2024-2025學(xué)年橫山縣中考四模數(shù)學(xué)試題含解析_第1頁
2024-2025學(xué)年橫山縣中考四模數(shù)學(xué)試題含解析_第2頁
2024-2025學(xué)年橫山縣中考四模數(shù)學(xué)試題含解析_第3頁
2024-2025學(xué)年橫山縣中考四模數(shù)學(xué)試題含解析_第4頁
2024-2025學(xué)年橫山縣中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年橫山縣中考四模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤12.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A從出發(fā),繞點(diǎn)O順時(shí)針旋轉(zhuǎn)一周,則點(diǎn)A不經(jīng)過()A.點(diǎn)M B.點(diǎn)N C.點(diǎn)P D.點(diǎn)Q3.如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°4.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的右側(cè),C為x軸上的一個(gè)動(dòng)點(diǎn),若的面積為4,則的值為A.8 B. C.4 D.5.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點(diǎn)E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°6.如圖1,在矩形ABCD中,動(dòng)點(diǎn)E從A出發(fā),沿AB→BC方向運(yùn)動(dòng),當(dāng)點(diǎn)E到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),過點(diǎn)E做FE⊥AE,交CD于F點(diǎn),設(shè)點(diǎn)E運(yùn)動(dòng)路程為x,F(xiàn)C=y(tǒng),如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點(diǎn)E在BC上運(yùn)動(dòng)時(shí),F(xiàn)C的最大長度是,則矩形ABCD的面積是()A. B.5 C.6 D.7.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=28.運(yùn)用乘法公式計(jì)算(4+x)(4﹣x)的結(jié)果是()A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x29.如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對稱中心作點(diǎn)P(0,2)的對稱點(diǎn)P1,以B為對稱中心作點(diǎn)P1的對稱點(diǎn)P2,以C為對稱中心作點(diǎn)P2的對稱點(diǎn)P3,以D為對稱中心作點(diǎn)P3的對稱點(diǎn)P4,…,重復(fù)操作依次得到點(diǎn)P1,P2,…,則點(diǎn)P2010的坐標(biāo)是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)10.某籃球運(yùn)動(dòng)員在連續(xù)7場比賽中的得分(單位:分)依次為20,18,23,17,20,20,18,則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.如圖,點(diǎn)分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________.12.若3,a,4,5的眾數(shù)是4,則這組數(shù)據(jù)的平均數(shù)是_____.13.如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點(diǎn)A,D在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)F在AB上,點(diǎn)B,E在反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖像上,正方形ADEF的面積為4,且BF=2AF,則14.安全問題大于天,為加大宣傳力度,提高學(xué)生的安全意識(shí),樂陵某學(xué)校在進(jìn)行防溺水安全教育活動(dòng)中,將以下幾種在游泳時(shí)的注意事項(xiàng)寫在紙條上并折好,內(nèi)容分別是:①互相關(guān)心;②互相提醒;③不要相互嬉水;④相互比潛水深度;⑤選擇水流湍急的水域;⑥選擇有人看護(hù)的游泳池.小穎從這6張紙條中隨機(jī)抽出一張,抽到內(nèi)容描述正確的紙條的概率是_____.15.從5張上面分別寫著“加”“油”“向”“未”“來”這5個(gè)字的卡片(大小、形狀完全相同)中隨機(jī)抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.16.將一些形狀相同的小五角星如圖所示的規(guī)律擺放,據(jù)此規(guī)律,第10個(gè)圖形有_______個(gè)五角星.三、解答題(共8題,共72分)17.(8分)如圖是東方貨站傳送貨物的平面示意圖,為了提高安全性,工人師傅打算減小傳送帶與地面的夾角,由原來的45°改為36°,已知原傳送帶BC長為4米,求新傳送帶AC的長及新、原傳送帶觸地點(diǎn)之間AB的長.(結(jié)果精確到0.1米)參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,取1.41418.(8分)尺規(guī)作圖:用直尺和圓規(guī)作圖,不寫作法,保留痕跡.已知:如圖,線段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.19.(8分)如圖,拋物線y=ax2+bx﹣2經(jīng)過點(diǎn)A(4,0),B(1,0).(1)求出拋物線的解析式;(2)點(diǎn)D是直線AC上方的拋物線上的一點(diǎn),求△DCA面積的最大值;(3)P是拋物線上一動(dòng)點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.20.(8分)有這樣一個(gè)問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y=﹣2x的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應(yīng)值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.21.(8分)解方程:1+22.(10分)如圖,對稱軸為直線x=的拋物線經(jīng)過點(diǎn)A(6,0)和B(0,4).(1)求拋物線解析式及頂點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且位于第四象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)①當(dāng)四邊形OEAF的面積為24時(shí),請判斷OEAF是否為菱形?②是否存在點(diǎn)E,使四邊形OEAF為正方形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.23.(12分)如圖,已知正方形ABCD,E是AB延長線上一點(diǎn),F(xiàn)是DC延長線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過點(diǎn)B作FG的平行線,交DA的延長線于點(diǎn)N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.24.如圖,點(diǎn)G是正方形ABCD對角線CA的延長線一點(diǎn),對角線BD與AC交于點(diǎn)O,以線段AG為邊作一個(gè)正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個(gè)交點(diǎn),且兩交點(diǎn)橫坐標(biāo)的積為負(fù)數(shù),根據(jù)根的判別式以及根與系數(shù)的關(guān)系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個(gè)交點(diǎn),且兩交點(diǎn)橫坐標(biāo)的積為負(fù)數(shù),∴(-解不等式組,得t>16故選:B.點(diǎn)睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問題,關(guān)鍵是利用兩個(gè)函數(shù)的解析式構(gòu)成方程,再利用一元二次方程的根與系數(shù)的關(guān)系求解.2、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據(jù)旋轉(zhuǎn)的性質(zhì),點(diǎn)A的對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離與OA的長度應(yīng)相等根據(jù)網(wǎng)格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點(diǎn)A不經(jīng)過點(diǎn)P故選C.此題考查的是旋轉(zhuǎn)的性質(zhì)和勾股定理,掌握旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等和用勾股定理求線段的長是解決此題的關(guān)鍵.3、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點(diǎn):1、平行線的性質(zhì);2、圓周角定理;3等腰三角形的性質(zhì)4、A【解析】【分析】設(shè),,根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點(diǎn)縱坐標(biāo)相同,設(shè),,則,,,,故選A.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積,熟知點(diǎn)在函數(shù)的圖象上,則點(diǎn)的坐標(biāo)滿足函數(shù)的解析式是解題的關(guān)鍵.5、B【解析】

先由平行線性質(zhì)得出∠ACD與∠BAC互補(bǔ),并根據(jù)已知∠ACD=40°計(jì)算出∠BAC的度數(shù),再根據(jù)角平分線性質(zhì)求出∠BAE的度數(shù),進(jìn)而得到∠DEA的度數(shù).【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.本題考查了平行線的性質(zhì)和角平分線的定義,解題的關(guān)鍵是熟練掌握兩直線平行,同旁內(nèi)角互補(bǔ).6、B【解析】

易證△CFE∽△BEA,可得,根據(jù)二次函數(shù)圖象對稱性可得E在BC中點(diǎn)時(shí),CF有最大值,列出方程式即可解題.【詳解】若點(diǎn)E在BC上時(shí),如圖∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,,∴△CFE∽△BEA,由二次函數(shù)圖象對稱性可得E在BC中點(diǎn)時(shí),CF有最大值,此時(shí),BE=CE=x﹣,即,∴,當(dāng)y=時(shí),代入方程式解得:x1=(舍去),x2=,∴BE=CE=1,∴BC=2,AB=,∴矩形ABCD的面積為2×=5;故選B.本題考查了二次函數(shù)頂點(diǎn)問題,考查了相似三角形的判定和性質(zhì),考查了矩形面積的計(jì)算,本題中由圖象得出E為BC中點(diǎn)是解題的關(guān)鍵.7、B【解析】

根據(jù)拋物線的對稱軸公式:計(jì)算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關(guān)鍵.8、B【解析】

根據(jù)平方差公式計(jì)算即可得解.【詳解】,故選:B.本題主要考查了整式的乘法公式,熟練掌握平方差公式的運(yùn)算是解決本題的關(guān)鍵.9、B【解析】分析:根據(jù)題意,以A為對稱中心作點(diǎn)P(0,1)的對稱點(diǎn)P1,即A是PP1的中點(diǎn),結(jié)合中點(diǎn)坐標(biāo)公式即可求得點(diǎn)P1的坐標(biāo);同理可求得其它各點(diǎn)的坐標(biāo),分析可得規(guī)律,進(jìn)而可得答案.詳解:根據(jù)題意,以A為對稱中心作點(diǎn)P(0,1)的對稱點(diǎn)P1,即A是PP1的中點(diǎn),又∵A的坐標(biāo)是(1,1),結(jié)合中點(diǎn)坐標(biāo)公式可得P1的坐標(biāo)是(1,0);同理P1的坐標(biāo)是(1,﹣1),記P1(a1,b1),其中a1=1,b1=﹣1.根據(jù)對稱關(guān)系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同樣可以求得,點(diǎn)P10的坐標(biāo)為(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴點(diǎn)P1010的坐標(biāo)是(1010,﹣1),故選:B.點(diǎn)睛:本題考查了對稱的性質(zhì),坐標(biāo)與圖形的變化---旋轉(zhuǎn),根據(jù)條件求出前邊幾個(gè)點(diǎn)的坐標(biāo),得到規(guī)律是解題關(guān)鍵.10、D【解析】分析:根據(jù)中位數(shù)和眾數(shù)的定義求解:眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個(gè);找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個(gè)數(shù)(或兩個(gè)數(shù)的平均數(shù))為中位數(shù).詳解:將數(shù)據(jù)重新排列為17、18、18、20、20、20、23,所以這組數(shù)據(jù)的眾數(shù)為20分、中位數(shù)為20分,故選:D.點(diǎn)睛:本題考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力.一些學(xué)生往往對這個(gè)概念掌握不清楚,計(jì)算方法不明確而誤選其它選項(xiàng),注意找中位數(shù)的時(shí)候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個(gè)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個(gè),則正中間的數(shù)字即為所求,如果是偶數(shù)個(gè)則找中間兩位數(shù)的平均數(shù).二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

根據(jù)△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據(jù)切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據(jù)直角三角形的性質(zhì)即可求出△AEF的內(nèi)切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內(nèi)切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,

∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,

∴∠1+∠2=∠2+∠3=120°,∠1=∠3;

在△AEF和△CFD中,,

∴△AEF≌△CFD(AAS);

同理可證:△AEF≌△CFD≌△BDE;

∴BE=AF,即AE+AF=AE+BE=a.

設(shè)M是△AEF的內(nèi)心,過點(diǎn)M作MH⊥AE于H,

則根據(jù)圖1的結(jié)論得:AH=(AE+AF-EF)=(a-b);

∵M(jìn)A平分∠BAC,

∴∠HAM=30°;

∴HM=AH?tan30°=(a-b)?=故答案為:.本題主要考查的是三角形的內(nèi)切圓、等邊三角形的性質(zhì)、全等三角形的性質(zhì)和判定,切線的性質(zhì),圓的切線長定理,根據(jù)已知得出AH的長是解題關(guān)鍵.12、4【解析】試題分析:先根據(jù)眾數(shù)的定義求出a的值,再根據(jù)平均數(shù)的定義列出算式,再進(jìn)行計(jì)算即可.試題解析:∵3,a,4,5的眾數(shù)是4,∴a=4,∴這組數(shù)據(jù)的平均數(shù)是(3+4+4+5)÷4=4.考點(diǎn):1.算術(shù)平均數(shù);2.眾數(shù).13、-1【解析】試題分析:∵正方形ADEF的面積為4,∴正方形ADEF的邊長為2,∴BF=2AF=4,AB=AF+BF=2+4=1.設(shè)B點(diǎn)坐標(biāo)為(t,1),則E點(diǎn)坐標(biāo)(t-2,2),∵點(diǎn)B、E在反比例函數(shù)y=的圖象上,∴k=1t=2(t-2),解得t=-1,k=-1.考點(diǎn):反比例函數(shù)系數(shù)k的幾何意義.14、【解析】

根據(jù)事件的描述可得到描述正確的有①②③⑥,即可得到答案.【詳解】∵共有6張紙條,其中正確的有①互相關(guān)心;②互相提醒;③不要相互嬉水;⑥選擇有人看護(hù)的游泳池,共4張,∴抽到內(nèi)容描述正確的紙條的概率是,故答案為:.此題考查簡單事件的概率的計(jì)算,正確掌握事件的概率計(jì)算公式是解題的關(guān)鍵.15、1【解析】

根據(jù)概率的公式進(jìn)行計(jì)算即可.【詳解】從5張上面分別寫著“加”“油”“向”“未”“來”這5個(gè)字的卡片中隨機(jī)抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15考查概率的計(jì)算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.16、1.【解析】尋找規(guī)律:不難發(fā)現(xiàn),第1個(gè)圖形有3=22-1個(gè)小五角星;第2個(gè)圖形有8=32-1個(gè)小五角星;第3個(gè)圖形有15=42-1個(gè)小五角星;…第n個(gè)圖形有(n+1)2-1個(gè)小五角星.∴第10個(gè)圖形有112-1=1個(gè)小五角星.三、解答題(共8題,共72分)17、新傳送帶AC的長為1.8m,新、原傳送帶觸地點(diǎn)之間AB的長約為1.2m.【解析】

根據(jù)題意得出:∠A=36°,∠CBD=15°,BC=1,即可得出BD的長,再表示出AD的長,進(jìn)而求出AB的長.【詳解】解:如圖,作CD⊥AB于點(diǎn)D,由題意可得:∠A=36°,∠CBD=15°,BC=1.在Rt△BCD中,sin∠CBD=,∴CD=BCsin∠CBD=2.∵∠CBD=15°,∴BD=CD=2.在Rt△ACD中,sinA=,tanA=,∴AC=≈≈1.8,AD==,∴AB=AD﹣BD=﹣2=﹣2×1.111≈3.87﹣2.83=1.21≈1.2.答:新傳送帶AC的長為1.8m,新、原傳送帶觸地點(diǎn)之間AB的長約為1.2m.本題考查了坡度坡角問題,正確構(gòu)建直角三角形再求出BD的長是解題的關(guān)鍵.18、見解析【解析】

作∠CAB=∠α,再作∠CAB的平分線,在角平分線上截取AD=h,可得點(diǎn)D,過點(diǎn)D作AD的垂線,從而得出△ABC.【詳解】解:如圖所示,△ABC即為所求.考查作圖-復(fù)雜作圖,掌握做一個(gè)角等于已知角、作角平分線及過直線上一點(diǎn)作已知直線的垂線的基本作圖和等腰三角形的性質(zhì)是解題的關(guān)鍵.19、(1)y=﹣x2+x﹣2;(2)當(dāng)t=2時(shí),△DAC面積最大為4;(3)符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】

(1)把A與B坐標(biāo)代入解析式求出a與b的值,即可確定出解析式;(2)如圖所示,過D作DE與y軸平行,三角形ACD面積等于DE與OA乘積的一半,表示出S與t的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)求出S的最大值即可;(3)存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似,分當(dāng)1<m<4時(shí);當(dāng)m<1時(shí);當(dāng)m>4時(shí)三種情況求出點(diǎn)P坐標(biāo)即可.【詳解】(1)∵該拋物線過點(diǎn)A(4,0),B(1,0),∴將A與B代入解析式得:,解得:,則此拋物線的解析式為y=﹣x2+x﹣2;(2)如圖,設(shè)D點(diǎn)的橫坐標(biāo)為t(0<t<4),則D點(diǎn)的縱坐標(biāo)為﹣t2+t﹣2,過D作y軸的平行線交AC于E,由題意可求得直線AC的解析式為y=x﹣2,∴E點(diǎn)的坐標(biāo)為(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,則當(dāng)t=2時(shí),△DAC面積最大為4;(3)存在,如圖,設(shè)P點(diǎn)的橫坐標(biāo)為m,則P點(diǎn)的縱坐標(biāo)為﹣m2+m﹣2,當(dāng)1<m<4時(shí),AM=4﹣m,PM=﹣m2+m﹣2,又∵∠COA=∠PMA=90°,∴①當(dāng)==2時(shí),△APM∽△ACO,即4﹣m=2(﹣m2+m﹣2),解得:m=2或m=4(舍去),此時(shí)P(2,1);②當(dāng)==時(shí),△APM∽△CAO,即2(4﹣m)=﹣m2+m﹣2,解得:m=4或m=5(均不合題意,舍去)∴當(dāng)1<m<4時(shí),P(2,1);類似地可求出當(dāng)m>4時(shí),P(5,﹣2);當(dāng)m<1時(shí),P(﹣3,﹣14),綜上所述,符合條件的點(diǎn)P為(2,1)或(5,﹣2)或(﹣3,﹣14).本題綜合考查了拋物線解析式的求法,拋物線與相似三角形的問題,坐標(biāo)系里求三角形的面積及其最大值問題,要求會(huì)用字母代替長度,坐標(biāo),會(huì)對代數(shù)式進(jìn)行合理變形,解決相似三角形問題時(shí)要注意分類討論.20、(1)任意實(shí)數(shù);(2);(3)見解析;(4)①當(dāng)x<﹣2時(shí),y隨x的增大而增大;②當(dāng)x>2時(shí),y隨x的增大而增大.【解析】

(1)沒有限定要求,所以x為任意實(shí)數(shù),(2)把x=3代入函數(shù)解析式即可,(3)描點(diǎn),連線即可解題,(4)看圖確定極點(diǎn)坐標(biāo),即可找到增減區(qū)間.【詳解】解:(1)函數(shù)y=﹣2x的自變量x的取值范圍是任意實(shí)數(shù);故答案為任意實(shí)數(shù);(2)把x=3代入y=﹣2x得,y=﹣;故答案為﹣;(3)如圖所示;(4)根據(jù)圖象得,①當(dāng)x<﹣2時(shí),y隨x的增大而增大;②當(dāng)x>2時(shí),y隨x的增大而增大.故答案為①當(dāng)x<﹣2時(shí),y隨x的增大而增大;②當(dāng)x>2時(shí),y隨x的增大而增大.本題考查了函數(shù)的圖像和性質(zhì),屬于簡單題,熟悉函數(shù)的圖像和概念是解題關(guān)鍵.21、無解.【解析】

兩邊都乘以x(x-3),去分母,化為整式方程求解即可.【詳解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,經(jīng)檢驗(yàn)x=3是增根,分式方程無解.題考查了分式方程的解法,其基本思路是把方程的兩邊都乘以各分母的最簡公分母,化為整式方程求解,求出x的值后不要忘記檢驗(yàn).22、(1)拋物線解析式為,頂點(diǎn)為;(2),1<<1;(3)①四邊形是菱形;②不存在,理由見解析【解析】

(1)已知了拋物線的對稱軸解析式,可用頂點(diǎn)式二次函數(shù)通式來設(shè)拋物線,然后將A、B兩點(diǎn)坐標(biāo)代入求解即可.(2)平行四邊形的面積為三角形OEA面積的2倍,因此可根據(jù)E點(diǎn)的橫坐標(biāo),用拋物線的解析式求出E點(diǎn)的縱坐標(biāo),那么E點(diǎn)縱坐標(biāo)的絕對值即為△OAE的高,由此可根據(jù)三角形的面積公式得出△AOE的面積與x的函數(shù)關(guān)系式進(jìn)而可得出S與x的函數(shù)關(guān)系式.(3)①將S=24代入S,x的函數(shù)關(guān)系式中求出x的值,即可得出E點(diǎn)的坐標(biāo)和OE,OA的長;如果平行四邊形OEAF是菱形,則需滿足平行四邊形相鄰兩邊的長相等,據(jù)此可判斷出四邊形OEAF是否為菱形.②如果四邊形OEAF是正方形,那么三角形OEA應(yīng)該是等腰直角三角形,即E點(diǎn)的坐標(biāo)為(3,﹣3)將其代入拋物線的解析式中即可判斷出是否存在符合條件的E點(diǎn).【詳解】(1)由拋物線的對稱軸是,可設(shè)解析式為.把A、B兩點(diǎn)坐標(biāo)代入上式,得解之,得故拋物線解析式為,頂點(diǎn)為(2)∵點(diǎn)在拋物線上,位于第四象限,且坐標(biāo)適合,∴y<0,即-y>0,-y表示點(diǎn)E到OA的距離.∵OA是的對角線,∴.因?yàn)閽佄锞€與軸的兩個(gè)交點(diǎn)是(1,0)的(1,0),所以,自變量的取值范圍是1<<1.(3)①根據(jù)題意,當(dāng)S=24時(shí),即.化簡,得解之,得故所求的點(diǎn)E有兩個(gè),分別為E1(3,-4),E2(4,-4).點(diǎn)E1(3,-4)滿足OE=AE,所以是菱形;點(diǎn)E2(4,-4)不滿足OE=AE,所以不是菱形.②當(dāng)OA⊥EF,且OA=EF時(shí),是正方形,此時(shí)點(diǎn)E的坐標(biāo)只能是(3,-3).而坐標(biāo)為(3,-3)的點(diǎn)不在拋物線上,故不存在這樣的點(diǎn)E,使為正方形.23、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解析】

(1)過F作FH⊥BE于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論