構建企業(yè)級AI平臺的架構策略和實踐_第1頁
構建企業(yè)級AI平臺的架構策略和實踐_第2頁
構建企業(yè)級AI平臺的架構策略和實踐_第3頁
構建企業(yè)級AI平臺的架構策略和實踐_第4頁
構建企業(yè)級AI平臺的架構策略和實踐_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Strategies

ofMachineLearningPlatformBuilding&Practicesin

eBayAgendaAIPlatformvision,designprinciplesandcore

capabilities1AI/MLuse

caseanalysis23Unified

datastrategiesAIUse

CasesOnlinedataservices–OTF

FEStreamingevents–NRTFEOfflinebatch/ETLdatasets–Batch

FEStructured

DataSemi/Unstructured

Data(image/video/text/3D/…)Data

Source- Contentgeneration/acquisitionNRT

pipelineUnifiedonline/offlinefeature

storeUnifiedonline/offlinecontent

storeStorageDataPiT

ParityOnline/offlinePiTdata

strategiesPiTdataparityisnot

requiredVendor/manual/auto

labellingDriver

set &trainingsetgeneration&management,catalog,datalineage,

etc.- GPUtrainingandinferencing

typicallyChallengesofBuildingEnterpriseML

PlatformTendstoinvestmoreonsolutionsinsteadof

platformLackofclearboundarybetween

solutionsand

platformLackofunifieddatastrategiesandself-servicesupportforMLPlatform

buildingTraditionally

focusmoreontraining,lackofenoughplatformsupportondata/featureand

inferencingLackofE2Eseamlessintegrationstrategies

crossfeature,trainingand

inferencingMLDevelopment

LifecycleAgendaAIPlatform

vision,designprinciplesandcorecapabilities23Unified

datastrategies1AI/MLuse

caseanalysisOur

VisionToempowereBayAIpractitionerstobuild,trainanddeploymachinelearningmodelswithfully-managed,efficientandself-serviceplatformat

scale.MLPlatformCoreCapability

MapMLPlatformArchitectural

PrinciplesEnableself-servicebasedoncentralizedconfigurationandmetadata-drivendesign,

withlifecyclemanagementandgovernancein

placeEnableunifiedmetadataanddefinitionscrossonlineandoffline,withenoughflexibility andextensibilitytosupportdomainlevel

customizationsProvideagroupofmanagementAPIs&servicesforMLPmanagedlifecycle,andenabletheE2Eseamlessintegrationbasedonthe

APIsProvideunifiedcatalogs(includingdata,storedvariables,features,models,solutions,etc.)topromotediscovery,reuseandbetter

governanceProvideE2EdatalineagesfortheAIPlatformdomain

entitiesApplyunifiedmonitoringcrossthewholeML

platformMLPlatformOnlineIntegration

ArchitectureEntityModelinginML

PlatformDependencyDAG&Execution

PlanUnifiedCPU/GPUInferencing

PlatformModelandFeature

MonitoringAgenda3Unified

datastrategies21AI/MLuse

caseanalysisAIPlatformvision,designprinciplesandcore

capabilitiesWhyDataStrategiesaresoImportantfor

AI/MLImagesource:Cognilytica,from

Batch

FeatureFeature

DSLNRTRoll-up

AbstractionNRTFeature

EngineeringNRT

FeatureSchemaDerivedputationOn-the-fly

FeatureparisonsofDifferentFeatures

TypesBatch

Feature NRT

FeatureOn-the-fly

FeaturePiTSimulation/FeatureSnapshottingFeatureSnapshotting

OnlyEasyto

reuseSolutionbysolution

supportTime-to-MarketFastFastexceptnewenrichedevent

acquisitionSlowMLP

ManagedSelf-servicebyEndUsers(DS)DelayofData

FreshnessData

SourceYesYesYesYesNoNo1Day+P99<5

secReal-timeETL/Batchdata/Snapshotted

DatasetEnriched

eventsRequestcontext

/Onlinedata

servicesEmbracingNRT

StrategyIntegratedData

StrategiesFeature

PlatformUnifiedFeature

StoreFeatureLifecyle

Mngt.FeaturePiT

SimulationTraining

PlatformTrainingSetGenerationDriver/training

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論