及勾股定理的運(yùn)用等知識,解題的關(guān)鍵是輔助線的添加.5、C【解析】【詳解】解:選項(xiàng)A,B中的圖形是軸對稱圖形,不是中心對稱圖形,故A,B不符合題意;選項(xiàng)C中的圖形既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項(xiàng)D中的圖形不是軸對稱圖形,是中心對稱圖形,故D不符合題意,故選C【考點(diǎn)】本題考查的是軸對稱圖形與中心對稱圖形的識別,把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,把一個圖形繞某點(diǎn)旋轉(zhuǎn)后能夠與自身重合,則這個圖形是中心對稱圖形,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵.6、A【解析】【分析】取CB的中點(diǎn)G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉(zhuǎn)的性質(zhì)可得MB=NB,然后利用“邊角邊”證明△MBG≌△NBH,再根據(jù)全等三角形對應(yīng)邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】解:如圖,取BC的中點(diǎn)G,連接MG,∵旋轉(zhuǎn)角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵M(jìn)B旋轉(zhuǎn)到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故選A.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點(diǎn).7、C【解析】【分析】利用旋轉(zhuǎn)性質(zhì)可得△ABF≌△ACD,根據(jù)全等三角形的性質(zhì)一一判斷即可.【詳解】解:∵△ADC繞A順時針旋轉(zhuǎn)90°后得到△AFB,∴△ABF≌△ACD,∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正確,∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正確無法判斷BE=CD,故①錯誤,故選:C.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.8、B【解析】【分析】根據(jù)對稱中心的定義,根據(jù)矩形的性質(zhì),可得四邊形AECF形狀的變化情況.【詳解】解:觀察圖形可知,四邊形AECF形狀的變化依次為平行四邊形→菱形→平行四邊形→矩形.故選:B.【考點(diǎn)】考查了中心對稱,矩形的性質(zhì),平行四邊形的判定與性質(zhì),菱形的性質(zhì),根據(jù)EF與AC的位置關(guān)系即可求解.9、D【解析】【分析】連接AC,BD,過點(diǎn)O作于點(diǎn),交于點(diǎn),利用勾股定理求得的長即可解題.【詳解】解:如圖,連接AC,BD,過點(diǎn)O作于點(diǎn),交于點(diǎn),四邊形ABCD是矩形,同理可得故選:D.【考點(diǎn)】本題考查中心對稱、矩形的性質(zhì)、勾股定理等知識,學(xué)會添加輔助線,構(gòu)造直角三角形是解題關(guān)鍵.10、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得CD=CE和∠DCE=90°,結(jié)合∠ACB=90°,AC=BC,可證△ACD≌△BCE,依據(jù)全等三角形的性質(zhì)即可得到∠CBE=∠A=45°,再由AD=BF可得等腰△BEF,則可計算出∠BEF的度數(shù).【詳解】解:由旋轉(zhuǎn)性質(zhì)可得:CD=CE,∠DCE=90°.∵∠ACB=90°,AC=BC,∴∠A=45°.∴∠ACB?∠DCB=∠DCE?∠DCB.即∠ACD=∠BCE.∴△ACD≌△BCE.∴∠CBE=∠A=45°.∵AD=BF,∴BE=BF.∴∠BEF=∠BFE=67.5°.故選:D.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)、全等三角形的判定與性質(zhì)以及等腰三角形的性質(zhì),解題的關(guān)鍵是熟練運(yùn)用旋轉(zhuǎn)的性質(zhì)找出相等的線段和角,并能準(zhǔn)確判定三角形全等,從而利用全等三角形性質(zhì)解決相應(yīng)的問題.二、填空題1、【解析】【分析】將△APB繞點(diǎn)A順時針旋轉(zhuǎn)60°,得到△,連接、,作CN⊥交的延長線于點(diǎn)N,則△≌△APB,由題意可證△是等邊三角形,所以,所以當(dāng)共線時,最小,求出即可;【詳解】將△APB繞點(diǎn)A順時針旋轉(zhuǎn)60°,得到△,連接、,作CN⊥交的延長線于點(diǎn)N,則△≌△APB,∴∠BAP=∠,∴,,,∴△是等邊三角形,∴,∴,∴當(dāng)共線時,最小,∴∠CAN=180°-∠,CN⊥AN,∴∠ACN=30°,∴,,∴,∴,∴=;故答案為:.【考點(diǎn)】本題考查了全等三角形判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),以及等邊三角形的性質(zhì)和求線段最值的問題,掌握做輔助線是解題的關(guān)鍵.2、【解析】【分析】由于AD=AB,∠DAB=90°,則把△APD繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△AFB,AD與AB重合,PA旋轉(zhuǎn)到AF的位置,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AP=AF,∠PAF=90°,PD=FB,則△APF為等腰直角三角形,得到∠APF=45°,,即有∠BPF=∠APB+∠APF=45°+45°=90°,然后在Rt△FBP中,根據(jù)勾股定理可計算出FB的長,即可得到PD的長.【詳解】解:∵AD=AB,∠DAB=90°,∴把△APD繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△AFB,AD與AB重合,PA旋轉(zhuǎn)到FA的位置,如圖,∴AP=AF,∠PAF=90°,PD=FB,∴△APF為等腰直角三角形,∴∠APF=45°,,∴∠BPF=∠APB+∠APF=45°+45°=90°,在Rt△FBP中,PB=4,,∴由勾股定理得,∴,故答案為:【考點(diǎn)】本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定和性質(zhì)以及勾股定理.正確的作出輔助線是解題關(guān)鍵.3、;【解析】【分析】連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,F(xiàn)B=AC=6,進(jìn)而得到AF=8+6=14,∠FAO=45°,根據(jù)AO=AF×cos45°進(jìn)行計算即可.【詳解】解:連接AO、BO、CO,過O作FO⊥AO,交AB的延長線于F,∵O是正方形DBCE的對稱中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四邊形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,,∴△AOC≌△FOB(ASA),∴AO=FO,F(xiàn)B=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×=.故答案為.【考點(diǎn)】本題考查了正方形的性質(zhì)和全等三角形的判定與性質(zhì).本題的關(guān)鍵是通過作輔助線來構(gòu)建全等三角形,然后將已知和所求線段轉(zhuǎn)化到直角三角形中進(jìn)行計算.4、
1
【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),旋轉(zhuǎn)前、后的兩個圖形全等,旋轉(zhuǎn)角相等,可得出答案.【詳解】∵∠BAC+∠C=60°∴∠ABC=180°-60°=120°∵△ABC繞點(diǎn)O旋轉(zhuǎn)得到△A′B′C′∴△ABC≌△A′B′C′∴AC=A′C′,∠ABC=∠A′B′C′∵AC=1,∠ABC=120°∴A′C′=1,∠A′B′C′=120°∵△ABC繞點(diǎn)O旋轉(zhuǎn)得到△A′B′C′,∠AOA′=50°,∴∠AOA′=∠BOB′=50°′∵∠A′OB=30°∴∠A′OB′=50°-30°=20°故答案為:1,20°,120°【考點(diǎn)】本題考察了旋轉(zhuǎn)的性質(zhì).做題的關(guān)鍵是明白旋轉(zhuǎn)前、后的兩個圖形全等,找到對應(yīng)邊和對應(yīng)角;旋轉(zhuǎn)角相等,找到旋轉(zhuǎn)角即可.5、四【解析】【分析】畫出圖形,利用圖象解決問題即可.【詳解】解:如圖,所以在第四象限,故答案為:四.【考點(diǎn)】本題考查坐標(biāo)與圖形變化—旋轉(zhuǎn),解題的關(guān)鍵是正確畫出圖形,屬于中考??碱}型.6、【解析】【分析】根據(jù)題意,畫出旋轉(zhuǎn)后圖形,即可求解【詳解】解:如圖,將繞點(diǎn)逆時針旋轉(zhuǎn)180°,所以點(diǎn)的對應(yīng)點(diǎn)為M的坐標(biāo)為.故答案為:【考點(diǎn)】本題考查平面直角坐標(biāo)系內(nèi)圖形的對稱,旋轉(zhuǎn),解題關(guān)鍵是理解對稱旋轉(zhuǎn)的含義,并結(jié)合網(wǎng)格解題.7、65°【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)知AB=AB1,∠BAB1=50°,然后利用三角形內(nèi)角和定理進(jìn)行求解.【詳解】解:∵△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)50°后的圖形為△AB1C1,,∴AB=AB1,∠BAB1=50°,∴∠ABB1=(180°?50°)=65°.故答案為:65°.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),三角形內(nèi)角和定理,熟知旋轉(zhuǎn)角的定義與旋轉(zhuǎn)后對應(yīng)邊相等是解題的關(guān)鍵.8、【解析】【分析】根據(jù)在平面直角坐標(biāo)系中,若兩點(diǎn)關(guān)于原點(diǎn)對稱,則這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù),即可求解.【詳解】解:點(diǎn)M(2,﹣4)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)為故答案為:【考點(diǎn)】本題主要考查了兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對稱的特征,熟練掌握在平面直角坐標(biāo)系中,若兩點(diǎn)關(guān)于原點(diǎn)對稱,則這兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù)是解題的關(guān)鍵.9、3或8【解析】【分析】由勾股定理可求AB的長,由面積可求CH的長,由勾股定理可求AH,BH的長,分兩種情況討論,由等腰三角形的性質(zhì)可求解.【詳解】解:如圖,過點(diǎn)C作CH⊥AB于H,∵∠ACB=90°,cm,cm,∴AB=cm,∵S△ABC=×AC×BC=×AB×CH,∴×2=5×CH,∴CH=2cm,∴AH=cm,∴BH=4cm,當(dāng)點(diǎn)A落在直線AB上時,則AC=CK,∵CH⊥AB,∴KH=AH=1cm,∴BK=5-2=3cm,當(dāng)點(diǎn)B落在直線AB上時,則CB=CK',∵CH⊥AB,∴K'H=BH=4cm,∴BK'=8cm,綜上所述:BK=3cm或8cm,故答案為:3或8.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形的性質(zhì),勾股定理,利用分類討論思想解決問題是解題的關(guān)鍵.10、a+8b【解析】【分析】觀察可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),由此可得用9個拼接時的總長度為9a-8(a-b),由此即可得.【詳解】觀察圖形可知兩個拼接時,總長度為2a-(a-b),三個拼接時,總長度為3a-2(a-b),四個拼接時,總長度為4a-3(a-b),…,所以9個拼接時,總長度為9a-8(a-b)=a+8b,故答案為a+8b.【考點(diǎn)】本題考查了規(guī)律題——圖形的變化類,通過推導(dǎo)得出總長度與個數(shù)間的規(guī)律是解題的關(guān)鍵.三、解答題1、(1)B;(2)(1)(3)(5);(3)C;(4)見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)對稱圖形的定義進(jìn)行判斷;(2)先分別求每一個圖形中的旋轉(zhuǎn)角,然后再進(jìn)行判斷;(3)根據(jù)旋轉(zhuǎn)對稱圖形的定義進(jìn)行判斷;(4)利用旋轉(zhuǎn)對稱圖形的定義進(jìn)行設(shè)計.【詳解】解:(1)矩形、正五邊形、菱形、正六邊形都是旋轉(zhuǎn)對稱圖形,但正五邊形不是中心對稱圖形,故選:B.(2)是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角是60度的有(1)(3)(5).故答案為:(1)(3)(5).(3)①中心對稱圖形,旋轉(zhuǎn)180°一定會和本身重合,是旋轉(zhuǎn)對稱圖形;故命題①正確;②等腰三角形繞一個定點(diǎn)旋轉(zhuǎn)一定的角度α(0°<α≤180°)后,不一定能與自身重合,只有等邊三角形是旋轉(zhuǎn)對稱圖形,故②不正確;③圓具有旋轉(zhuǎn)不變性,繞圓心旋轉(zhuǎn)任意角度一定能與自身重合,是旋轉(zhuǎn)對稱圖形;故命題③正確;即命題中①③正確,故選:C.(4)圖形如圖所示:【考點(diǎn)】本題考查旋轉(zhuǎn)對稱圖形,中心對稱圖形等知識,解題的關(guān)鍵是理解題意,靈活運(yùn)用所學(xué)知識解決問題.2、(1)EAF;△EAF;GF;(2)EF=DE+BF,見解析;(3)∠B+∠D=180°,見解析【解析】【分析】(1)根據(jù)圖形和推理過程填空即可;(2)根據(jù)題意,分別證明,即可得出結(jié)論.(3)根據(jù)角之間關(guān)系,只要滿足∠B+∠D=180°時,就可以得出三角形全等,利用全等三角形的性質(zhì)即可得出答案.【詳解】(1)解:將△ADE繞點(diǎn)A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,點(diǎn)G,B,F(xiàn)在同一條直線上,∵∠EAF=45°,∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°,∴∠1+∠3=45°,即∠GAF=∠EAF,又AG=AE,AF=AF,∴△GAF≌△EAF(SAS),∴GF=EF,故DE+BF=EF;故答案為:EAF,△EAF,GF.(2)EF=DE+BF,理由如下:如圖,延長CF,作∠4=∠1.∵將Rt△ABC沿斜邊翻折得到Rt△ADC,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5.∵∠4=∠1,∠2+∠3=∠4+∠5,∴∠GAF=∠FAE.∵在△AGB和△AED中,∴.∴AG=AE,BG=DE.∵在△AGF和△AEF中,∴.∴GF=EF.∴DE+BF=EF.(3)當(dāng)∠B與∠D滿足∠B+∠D=180°時,可使得DE+BF=EF.如圖,延長CF,作∠2=∠1.∵∠ABC+∠D=180°,∠ABC+∠ABG=180°,∴∠D=∠ABG.在△AGB和△AED中,∴.∴BG=DE,AG=AE.∵,∴∠EAF=∠GAF.在△AGF和△AEF中,∴.∴GF=EF,DE+BF=EF.故當(dāng)∠B與∠D滿足∠B+∠D=180°時,可使得DE+BF=EF.【考點(diǎn)】本題主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì)以及旋轉(zhuǎn)變換性質(zhì)等知識,根據(jù)題意作出與已知相等的角,利用三角形全等是解決問題的關(guān)鍵.3、(1)見解析;(2)①見解析;②或【解析】【分析】(1)證明△AMO≌△BNO即可;(2)①連接BN,證明△AMO≌△BNO,得到∠A=∠OBN=45°,進(jìn)而得到∠MBN=90°,且△OMN為等腰直角三角形,再在△BNM中使用勾股定理即可證明;②分兩種情況分別畫出圖形即可求解.【詳解】解:(1)∵和都是等腰直角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)意工作室建設(shè)方案及運(yùn)營指南
- 中職院校電子商務(wù)實(shí)訓(xùn)教學(xué)方案
- 混凝土及鋼筋混凝土施工方案范本
- 單位消防設(shè)備定期檢測實(shí)施方案
- 店鋪督導(dǎo)工作方案
- 連翹藥茶種植實(shí)施方案
- 師專培訓(xùn)中心建設(shè)方案
- 集中整治排查工作方案
- 公共廁所整治工作方案
- 山東勞動教育實(shí)施方案
- 高支模培訓(xùn)教學(xué)課件
- GB/T 21558-2025建筑絕熱用硬質(zhì)聚氨酯泡沫塑料
- 企業(yè)中長期發(fā)展戰(zhàn)略規(guī)劃書
- 道路運(yùn)輸春運(yùn)安全培訓(xùn)課件
- IPC-6012C-2010 中文版 剛性印制板的鑒定及性能規(guī)范
- 機(jī)器人手術(shù)術(shù)中應(yīng)急預(yù)案演練方案
- 2025年度護(hù)士長工作述職報告
- 污水處理藥劑采購項(xiàng)目方案投標(biāo)文件(技術(shù)標(biāo))
- 醫(yī)院信訪應(yīng)急預(yù)案(3篇)
- 2025年領(lǐng)導(dǎo)干部任前廉政知識測試題庫(附答案)
- 安徽省蚌埠市2024-2025學(xué)年高二上學(xué)期期末學(xué)業(yè)水平監(jiān)測物理試卷(含答案)
評論
0/150
提交評論