版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數學下冊《平行四邊形》單元測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,矩形ABCD的對角線AC和BD相交于點O,若∠AOD=120°,AC=16,則AB的長為()A.16 B.12 C.8 D.42、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點B的對應點為點B′,AB′與DC相交于點E,則下列結論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE3、如圖,已知是平分線上的一點,,,是的中點,,如果是上一個動點,則的最小值為()A. B. C. D.4、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm5、如圖,把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,再過點B折疊紙片,使點A落在MN上的點F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.16、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點D,E是AD上的一個動點,連接EC,將線段EC繞點C按逆時針方向旋轉60°得到FC,連接DF,則在點E的運動過程中,DF的最小值是()A.1 B.1.5 C.2 D.47、如圖所示,AB=CD,AD=BC,則圖中的全等三角形共有()A.1對 B.2對 C.3對 D.4對8、如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數是()A.2.5 B.2 C. D.9、如圖,點E是長方形ABCD的邊CD上一點,將ADE沿著AE對折,點D恰好折疊到邊BC上的F點,若AD=10,AB=8,那么AE長為()A.5 B.12 C.5 D.1310、在菱形ABCD中,兩條對角線AC=10,BD=24,則此菱形的邊長為()A.14 B.25 C.26 D.13第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,點E,F在正方形ABCD的對角線AC上,AC=10,AE=CF=3,則四邊形BFDE的面積為_____.2、如圖中,分別是由個、個、個正方形連接成的圖形,在圖中,;在圖中,;通過以上計算,請寫出圖中______(用含的式子表示)3、如圖,在矩形ABCD中,AB=3,BC=4,點P是對角線AC上一點,若點P、A、B組成一個等腰三角形時,△PAB的面積為___________.4、如圖,在平行四邊形ABCD中,∠B=45°,AD=8,E、H分別為邊AB、CD上一點,將?ABCD沿EH翻折,使得AD的對應線段FG經過點C,若FG⊥CD,CG=4,則EF的長度為_____.5、點D、E分別是△ABC邊AB、AC的中點,已知BC=12,則DE=_____6、正方形ABCD的邊長為4,則圖中陰影部分的面積為_____.7、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點O,且AC=8cm,則四邊形ABCD的面積為______cm2.8、如圖,在矩形ABCD中,對角線AC,BD相交于點O,AB=6,∠DAC=60°,點F在線段AO上從點A至點O運動,連接DF,以DF為邊作等邊三角形DFE,點E和點A分別位于DF兩側,下列結論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點E運動的路程是2,其中正確結論的序號為_____.9、如果一個矩形較短的邊長為5cm,兩條對角線的夾角為60°,則這個矩形的對角線長是_________cm.10、如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉90°,得到△DCM若AE=2,則FM的長為___.三、解答題(5小題,每小題6分,共計30分)1、如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,過點A作射線l∥BC,若點P從點A出發(fā),以每秒2cm的速度沿射線l運動,設運動時間為t秒(t>0),作∠PCB的平分線交射線l于點D,記點D關于射線CP的對稱點是點E,連接AE、PE、BP.(1)求證:PC=PD;(2)當△PBC是等腰三角形時,求t的值;(3)是否存在點P,使得△PAE是直角三角形,如果存在,請直接寫出t的值,如果不存在,請說明理由.2、如圖,在△ABC中,AB=AC,AD⊥BC于點D.(1)若DE∥AB交AC于點E,證明:△ADE是等腰三角形;(2)若BC=12,DE=5,且E為AC中點,求AD的值.3、(閱讀材料)材料一:我們在小學學習過正方形,知道:正方形的四條邊都相等,四個角都是直角;材料二:如圖1,由一個等腰直角三角形和一個正方形組成的圖形,我們要判斷等腰直角三角形的面積與正方形的面積的大小關系,可以這樣做:如圖2,連接AC,BD,把正方形分成四個與等腰三角形ADE全等的三角形,所以.(解決問題)如圖3,圖中由三個正方形組成的圖形(1)請你直接寫出圖中所有的全等三角形;(2)任意選擇一組全等三角形進行證明;(3)設圖中兩個小正方形的面積分別為S1和S2,若,求S1和S2的值.4、如圖,平行四邊形ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3,AD=5,求BD的長.5、如圖,在中,AE平分,于點E,點F是BC的中點(1)如圖1,BE的延長線與AC邊相交于點D,求證:(2)如圖2,中,,求線段EF的長.-參考答案-一、單選題1、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點睛】本題考查了矩形的性質,等邊三角形的性質和判定,熟練掌握矩形的性質是本題的關鍵.2、D【解析】【分析】根據翻折變換的性質可得∠BAC=∠CAB′,根據兩直線平行,內錯角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點B的對應點為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結論正確的是D選項.故選D.【點睛】本題考查了翻折變換的性質,平行線的性質,矩形的對邊互相平行,等角對等邊的性質,熟記各性質并準確識圖是解題的關鍵.3、C【解析】【分析】根據題意由角平分線先得到是含有角的直角三角形,結合直角三角形斜邊上中線的性質進而得到OP,DP的值,再根據角平分線的性質以及垂線段最短等相關內容即可得到PC的最小值.【詳解】解:∵點P是∠AOB平分線上的一點,,∴,∵PD⊥OA,M是OP的中點,∴,∴∵點C是OB上一個動點∴當時,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點睛】本題主要考查了角平分線的性質、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質、垂線段最短等相關內容,熟練掌握相關性質定理是解決本題的關鍵.4、C【解析】【分析】根據平行四邊形的性質,可得AB=CD,BC=AD,然后設,可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設,∵的周長為32cm,∴,即,解得:,∴.故選:C【點睛】本題主要考查了平行四邊形的性質,熟練掌握平行四邊形的對邊相等是解題的關鍵.5、B【解析】【分析】由折疊的性質可得,∠BMN=90°,FB=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點B折疊紙片,使點A落在MN上的點F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點睛】本題主要考查了正方形與折疊,勾股定理,解題的關鍵在于能夠熟練掌握折疊的性質.6、C【解析】【分析】取線段AC的中點G,連接EG,根據等邊三角形的性質以及角的計算即可得出CD=CG以及∠FCD=∠ECG,由旋轉的性質可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進而即可得出DF=GE,再根據點G為AC的中點,即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當EG∥BC時,EG最小,∵點G為AC的中點,∴此時EG=DF=CD=BC=2.故選:C.【點睛】本題考查了等邊三角形的性質以及全等三角形的判定與性質,三角形中位線的性質,解題的關鍵是通過全等三角形的性質找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時,根據全等三角形的性質找出相等的邊是關鍵.7、D【解析】【分析】根據平行四邊形的判定與性質,求解即可.【詳解】解:∵AB=CD,AD=BC∴四邊形為平行四邊形∴,,,∴、又∵,∴、∴圖中的全等三角形共有4對故選:D【點睛】此題考查了平行四邊形的判定與性質,全等三角形的判定與性質,解題的關鍵是掌握平行四邊形的判定與性質.8、D【解析】【分析】利用矩形的性質,求證明,進而在中利用勾股定理求出的長度,弧長就是的長度,利用數軸上的點表示,求出弧與數軸交點表示的實數即可.【詳解】解:四邊形OABC是矩形,,在中,由勾股定理可知:,,弧長為,故在數軸上表示的數為,故選:.【點睛】本題主要是考查了矩形的性質、勾股定理解三角形以及數軸上的點的表示,熟練利用矩形性質,得到直角三角形,然后通過勾股定理求邊長,是解決該類問題的關鍵.9、C【解析】【分析】根據矩形的性質,折疊的性質,勾股定理即可得到結論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對折,點D恰好折疊到邊BC上的F點,∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點睛】本題考查了翻折變換,矩形的性質,勾股定理等知識,解題的關鍵是學會利用參數構建方程解決問題.10、D【解析】【分析】由菱形的性質和勾股定理即可求得AB的長.【詳解】解:∵四邊形ABCD是菱形,AC=10,BD=24,∴AB=BC=CD=AD,AC⊥BD,OB=OD=BD=12,OA=OC=AC=5,在Rt△ABO中,AB==13,故選:D.【點睛】本題考查了菱形的性質、勾股定理等知識,熟練掌握菱形的性質,由勾股定理求出AB=13是解題的關鍵.二、填空題1、20【解析】【分析】連接BD,交AC于O,根據題意和正方形的性質可求得EF=4,AC⊥BD,由即可求解.【詳解】解:如圖,連接BD,交AC于O,∵四邊形ABCD是正方形,AC=10,∴AC=BD=10,AC⊥BD,OA=OC=OB=OD=5,∵AE=CF=3,∴EO=FO=2,∴EF=EO+FO=4,∴故答案為:20.【點睛】本題主要考查了正方形的性質,熟練掌握正方形的對角線相等且互相垂直平分是解題的關鍵.2、90n【解析】【分析】連接各小正方形的對角線,由圖1中四邊形內角和定理化簡可得:;由圖2中四邊形內角和定理化簡可得:;結合圖形即可發(fā)現規(guī)律,求得結果.【詳解】解:連接各小正方形的對角線,如下圖:圖中,,即,圖中,,即,,以此類推,,故答案為:.【點睛】題目主要考查根據規(guī)律列出相應代數式,正方形性質等,理解題意,探索發(fā)現規(guī)律是解題關鍵.3、或或3【解析】【分析】過B作BM⊥AC于M,根據矩形的性質得出∠ABC=90°,根據勾股定理求出AC,根據三角形的面積公式求出高BM,分為三種情況:①AB=BP=3,②AB=AP=3,③AP=BP,分別畫出圖形,再求出面積即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ABC=90°,由勾股定理得:,有三種情況:①當AB=BP=3時,如圖1,過B作BM⊥AC于M,S△ABC=,,解得:,∵AB=BP=3,BM⊥AC,∴,∴AP=AM+PM=,∴△PAB的面積=;②當AB=AP=3時,如圖2,∵BM=,∴△PAB的面積S=;③作AB的垂直平分線NQ,交AB于N,交AC于P,如圖3,則AP=BP,BN=AN=,∵四邊形ABCD是矩形,NQ⊥AC,∴PN∥BC,∵AN=BN,∴AP=CP,∴,∴△PAB的面積;即△PAB的面積為或或3.故答案為:或或3.【點睛】本題主要是考查了矩形的性質、等腰三角形的判定以及勾股定理求邊長,熟練掌握矩形的性質,利用等腰三角形的判定,分成三種情況討論,是解決本題的關鍵.4、【解析】【分析】延長CF與AB交于點M,由平行四邊形的性質得BC長度,GM⊥AB,由折疊性質得GF,∠EFM,進而得FM,再根據△EFM是等腰直角三角形,便可求得結果.【詳解】解:延長CF與AB交于點M,∵FG⊥CD,AB∥CD,∴CM⊥AB,∵∠B=45°,BC=AD=8,∴CM=4,由折疊知GF=AD=8,∵CG=4,∴MF=CM-CF=CM-(GF-CG)=4-4,∵∠EFC=∠A=180°-∠B=135°,∴∠MFE=45°,∴EF=MF=(4-4)=8-4.故答案為:8-4.【點睛】本題主要考查了平行四邊形的性質,折疊的性質,解直角三角形的應用,關鍵是作輔助線構造直角三角形.5、6【解析】【分析】根據三角形的中位線等于第三邊的一半進行計算即可.【詳解】解:∵D、E分別是△ABC邊AB、AC的中點,∴DE是△ABC的中位線,∵BC=12,∴DE=BC=6,故答案為6.【點睛】本題主要考查了三角形中位線定理,熟知三角形中位線定理是解題的關鍵.6、8【解析】【分析】正方形的對角線是它的一條對稱軸,對應點到兩邊的都是垂直的,距離也都相等,左邊梯形面積和右邊梯形面積相等,所以圖中陰影部分的面積正好為正方形面積的一半.然后列式進行計算即可得解.【詳解】解:由圖形可得:S=×4×4=8,所以陰影部分的面積為8.故答案是:8.【點睛】本題考查正方形的性質,軸對稱的性質,將陰影面積轉化為三角形面積是解題的關鍵,學會于轉化的思想思考問題.7、24【解析】【分析】根據題意作圖,得出四邊形為菱形,再根據菱形的性質進行求解面積即可.【詳解】解:根據題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點睛】本題考查了菱形的判定及形,勾股定理,解題的關鍵是判斷四邊形是菱形.8、①②③④【解析】【分析】①根據∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結論②正確;③通過等量代換即可得出結論③正確;④延長OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,從而得出結論④正確;【詳解】解:①設與的交點為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結論③正確;④如圖,延長OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點F在線段AO上從點A至點O運動時,點E從點O沿線段運動到,∵∴設,則∴在中,即解得:∴=OD=AD=,∴點E運動的路程是,故結論④正確;故答案為:①②③④.【點睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質,相似三角形的判定及性質,全等三角形的性質及判定,三角函數的比值關系,矩形的性質等知識點,熟悉掌握幾何圖形的性質合理做出輔助線是解題的關鍵.9、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結合矩形的性質可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點睛】本題考查的是等邊三角形的判定與性質,矩形的性質,掌握“矩形的對角線相等且互相平分”是解本題的關鍵.10、5【解析】【分析】由旋轉性質可證明△EDF≌△MDF,從而EF=FM;設FM=EF=x,則可得BF=8?x,由勾股定理建立方程即可求得x.【詳解】由旋轉的性質可得:DE=DM,CM=AE=2,∠ADE=∠CDM,∠EDM=90゜∵四邊形ABCD是正方形∴∠ADC=∠B=90゜,AB=BC=6∴∠ADE+∠FDC=∠ADC?∠EDF=45゜∴∠FDC+∠CDM=45゜即∠MDF=45゜∴∠EDF=∠MDF在△EDF和△MDF中∴△EDF≌△MDF(SAS)∴EF=FM設EF=FM=x則∴∵在Rt△EBF中,由勾股定理得:解得:故答案為:5【點睛】本題考查了正方形的性質,全等三角形的判定與性質,勾股定理等知識,運用了方程思想,關鍵是證明三角形全等.三、解答題1、(1)見解析;(2)t=1或或;(3)存在,△PAE是直角三角形時t=或【分析】(1)根據平行線的性質可得∠PDC=∠∠BCD,根據角平分線的定義可得∠PCD=∠BCD,則∠PCD=∠PDC,即可得到PC=PD;(2)分當BP=BC=4cm時,當PC=BC=4cm時,當PC=PB時三種情況討論求解即可;(3)分當∠PAE=90°時,當∠APE=90°時,當∠AEP=90°時,三種情況討論求解即可.【詳解】解:(1)∵l∥BC,∴∠PDC=∠∠BCD,∵CD平分∠BCP,∴∠PCD=∠BCD,∴∠PCD=∠PDC,∴PC=PD;(2)在△ABC中,∠ACB=90°,,,∴,
若△PBC是等腰三角形,存在以下三種情況:①當BP=BC=4cm時,作PH⊥BC于H,∵∠ACB=90°,l∥BC,∴∠ACH=∠CAP=90°,∴四邊形ACHP是矩形,∴PH=AC=3cm,由勾股定理∴,∴,即,解得,②當PC=BC=4cm時,由勾股定理,即,解得;③當PC=PB時,P在BC的垂直平分線上,∴CH=BC=2cm,∴同理可得AP=CH=2cm,即2t=2,解得t=1,綜上所述,當t=1或或時,△PBC是等腰三角形;(3)∵D關于射線CP的對稱點是點E,∴PD=PE,∠ECP=∠DCP,由(1)知,PD=PC,∴PC=PE,要使△PAE是直角三角形,則存在以下三種情況:①當∠PAE=90°時,此時點C、A、E在一條直線上,且AE=AC=3cm,∵CD平分∠BCP,∴∠ECP=∠DCP=∠BCD,∴∠ACP=∠ACB=30°,∴,∵,即,∴即2t=,解得;②當∠APE=90°時,∴∠EPD=90°∵D、E關于直線CP對稱,∴∠EPF=∠DPF=45°,∴∠APC=∠DPF=45°,∵l∥BC,∴∠CAP=180°-∠ACB=90°,∴∠ACP=45°,∴AP=AC=3cm,∴,∴;③當∠AEP=90°時,在Rt△ACP中,PC>AP,在Rt△AEP中,AP>PE,∵PC=PE=PD,故此情況不存在,綜上,△PAE是直角三角形時或.【點睛】本題主要考查了軸對稱的性質,角平分線的定義,平行線的性質,等腰三角形的性質,勾股定理,矩形的性質與判定,含30度角的直角三角形的性質,勾股定理等等,解題的關鍵在于能夠利用分類討論的思想求解.2、(1)見解析;(2)8【分析】(1)根據“三線合一”性質先推出∠BAD=∠CAD,再結合平行線的性質推出∠BAD=∠ADE,從而得到∠ADE=∠EAD,即可根據“等角對等邊”證明;(2)根據題意結合中位線定理可先推出AC=2DE,然后在Rt△ADC中利用勾股定理求解即可.【詳解】(1)證:∵在△ABC中,AB=AC,∴△ABC為等腰三角形,∵AD⊥BC于點D,∴由“三線合一”知:∠BAD=∠CAD,∵DE∥AB交AC于點E,∴∠BAD=∠ADE,∴∠CAD=∠ADE,即:∠ADE=∠EAD,∴AE=DE,∴△ADE是等腰三角形;(2)解:由“三線合一”知:BD=CD,∵BC=12,∴DC=6,∵E為AC中點,∴DE為△ABC的中位線,∴AB=2DE,∴AC=AB=2DE=10,在Rt△ADC中,,∴AD=8.【點睛】本題考查等腰三角形的性質與判定,勾股定理解三角形,以及三角形的中位線定理等,掌握等腰三角形的基本性質,熟練運用中位線定理和勾股定理計算是解題關鍵.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安徽礦業(yè)職業(yè)技術學院單招職業(yè)技能考試模擬測試卷附答案解析
- 蛋類養(yǎng)殖機械行業(yè)市場發(fā)展前景分析研究報告
- 2025年廣東潮州衛(wèi)生健康職業(yè)學院馬克思主義基本原理概論期末考試模擬題附答案解析
- 2025年德州學院馬克思主義基本原理概論期末考試模擬題及答案解析(奪冠)
- 2025年寶豐縣幼兒園教師招教考試備考題庫含答案解析(必刷)
- 2025年保山中醫(yī)藥高等??茖W校馬克思主義基本原理概論期末考試模擬題附答案解析
- 2026年心理咨詢師考試題庫300道及答案(真題匯編)
- 2025年邊壩縣招教考試備考題庫帶答案解析(奪冠)
- 2025年安徽城市管理職業(yè)學院馬克思主義基本原理概論期末考試模擬題附答案解析
- 2025年鞍山職業(yè)技術學院單招職業(yè)技能測試題庫帶答案解析
- 高考復習專題之李白專練
- 對建筑工程施工轉包違法分包等違法行為認定查處管理課件
- 中小學生勵志主題班會課件《我的未來不是夢》
- 幼兒園戶外體育游戲觀察記錄
- 紅色國潮風舌尖上的美食餐飲策劃書PPT模板
- 套筒窯工藝技術操作規(guī)程
- 某礦區(qū)采場淺孔爆破施工設計
- 果蠅遺傳學實驗
- 普夯施工方案
- 新飼料和新飼料添加劑審定申請表
- 你看起來好像很好吃教案
評論
0/150
提交評論