版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》章節(jié)測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題20分)一、單選題(5小題,每小題4分,共計20分)1、如圖,在矩形ABCD中,點E是BC的中點,連接AE,點F是AE的中點,連接DF,若AB=9,AD,則四邊形CDFE的面積是()A. B. C. D.542、如圖,將矩形紙片按如圖所示的方式折疊,得到菱形,若,則的長為()A.2 B. C.4 D.3、如圖,在長方形ABCD中,AB=10cm,點E在線段AD上,且AE=6cm,動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,同時點Q在線段BC上.以vcm/s的速度由點B向點C運動,當△EAP與△PBQ全等時,v的值為()A.2 B.4 C.4或 D.2或4、如圖所示,在矩形ABCD中,已知AE⊥BD于E,∠DBC=30°,BE=1cm,則AE的長為()A.3cm B.2cm C.2cm D.cm5、如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得點A,C之間的距離為6cm,點B,D之間的距離為8cm,則紙條的寬為()A.5cm B.4.8cm C.4.6cm D.4cm第Ⅱ卷(非選擇題80分)二、填空題(5小題,每小題6分,共計30分)1、七巧板被西方人稱為“東方魔術(shù)”.下面的兩幅圖是由同一副七巧板拼成的.已知七巧板拼成的正方形(如圖1)邊長為.若圖2的“小狐貍”圖案中的陰影部分面積為,那么________.2、正方形ABCD的邊長為4,則圖中陰影部分的面積為___.3、如圖,將矩形ABCD折疊,使點C與點A重合,折痕為EF.若AF=5,BF=3,則AC的長為_____.4、如圖,在正方形ABCD中,AB=4,E為對角線AC上與A,C不重合的一個動點,過點E作EF⊥AB于點F,EG⊥BC于點G,連接DE,F(xiàn)G,下列結(jié)論:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值為3.其中正確結(jié)論的序號為__.5、如圖,平面直角坐標系中,有,,三點,以A,B,O三點為頂點的平行四邊形的另一個頂點D的坐標為______.三、解答題(5小題,每小題10分,共計50分)1、如圖所示,在邊長為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點的一動點,N是CD上一動點,且AM+CN=1.(1)證明:無論M,N怎樣移動,△BMN總是等邊三角形;(2)求△BMN面積的最小值.2、在如圖所示的4×3網(wǎng)格中,每個小正方形的邊長均為1,正方形頂點叫格點,連接兩個網(wǎng)格格點的線段叫網(wǎng)格線段.點A固定在格點上.(1)若a是圖中能用網(wǎng)格線段表示的最小無理數(shù),b是圖中能用網(wǎng)格線段表示的最大無理數(shù),則a=,b=,=;(2)請在網(wǎng)格中畫出頂點在格點上且邊長為的所有菱形ABCD,你畫出的菱形面積分別為,.3、如圖,四邊形ABCD是一個菱形綠草地,其周長為40m,∠ABC=120°,在其內(nèi)部有一個矩形花壇EFGH,其四個頂點恰好在菱形ABCD各邊中點,現(xiàn)準備在花壇中種植茉莉花,其單價為30元/m2,則需投資資金多少元?(取1.732)4、在Rt△ABC中,∠ACB=90°,AC=BC,點D為AB邊上一點,過點D作DE⊥AB,交BC于點E,連接AE,取AE的中點P,連接DP,CP.(1)觀察猜想:如圖(1),DP與CP之間的數(shù)量關(guān)系是,DP與CP之間的位置關(guān)系是.(2)類比探究:將圖(1)中的△BDE繞點B逆時針旋轉(zhuǎn)45°,(1)中的結(jié)論是否仍然成立?若成立,請就圖(2)的情形給出證明;若不成立,請說明理由.(3)問題解決:若BC=3BD=3,將圖(1)中的△BDE繞點B在平面內(nèi)自由旋轉(zhuǎn),當BE⊥AB時,請直接寫出線段CP的長.5、如圖,將長方形ABCD沿著對角線BD折疊,使點C落在C′處,BC′交AD于點E.(1)試判斷△BDE的形狀,并說明理由;(2)若AB=6,BC=18,求△BDE的面積.-參考答案-一、單選題1、C【解析】【分析】過點F作,分別交于M、N,由F是AE中點得,根據(jù),計算即可得出答案.【詳解】如圖,過點F作,分別交于M、N,∵四邊形ABCD是矩形,∴,,∵點E是BC的中點,∴,∵F是AE中點,∴,∴.故選:C.【點睛】本題考查矩形的性質(zhì)與三角形的面積公式,掌握是解題的關(guān)鍵.2、D【解析】【分析】根據(jù)菱形及矩形的性質(zhì)可得到∠BAC的度數(shù),從而根據(jù)直角三角形的性質(zhì)求得BC的長.【詳解】解:∵四邊形AECF為菱形,∴∠FCO=∠ECO,EC=AE,由折疊的性質(zhì)可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,,故選:D.【點睛】本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì),解決問題的關(guān)鍵是根據(jù)折疊以及菱形的性質(zhì)發(fā)現(xiàn)特殊角,根據(jù)30°的直角三角形中各邊之間的關(guān)系求得BC的長.3、D【解析】【分析】根據(jù)題意可知當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP,②當AP=BP時,△AEP≌△BQP,分別按照全等三角形的性質(zhì)及行程問題的基本數(shù)量關(guān)系求解即可.【詳解】解:當△EAP與△PBQ全等時,有兩種情況:①當EA=PB時,△APE≌△BQP(SAS),∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵動點P在線段AB上,從點A出發(fā)以2cm/s的速度向點B運動,∴點P和點Q的運動時間為:4÷2=2s,∴v的值為:4÷2=2cm/s;②當AP=BP時,△AEP≌△BQP(SAS),∵AB=10cm,AE=6cm,∴AP=BP=5cm,BQ=AE=6cm,∵5÷2=2.5s,∴2.5v=6,∴v=.故選:D.【點睛】本題考查矩形的性質(zhì)及全等三角形的判定與性質(zhì)等知識點,注意數(shù)形結(jié)合和分類討論并熟練掌握相關(guān)性質(zhì)及定理是解題的關(guān)鍵.4、D【解析】【分析】根據(jù)矩形和直角三角形的性質(zhì)求出∠BAE=30°,再根據(jù)直角三角形的性質(zhì)計算即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,∠BDA=∠DBC=30°,∵AE⊥BD,∴∠DAE=60°,∴∠BAE=30°,在Rt△ABE中,∠BAE=30°,BE=1cm,∴AB=2cm,∴AE=(cm),故選:D.【點睛】本題考查了矩形的性質(zhì),含30度角的直角三角形的性質(zhì),熟記各圖形的性質(zhì)并準確識圖是解題的關(guān)鍵.5、B【解析】【分析】由題意作AR⊥BC于R,AS⊥CD于S,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據(jù)勾股定理求出AB,最后利用菱形ABCD的面積建立關(guān)系得出紙條的寬AR的長.【詳解】解:作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四邊形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面積,即,解得:cm.故選:B.【點睛】本題主要考查菱形的判定以及勾股定理等知識,解題的關(guān)鍵是掌握一組鄰邊相等的平行四邊形是菱形以及菱形的面積等于對角線相乘的一半.二、填空題1、4【解析】【分析】設(shè)陰影小正方形的邊長為xcm,根據(jù)陰影部分的面積剛好是大正方形里梯形的面積,求出x的值,進而得出大正方形的對角線的長度是4xcm,最后求出邊長a即可.【詳解】解:設(shè)陰影小正方形的邊長為xcm,由題意得:(2x+4x)x=6,解得:x=或a=-(舍去),∴小正方形的邊長為cm,則大正方形的對角線長為4×=4(cm),∴a=4÷=4(cm),故答案為:4.【點睛】本題主要考查七巧板的知識,熟練掌握七巧板各邊的關(guān)系是解題的關(guān)鍵.2、8【解析】【分析】根據(jù)正方形的軸對稱的性質(zhì)可得陰影部分的面積等于正方形的面積的一半,然后列式進行計算即可得解.【詳解】解:×4×4=8.故答案為:8.【點睛】本題考查正方形的性質(zhì),軸對稱的性質(zhì),將陰影面積轉(zhuǎn)化為三角形面積是解題的關(guān)鍵,學會于轉(zhuǎn)化的思想思考問題.3、【解析】【分析】根據(jù)矩形的性質(zhì)得到∠B=90°,根據(jù)勾股定理得到,根據(jù)折疊的性質(zhì)得到CF=AF=5,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴∠B=90°,∵AF=5,BF=3,∴,∵將矩形ABCD折疊,使點C與點A重合,折痕為EF.∴CF=AF=5,∴BC=BF+CF=8,∴,故答案為:.【點睛】本題主要考查了矩形與折疊問題,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).4、①②③【解析】【分析】①連接BE,可得四邊形EFBG為矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,則∠OBF=∠OFB;由∠OBF=∠ADE,則∠OFB=∠ADE;由四邊形ABCD為正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的結(jié)論可得∠BFG=∠ADE;④由于點E為AC上一動點,當DE⊥AC時,根據(jù)垂線段最短可得此時DE最小,最小值為2,由①知FG=DE,所以FG的最小值為2.【詳解】解:①連接BE,交FG于點O,如圖,∵EF⊥AB,EG⊥BC,∴∠EFB=∠EGB=90°.∵∠ABC=90°,∴四邊形EFBG為矩形.∴FG=BE,OB=OF=OE=OG.∵四邊形ABCD為正方形,∴AB=AD,∠BAC=∠DAC=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).∴BE=DE.∴DE=FG.∴①正確;②延長DE,交FG于M,交FB于點H,∵△ABE≌△ADE,∴∠ABE=∠ADE.由①知:OB=OF,∴∠OFB=∠ABE.∴∠OFB=∠ADE.∵∠BAD=90°,∴∠ADE+∠AHD=90°.∴∠OFB+∠AHD=90°.即:∠FMH=90°,∴DE⊥FG.∴②正確;③由②知:∠OFB=∠ADE.即:∠BFG=∠ADE.∴③正確;④∵點E為AC上一動點,∴根據(jù)垂線段最短,當DE⊥AC時,DE最小.∵AD=CD=4,∠ADC=90°,∴AC==4.∴DE=AC=2.由①知:FG=DE,∴FG的最小值為2,∴④錯誤.綜上,正確的結(jié)論為:①②③.故答案為:①②③.【點睛】本題考查了全等三角形的性質(zhì)與判定,正方形的性質(zhì),勾股定理,垂線段最短,掌握正方形的性質(zhì)是解題的關(guān)鍵.5、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標相等,根據(jù)B的橫坐標和BO的值即可求出D的橫坐標.【詳解】∵平行四邊形ABCD的頂點A、B、O的坐標分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標是3+6=9,縱坐標是4,即D的坐標是(9,4),同理可得出D的坐標還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點睛】本題考查了坐標與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對邊平行且相等.三、解答題1、(1)見解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過點B作BE⊥MN于點E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過點B作BE⊥MN于點E.設(shè)BM=BN=MN=x,則,故,∴當BM⊥AD時,x最小,此時,,.∴△BMN面積的最小值為.【點睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線段最短,全等三角形的判定與性質(zhì)等知識,關(guān)鍵是作輔助線證三角形全等.2、(1),2,;(2)4或5.【分析】(1)借助網(wǎng)格得出最大的無理數(shù)以及最小的無理數(shù),進而求出即可;(2)根據(jù)要求周長邊長為的菱形即可.【詳解】解:(1)由題意得:a=,b=2,
∴;
故答案為:,2,;(2)如圖1,2中,菱形ABCD即為所求.
菱形ABCD的面積為=×4×2=4或菱形ABCD的面積=×=5,
故答案為:4或5.【點睛】本題考查作圖-應(yīng)用與設(shè)計作圖,無理數(shù),勾股定理,菱形的性質(zhì)等知識,解題的關(guān)鍵是理解題意,正確作出圖形解決問題.3、2598元【分析】根據(jù)菱形的性質(zhì),先求出菱形的一條對角線,由勾股定理求出另一條對角線的長,由三角形的中位線定理,求出矩形的兩條邊,再求出矩形的面積,最后求得投資資金.【詳解】連接BD,AD相交于點O,如圖:∵四邊形ABCD是一個菱形,∴AC⊥BD,∵∠ABC=120°,∴∠A=60°,∴△ABD為等邊三角形,∵菱形的周長為40m,∴菱形的邊長為10m,∴BD=10m,BO=5m,∴在Rt△AOB中,m,∴AC=2OA=m,∵E、F、G、H分別是AB、BC、CD、DA的中點,∴EH=BD=5m,EF=AC=5m,∴S矩形=5×5=50m2,則需投資資金50×30=1500×1.732≈2598元【點睛】本題考查了二次根式的應(yīng)用,勾股定理,菱形的性質(zhì),等邊三角形的判定與性質(zhì),三角形的中位線平行于第三邊并且等于第三邊的一半,熟記各性質(zhì)與定理是解題的關(guān)鍵.4、(1)PD=PC,PD⊥PC;(2)成立,見解析;(3)2或4【分析】(1)根據(jù)直角三角形斜邊中線的性質(zhì),可得,根據(jù)角之間的關(guān)系即可,即可求解;(2)過點P作PT⊥AB交BC的延長線于T,交AC于點O,根據(jù)全等三角形的判定與性質(zhì)求解即可;(3)分兩種情況,當點E在BC的上方時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026中國人民銀行清算總中心直屬企業(yè)深圳金融電子結(jié)算中心有限公司招聘14人考試備考試題及答案解析
- 2026福汽集團校園招聘279人考試參考試題及答案解析
- 2026年上海市嘉定區(qū)嘉一實驗初級中學教師招聘考試參考題庫及答案解析
- 2026年上海煙草集團有限責任公司應(yīng)屆生招聘考試備考題庫及答案解析
- 家庭養(yǎng)老護理急救注意事項
- 2026河南鄭州市第一〇三高級中學招聘教育部直屬師范大學公費師范畢業(yè)生10人考試備考試題及答案解析
- 2026年蚌埠懷遠縣鄉(xiāng)鎮(zhèn)衛(wèi)生院公開招聘工作人員14名考試備考試題及答案解析
- 2026四川成都市武侯區(qū)火車南站社區(qū)衛(wèi)生服務(wù)中心口腔醫(yī)生、公衛(wèi)醫(yī)生招聘2人考試參考題庫及答案解析
- 2026中國科學院微生物研究所生物安全與動物實驗平臺招聘1人考試參考題庫及答案解析
- 2026中國鐵建海洋產(chǎn)業(yè)技術(shù)研究院招聘28人考試備考試題及答案解析
- 醫(yī)院檢查、檢驗結(jié)果互認制度
- 2025年醫(yī)院物價科工作總結(jié)及2026年工作計劃
- 2026年高考化學模擬試卷重點知識題型匯編-原電池與電解池的綜合
- 2025青海省生態(tài)環(huán)保產(chǎn)業(yè)有限公司招聘11人筆試歷年參考題庫附帶答案詳解
- 2025浙江杭州錢塘新區(qū)建設(shè)投資集團有限公司招聘5人筆試參考題庫及答案解析
- 2025年天津市普通高中學業(yè)水平等級性考試思想政治試卷(含答案)
- 2025年昆明市呈貢區(qū)城市投資集團有限公司及下屬子公司第二批招聘(11人)備考核心題庫及答案解析
- 2025年中國磁懸浮柔性輸送線行業(yè)市場集中度、競爭格局及投融資動態(tài)分析報告(智研咨詢)
- 腦膜瘤患者出院指導與隨訪
- 學堂在線 雨課堂 學堂云 科研倫理與學術(shù)規(guī)范 期末考試答案
- 2026年武漢大學專職管理人員和學生輔導員招聘38人備考題庫必考題
評論
0/150
提交評論