遼寧省新民市中考數(shù)學考前沖刺練習題【名師系列】附答案詳解_第1頁
遼寧省新民市中考數(shù)學考前沖刺練習題【名師系列】附答案詳解_第2頁
遼寧省新民市中考數(shù)學考前沖刺練習題【名師系列】附答案詳解_第3頁
遼寧省新民市中考數(shù)學考前沖刺練習題【名師系列】附答案詳解_第4頁
遼寧省新民市中考數(shù)學考前沖刺練習題【名師系列】附答案詳解_第5頁
已閱讀5頁,還剩33頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省新民市中考數(shù)學考前沖刺練習題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、下列圖形中,可以看作是中心對稱圖形的是()A. B. C. D.2、下列一元二次方程中,有兩個不相等實數(shù)根的是(

)A. B.x2+2x+4=0 C.x2-x+2=0 D.x2-2x=03、如圖,PA,PB是⊙O的切線,A,B為切點,PA=4,則PB的長度為()A.3 B.4 C.5 D.64、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關系是(

)A.相交 B.相離 C.相切 D.無法判斷5、下列語句判斷正確的是()A.等邊三角形是軸對稱圖形,但不是中心對稱圖形B.等邊三角形既是軸對稱圖形,又是中心對稱圖形C.等邊三角形是中心對稱圖形,但不是軸對稱圖形D.等邊三角形既不是軸對稱圖形,也不是中心對稱圖形二、多選題(5小題,每小題3分,共計15分)1、如圖,在△ABC中,AB=BC,將△ABC繞點B順時針旋轉a度,得到△A1BC1,A1B交AC于點E,A1C1分別交AC,BC于點D,F(xiàn),下列結論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF2、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點D、E.連接DE、OE.下列結論中正確的結論是()A.BC=2DE B.D點到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線3、下列命題不正確的是(

)A.三角形的內心到三角形三個頂點的距離相等B.三角形的內心不一定在三角形的內部C.等邊三角形的內心,外心重合D.一個圓一定有唯一一個外切三角形4、已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論正確的有()A.2a+b<0 B.abc>0 C.4a﹣2b+c>0 D.a+c>05、如圖,AB是的直徑,C是上一點,E是△ABC的內心,,延長BE交于點F,連接CF,AF.則下列結論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在正方形網格中,格點繞某點順時針旋轉角得到格點,點與點,點與點,點與點是對應點,則_____度.2、如圖,在中,,,.繞點B順時針方向旋轉45°得到,點A經過的路徑為弧,點C經過的路徑為弧,則圖中陰影部分的面積為______.(結果保留)3、已知二次函數(shù),當x=_______時,y取得最小值.4、如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____5、如圖,在矩形中,,,F(xiàn)為中點,P是線段上一點,設,連結并將它繞點P順時針旋轉90°得到線段,連結、,則在點P從點B向點C的運動過程中,有下面四個結論:①當時,;②點E到邊的距離為m;③直線一定經過點;④的最小值為.其中結論正確的是______.(填序號即可)四、簡答題(2小題,每小題10分,共計20分)1、如圖,A,B兩點被池塘隔開,在AB外取一點C,連接AC,BC,在AC上取點M,使AM=3MC,作MN∥AB交BC于點N,量得MN=38m,求AB的長.2、已知:如圖,二次函數(shù)y=ax2+bx+的圖象經過點A(2,6)和B(4,4),直線l經過點B并與x軸垂直,垂足為Q.(1)求二次函數(shù)的表達式;(2)如圖1,作AK⊥x軸,垂足為K,連接AO,點R是直線1上的點,如果△AOK與以O,Q,R為頂點的三角形相似,請直接寫出點R的縱坐標;(3)如圖2,正方形CDEF的頂點C是第二象限拋物線上的點,點D,E在直線1上,以CF為底向右做等腰△CFM,直線l與CM,F(xiàn)M的交點分別是G,H,并且CG=GM,F(xiàn)H=HM,連接CE,與FM的交點為N,且點N的縱坐標是﹣1.求:①tan∠DCG的值;②點C的坐標.五、解答題(4小題,每小題10分,共計40分)1、某公司電商平臺,在2021年五一長假期間,舉行了商品打折促銷活動,經市場調查發(fā)現(xiàn),某種商品的周銷售量y(件)是關于售價x(元/件)的一次函數(shù),下表僅列出了該商品的售價x,周銷售量y,周銷售利潤W(元)的三組對應值數(shù)據(jù).x407090y1809030W360045002100(1)求y關于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若該商品進價a(元/件),售價x為多少時,周銷售利潤W最大?并求出此時的最大利潤;(3)因疫情期間,該商品進價提高了m(元/件)(),公司為回饋消費者,規(guī)定該商品售價x不得超過55(元/件),且該商品在今后的銷售中,周銷售量與售價仍滿足(1)中的函數(shù)關系,若周銷售最大利潤是4050元,求m的值.2、如圖1,在等腰直角三角形中,.點,分別為,的中點,為線段上一動點(不與點,重合),將線段繞點逆時針方向旋轉得到,連接,.(1)證明:;(2)如圖2,連接,,交于點.①證明:在點的運動過程中,總有;②若,當?shù)拈L度為多少時,為等腰三角形?3、如圖,四邊形ABCD內接于⊙O,AC是直徑,點C是劣弧BD的中點.(1)求證:.(2)若,,求BD.4、在等邊中,是邊上一動點,連接,將繞點順時針旋轉120°,得到,連接.(1)如圖1,當、、三點共線時,連接,若,求的長;(2)如圖2,取的中點,連接,猜想與存在的數(shù)量關系,并證明你的猜想;(3)如圖3,在(2)的條件下,連接、交于點.若,請直接寫出的值.-參考答案-一、單選題1、B【分析】把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,根據(jù)中心對稱圖形的概念求解.【詳解】A.不是中心對稱圖形,故本選項不符合題意;B.是中心對稱圖形,故本選項符合題意;C.不是中心對稱圖形,故本選項不符合題意;D.不是中心對稱圖形,故本選項不符合題意.故選:B.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.2、D【解析】【分析】逐一分析四個選項中方程的根的判別式的符號,由此即可得出結論.【詳解】A.此方程判別式,方程有兩個相等的實數(shù)根,不符合題意;B.此方程判別式方程沒有實數(shù)根,不符合題意;C.此方程判別式,方程沒有實數(shù)根,不符合題意;D.此方程判別式,方程有兩個不相等的實數(shù)根,符合題意;故答案為:D.【考點】此題考查了一元二次方程根的判別式,根的判別式的值大于0,方程有兩個不相等的實數(shù)根;根的判別式的值等于0,方程有兩個相等的實數(shù)根;根的判別式的值小于0,方程沒有實數(shù)根.3、B【分析】由切線的性質可推出,.再根據(jù)直角三角形全等的判定條件“HL”,即可證明,即得出.【詳解】∵PA,PB是⊙O的切線,A,B為切點,∴,,∴在和中,,∴,∴.故選:B【點睛】本題考查切線的性質,三角形全等的判定和性質.熟練掌握切線的性質是解答本題的關鍵.4、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進而根據(jù)直線與圓的位置關系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關系為相交,故選A.【考點】本題主要考查直線與圓的位置關系,熟練掌握直線與圓的位置關系是解題的關鍵.5、A【分析】根據(jù)等邊三角形的對稱性判斷即可.【詳解】∵等邊三角形是軸對稱圖形,但不是中心對稱圖形,∴B,C,D都不符合題意;故選:A.【點睛】本題考查了等邊三角形的對稱性,熟練掌握等邊三角形的對稱性是解題的關鍵.二、多選題1、ABD【解析】【分析】根據(jù)等腰三角形的性質由BA=BC得∠A=∠C,再根據(jù)旋轉的性質得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據(jù)對頂角相等得∠BFC1=∠DFC,于是可根據(jù)三角形內角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當旋轉角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點B順時針旋轉α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當旋轉角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點】本題主要考查了旋轉的性質,全等三角形的性質與判定,等腰三角形的性質,三角形內角和定理,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點,不是外接圓的切線,所以D不符合題意;故選:AB.【考點】本題考查的是圓的基本性質,圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關系,切線的概念的理解,等邊三角形的判定與性質,靈活運用以上知識解題是解題的關鍵.3、ABD【解析】【分析】根據(jù)三角形內心的定義和圓的外切三角形的定義判斷即可.【詳解】解:A、三角形的內心是三個內角平分線的交點,內心到三角形三邊的距離相等,錯誤,該選項符合題意;B、三角形的內心是三個內角平分線的交點,三角形的內心一定在三角形的內部,錯誤,該選項符合題意;C、等邊三角形的內心,外心重合,正確,該選項不符合題意;D、經過圓上的三點作圓的切線,三條切線相交,即可得到圓的一個外切三角形,所以一個圓有無數(shù)個外切三角形,錯誤,該選項符合題意;故選:ABD.【考點】本題主要考查了內心和外心以及命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的定義與定理.4、AD【解析】【分析】結合圖象,根據(jù)函數(shù)的開口方向、與y軸的交點、對稱軸的位置、和當x=-2時,x=-1時,對應y值的大小依次可判斷.【詳解】解:根據(jù)開口方向可知,根據(jù)圖象與y軸的交點可知,根據(jù)對稱軸可知:,∴,∴,,故A選項正確;∴abc<0,故B選項錯誤;根據(jù)圖象可知,當x=-2時,,故C選項錯誤;根據(jù)圖象可知,當x=-1時,,∴,故D選項正確.故選:AD.【考點】本題考查了二次函數(shù)圖象判定式子的正負.二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點確定,注意特殊點的函數(shù)值.5、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項D正確,故選:BCD【考點】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內心性質,等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關鍵.三、填空題1、【解析】【分析】先連接,,作,的垂直平分線交于點,連接,,再由題意得到旋轉中心,由旋轉的性質即可得到答案.【詳解】如圖,連接,,作,的垂直平分線交于點,連接,,∵,的垂直平分線交于點,∴點是旋轉中心,∵,∴旋轉角.故答案為.【考點】本題考查旋轉,解題的關鍵是掌握旋轉的性質.2、##【分析】設與AC相交于點D,過點D作,垂足為點E,根據(jù)勾股定理逆定理可得為直角三角形,根據(jù)三邊關系可得,根據(jù)題意及等角對等邊得出,在中,利用正弦函數(shù)可得,結合圖形,利用扇形面積公式及三角形面積公式求解即可得.【詳解】解:設與AC相交于點D,過點D作,垂足為點E,∵,,,∴,∴為直角三角形,∴,∵繞點B順時針方向旋轉45°得到,∴,∴,∴,在中,,∴,∴,∴,,,,,故答案為:.【點睛】題目主要考查勾股定理逆定理,旋轉的性質,等角對等邊的性質,正切函數(shù),扇形面積等,理解題意,結合圖形,綜合運用這些知識點是解題關鍵.3、1【解析】【分析】根據(jù)拋物線的頂點坐標和開口方向即可得出答案.【詳解】解:,該拋物線的頂點坐標為,且開口方向向上,當時,取得最小值,故答案為:1.【考點】本題考查二次函數(shù)的最值,求二次函數(shù)最大值或最小值有三種方法:第一種可有圖象直接得出,第二種是配方法,第三種是公式法.4、【解析】【分析】連接OA,OC,根據(jù)∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數(shù)即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【考點】本題考查了圓周角定理以及銳角三角函數(shù),根據(jù)題意作出常用輔助線是解題關鍵.5、②③④【分析】①當在點的右邊時,得出即可判斷;②證明出即可判斷;③根據(jù)為等腰直角三角形,得出都是等腰直角三角形,得到即可判斷;④當時,有最小值,計算即可.【詳解】解:,為等腰直角三角形,,當在點的左邊時,,當在點的右邊時,,故①錯誤;過點作,在和中,根據(jù)旋轉的性質得:,,,,,故②正確;由①中得知為等腰直角三角形,,也是等腰直角三角形,過點,不管P在上怎么運動,得到都是等腰直角三角形,,即直線一定經過點,故③正確;是等腰直角三角形,當時,有最小值,,為等腰直角三角形,,,由勾股定理:,,故④正確;故答案是:②③④.【點睛】本題是四邊形綜合題,考查了矩形的性質,全等三角形的判定和性質,旋轉的性質,勾股定理,等腰直角三角形,解題的關鍵是靈活運用這些性質進行推理.四、簡答題1、.【解析】【分析】先根據(jù)可判斷出,再根據(jù)相似三角形的對應邊成比例列出方程解答即可.【詳解】解:,,,,,即,.的長為.【考點】本題考查相似三角形性質的應用.解題時關鍵是找出相似的三角形,然后根據(jù)對應邊成比例列出方程,建立適當?shù)臄?shù)學模型來解決問題.2、(1)y=﹣;(2)點R的縱坐標為12,﹣12,或﹣;(3)①tan∠DCG的值是,②點C坐標為(﹣1,3).【解析】【分析】(1)將點A(2,6)和B(4,4)代入拋物線解析式,得方程組,解得a和b,再代回原解析式即可;(2)設點R的縱坐標為n,則QN=|n|,分兩種情況,根據(jù)相似關系列比例式即可解得;(3)①由三角形的中位線,及證Rt△CDG≌Rt△FEH(HL)可解;②先根據(jù)點C在拋物線上,設其橫坐標為m,然后用其分別表示出相關點的坐標,并表示出直線CE,再根據(jù)△CFN∽△EHN,及相似三角形對應邊上的高之比也等于相似比,從而建立關于m的方程,解之,然后代回點C即可.【詳解】(1)將點A(2,6)和B(4,4)代入y=ax2+bx+得:,解得∴二次函數(shù)的表達式為y=.(2)∵A(2,6),AK⊥x軸,∴K(2,0),△AOK中,OK=2,AK=6,OA=,△OQR中,OQ=4,設點R的縱坐標為n,則QN=|n|,如果△AOK與以O,Q,R為頂點的三角形相似,有兩種情況:①,則n=±12;②,則,從而n=±.答:點R的縱坐標為,12,﹣12,或﹣.(3)①∵CG=GM,F(xiàn)H=HM,∴GH∥CF,GH=CF,∵等腰△CFM,∴CG=FH,∵CDEF為正方形,∴CD=EF,∠CDG=∠FEH=90°,∴Rt△CDG≌Rt△FEH(HL),∴DG=EH,∵GH=CF,∴DG=EH=CF=CD,∴tan∠DCG==,答:tan∠DCG的值是.②∵C是第二象限拋物線y=上的點,∴設點C坐標為(m,),則DC=4﹣m,∴F(m,﹣4+m),即F(m,),∴E(4,),∵CDEF為正方形,∴∠DEC=45°,故可設CE解析式為:y=﹣x+b,將點E坐標代入得b=.∴CE解析式為:y=﹣x﹣,∵點N的縱坐標是﹣1,∴﹣1=﹣x﹣,x=﹣,∴點N坐標為(﹣,﹣1),∵CDEF為正方形,∴CF∥EH,∴△CFN∽△EHN,∵tan∠DCG==,DG=EH,CD=CF,∴,則EH邊上的高與CF邊上的高的比值也為,∴,化簡得:﹣2m2+11m+13=0,解得m=(舍)或m=﹣1,∴點C坐標為(﹣1,3).答:點C坐標為(﹣1,3).【考點】本題是二次函數(shù)的綜合題,涉及到待定系數(shù)法求解析式,相似三角形,一次函數(shù),三角函數(shù),解方程等多項知識點與能力,難度較大.五、解答題1、(1);(2)售價60元時,周銷售利潤最大為4800元;(3)【解析】【分析】(1)①依題意設y=kx+b,解方程組即可得到結論;(2)根據(jù)題意得,再由表格數(shù)據(jù)求出,得到,根據(jù)二次函數(shù)的頂點式,求出最值即可;(3)根據(jù)題意得,由于對稱軸是直線,根據(jù)二次函數(shù)的性質即可得到結論.【詳解】解:(1)設,由題意有,解得,所以y關于x的函數(shù)解析式為;(2)由(1),又由表可得:,,.所以售價時,周銷售利潤W最大,最大利潤為4800;(3)由題意,其對稱軸,時上述函數(shù)單調遞增,所以只有時周銷售利潤最大,..【考點】本題考查了二次函數(shù)在實際生活中的應用,重點是掌握求最值的問題.注意:數(shù)學應用題來源于實踐,用于實踐,在當今社會市場經濟的環(huán)境下,應掌握一些有關商品價格和利潤的知識,總利潤等于總收入減去總成本,然后再利用二次函數(shù)求最值.2、(1)見詳解;(2)①見詳解;②當?shù)拈L度為2或時,為等腰三角形【解析】【分析】(1)由旋轉的性質得AH=AG,∠HAG=90°,從而得∠BAH=∠CAG,進而即可得到結論;(2)①由,得AH=AG,再證明,進而即可得到結論;②為等腰三角形,分3種情況:(a)當∠QAG=∠QGA=45°時,(b)當∠GAQ=∠GQA=67.5°時,(c)當∠AQG=∠AGQ=45°時,分別畫出圖形求解,即可.【詳解】解:(1)∵線段繞點A逆時針方向旋轉得到,∴AH=AG,∠HAG=90°,∵在等腰直角三角形中,,AB=AC,∴∠BAH=90°-∠CAH=∠CAG,∴;(2)①∵在等腰直角三角形中,AB=AC,點,分別為,的中點,∴AE=AF,是等腰直角三角形,∵AH=AG,∠BAH=∠CAG,∴,∴∠AEH=∠AFG=45°,∴∠HFG=∠AFG+∠AFE=45°+45°=90°,即:;②∵,點,分別為,的中點,∴AE=AF=2,∵∠AGH=45°,為等腰三角形,分3種情況:(a)當∠QAG=∠QGA=45°時,如圖,則∠HAF=90°-45°=45°,∴AH平分∠EAF,∴點H是EF的中點,∴EH=;(b)當∠GAQ=∠GQA=(180°-45°)÷2=67.5°時,如圖,則∠EAH=∠GAQ=67.5°,∴∠EHA=180°-45°-67.5°=67.5°,∴∠EHA=∠EAH,∴EH=EA=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論