2024年吉林省德惠市中考數(shù)學(xué)試題預(yù)測試卷附參考答案詳解(鞏固)_第1頁
2024年吉林省德惠市中考數(shù)學(xué)試題預(yù)測試卷附參考答案詳解(鞏固)_第2頁
2024年吉林省德惠市中考數(shù)學(xué)試題預(yù)測試卷附參考答案詳解(鞏固)_第3頁
2024年吉林省德惠市中考數(shù)學(xué)試題預(yù)測試卷附參考答案詳解(鞏固)_第4頁
2024年吉林省德惠市中考數(shù)學(xué)試題預(yù)測試卷附參考答案詳解(鞏固)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

吉林省德惠市中考數(shù)學(xué)試題預(yù)測試卷考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、生物興趣小組的學(xué)生,將自己收集的標(biāo)本向本組其他成員各贈送一件,全組共互贈了182件,如果全組有x名同學(xué),則根據(jù)題意列出的方程是(

)A. B.C. D.2、記某商品銷售單價為x元,商家銷售此種商品每月獲得的銷售利潤為y元,且y是關(guān)于x的二次函數(shù).已知當(dāng)商家將此種商品銷售單價分別定為55元或75元時,他每月均可獲得銷售利潤1800元;當(dāng)商家將此種商品銷售單價定為80元時,他每月可獲得銷售利潤1550元,則y與x的函數(shù)關(guān)系式是(

)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20003、下列判斷正確的是()A.明天太陽從東方升起是隨機(jī)事件;B.購買一張彩票中獎是必然事件;C.?dāng)S一枚骰子,向上一面的點(diǎn)數(shù)是6是不可能事件;D.任意畫一個三角形,其內(nèi)角和是360°是不可能事件;4、如圖,⊙O的半徑為5cm,直線l到點(diǎn)O的距離OM=3cm,點(diǎn)A在l上,AM=3.8cm,則點(diǎn)A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能5、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、(多選)若數(shù)使關(guān)于的一元二次方程有兩個不相等的實(shí)數(shù)解,且使關(guān)于的分式方程的解為非負(fù)整數(shù),則滿足條件的的值為(

)A.1 B.3 C.5 D.72、如圖,AB是的直徑,C是上一點(diǎn),E是△ABC的內(nèi)心,,延長BE交于點(diǎn)F,連接CF,AF.則下列結(jié)論正確的是(

)A. B.C.△AEF是等腰直角三角形 D.若,則3、關(guān)于x的一元二次方程(k-1)x2+4x+k-1=0有兩個相等的實(shí)數(shù)根,則k的值為(

)A.1 B.0 C.3 D.-34、已知:如圖,△ABC中,∠A=60°,BC為定長,以BC為直徑的⊙O分別交AB、AC于點(diǎn)D、E.連接DE、OE.下列結(jié)論中正確的結(jié)論是()A.BC=2DE B.D點(diǎn)到OE的距離不變 C.BD+CE=2DE D.AE為外接圓的切線5、如圖,在△ABC中,AB=BC,將△ABC繞點(diǎn)B順時針旋轉(zhuǎn)a度,得到△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC,BC于點(diǎn)D,F(xiàn),下列結(jié)論:其中正確的有(

).A.∠CDF=a度B.A1E=CFC.DF=FCD.BE=BF第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,⊙O的半徑為2,∠D=110°,則的長為__.2、如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=______,O點(diǎn)到AB的距離=______.3、菱形的一條對角線長為8,其邊長是方程x2-8x+15=0的一個根,則該菱形的面積為________.4、如圖,把△ABC繞點(diǎn)C順時針旋轉(zhuǎn)25°,得到△A′B′C,A′B′交AC于點(diǎn)D,若∠A′DC=90°,則∠A度數(shù)為___________.5、如圖,一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,作的外接圓,則圖中陰影部分的面積為______.(結(jié)果保留π)四、簡答題(2小題,每小題10分,共計20分)1、如圖,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),且,.(1)求拋物線的表達(dá)式;(2)點(diǎn)是拋物線上一點(diǎn).①在拋物線的對稱軸上,求作一點(diǎn),使得的周長最小,并寫出點(diǎn)的坐標(biāo);②連接并延長,過拋物線上一點(diǎn)(點(diǎn)不與點(diǎn)重合)作軸,垂足為,與射線交于點(diǎn),是否存在這樣的點(diǎn),使得,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.2、拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)C的坐標(biāo)為(0,﹣3).點(diǎn)P為拋物線y=x2+bx+c上的一個動點(diǎn).過點(diǎn)P作PD⊥x軸于點(diǎn)D,交直線BC于點(diǎn)E.(1)求b、c的值;(2)設(shè)點(diǎn)F在拋物線y=x2+bx+c的對稱軸上,當(dāng)△ACF的周長最小時,直接寫出點(diǎn)F的坐標(biāo);(3)在第一象限,是否存在點(diǎn)P,使點(diǎn)P到直線BC的距離是點(diǎn)D到直線BC的距離的5倍?若存在,求出點(diǎn)P所有的坐標(biāo);若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、在同樣的條件下對某種小麥種子進(jìn)行發(fā)芽試驗(yàn),統(tǒng)計發(fā)芽種子數(shù),獲得如下頻數(shù)表.實(shí)驗(yàn)種植數(shù)(粒)1550100200500100020003000發(fā)芽頻數(shù)04459218847695119002850(1)估計該麥種的發(fā)芽概率.(2)如果播種該種小麥每公頃所需麥苗數(shù)為4000000棵,種子發(fā)芽后的成秧率為80%,該麥種的千粒質(zhì)量為50g.那么播種3公頃該種小麥,估計約需麥種多少千克(精確到1kg)?2、如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB為⊙O的直徑,動點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿CB邊向點(diǎn)B以2cm/s的速度運(yùn)動.P、Q分別從點(diǎn)A、C同時出發(fā),當(dāng)其中一個動點(diǎn)到達(dá)端點(diǎn)時,另一個動點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為t(s).(1)當(dāng)t為何值時,四邊形PQCD為平行四邊形?(2)當(dāng)t為何值時,PQ與⊙O相切?3、解一元二次方程(1)(2)4、如圖,兩個圓都以點(diǎn)O為圓心,大圓的弦交小圓于兩點(diǎn).求證:.-參考答案-一、單選題1、B【解析】【分析】由題意可知,每個同學(xué)需贈送出(x-1)件標(biāo)本,x名同學(xué)需贈送出x(x-1)件標(biāo)本,即可列出方程.【詳解】解:由題意可得,x(x-1)=182,故選B.【考點(diǎn)】本題主要考查了一元二次方程的應(yīng)用,審清題意、確定等量關(guān)系是解答本題的關(guān)鍵.2、D【解析】【分析】設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,根據(jù)題意列方程組即可得到結(jié)論.【詳解】解:設(shè)二次函數(shù)的解析式為:y=ax2+bx+c,∵當(dāng)x=55,y=1800,當(dāng)x=75,y=1800,當(dāng)x=80時,y=1550,∴,解得a=?2,b=260,c=?6450,∴y與x的函數(shù)關(guān)系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故選:D.【考點(diǎn)】本題考查了根據(jù)實(shí)際問題列二次函數(shù)關(guān)系式,正確的列方程組是解題的關(guān)鍵.3、D【詳解】解:A、明天太陽從東方升起是必然事件,故本選項(xiàng)錯誤,不符合題意;B、購買一張彩票中獎是隨機(jī)事件,故本選項(xiàng)錯誤,不符合題意;C、擲一枚骰子,向上一面的點(diǎn)數(shù)是6是隨機(jī)事件,故本選項(xiàng)錯誤,不符合題意;D、任意畫一個三角形,其內(nèi)角和是360°是不可能事件,故本選項(xiàng)正確,符合題意;故選:D【點(diǎn)睛】本題考查的是對必然事件的概念的理解,熟練掌握必然事件指在一定條件下一定發(fā)生的事件;不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件是解題的關(guān)鍵.4、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.5、D【詳解】解:.不是軸對稱圖形,也不是中心對稱圖形,故本選項(xiàng)不符合題意;.不是軸對稱圖形,是中心對稱圖形,故本選項(xiàng)不符合題意;.是軸對稱圖形,不是中心對稱圖形,故本選項(xiàng)不符合題意;.既是軸對稱圖形,又是中心對稱圖形,故本選項(xiàng)符合題意.故選:D.【點(diǎn)睛】本題考查了中心對稱圖形與軸對稱圖形的概念,解題的關(guān)鍵是掌握軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.二、多選題1、AC【解析】【分析】根據(jù)一元二次方程根的判別式及分式有意義的條件和分式方程的解為非負(fù)整數(shù)分別求出a的取值范圍,即可得答案.【詳解】∵關(guān)于的一元二次方程有兩個不相等的實(shí)數(shù)解,∴,解得:,∵,∴,解得:,∵關(guān)于的分式方程的解為非負(fù)整數(shù),∴且,解得:且,∴且a≠3,∵是整數(shù),∴a=1或5,故選:AC.【考點(diǎn)】本題考查一元二次方程根的判別式、解分式方程及分式有意義的條件,正確得出兩個不等式的解集是解題關(guān)鍵,注意分式的分母不為0的隱含條件,避免漏解.2、BCD【解析】【分析】由圓周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的內(nèi)心可得∠EAB+∠EBA=45°,從而得出∠AEF=45°,進(jìn)一步得到△ABC是等腰直角三角形,再由垂徑定理得EF=EB,從而可得AE=EB,由中位線定理得AE=2OE=2,最后求出.【詳解】∵AB為直徑,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的內(nèi)心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故選項(xiàng)B正確,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故選項(xiàng)C正確,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故選項(xiàng)A錯誤,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故選項(xiàng)D正確,故選:BCD【考點(diǎn)】本題主要考查了垂徑定理,圓周角定理,中位線定理,三角形內(nèi)心性質(zhì),等腰直角三角形,等知識,證明△ABC是等腰直角三角形是解題的關(guān)鍵.3、C【解析】【分析】由方程有兩個相等的實(shí)數(shù)根,根據(jù)根的判別式可得到關(guān)于k的方程,則可求得k的值.【詳解】解:∵關(guān)于x的一元二次方程(k﹣1)x2+4x+k﹣1=0有兩個相等的實(shí)數(shù)根,∴Δ=0,即42﹣4(k﹣1)2=0,且k﹣1≠0,解得k=3或k=-1.故選C.【考點(diǎn)】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關(guān)系,熟練掌握根的判別式與根的關(guān)系式解答本題的關(guān)鍵.當(dāng)?>0時,一元二次方程有兩個不相等的實(shí)數(shù)根;當(dāng)?=0時,一元二次方程有兩個相等的實(shí)數(shù)根;當(dāng)?<0時,一元二次方程沒有實(shí)數(shù)根.4、AB【解析】【分析】連接OD,可證明△ODE是等邊三角形,所以A,B正確;通過舉反例:當(dāng)重合,時,可得:<可得C不一定成立,根據(jù)切線的定義,可得D不正確,從而可得答案.【詳解】解:連接OD,∵∠A=60°∴∠B+∠C=120°,的度數(shù)為∵的度數(shù)為∴的度數(shù)為∴∠DOE=60°,又OD=OE,∴△ODE是等邊三角形,即所以A正確,符合題意;則D到OE的長度是等邊△ODE的高,而等邊的邊長等于圓的半徑,則高一定是一個定值,因而B正確,符合題意;如圖:當(dāng)重合,時,則為的切線,同理可得:此時則為的直徑,>此時<所以C不符合題意;與的外接圓有兩個交點(diǎn),不是外接圓的切線,所以D不符合題意;故選:AB.【考點(diǎn)】本題考查的是圓的基本性質(zhì),圓弧的度數(shù)與其所對的圓周角的度數(shù)之間的關(guān)系,切線的概念的理解,等邊三角形的判定與性質(zhì),靈活運(yùn)用以上知識解題是解題的關(guān)鍵.5、ABD【解析】【分析】根據(jù)等腰三角形的性質(zhì)由BA=BC得∠A=∠C,再根據(jù)旋轉(zhuǎn)的性質(zhì)得BA=BA1=BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,而根據(jù)對頂角相等得∠BFC1=∠DFC,于是可根據(jù)三角形內(nèi)角和定理得到∠CDF=∠FBC1=α;利用“ASA”證明△BAE≌△BC1F,則BE=BF,所以A1E=CF;由于∠CDF=α,則只有當(dāng)旋轉(zhuǎn)角等于∠C時才有DF=FC.【詳解】解:∵BA=BC,∴∠A=∠C,∵△ABC繞點(diǎn)B順時針旋轉(zhuǎn)α度,得到△A1BC1,∴BA=BA1,BC=BC1,∠ABA1=∠CBC1=α,∠A=∠A1=∠C=∠C1,∵∠BFC1=∠DFC,∴∠CDF=∠FBC1=α,所以A正確,∴BA=BA1=BC=BC1,在△BAE和△BC1F中,∴△BAE≌△BC1F(ASA),∴BE=BF,故D正確而BA1=BC,∴A1E=CF,所以B正確;∵∠CDF=α,∴當(dāng)旋轉(zhuǎn)角等于∠C時,DF=FC,所以C錯誤;故選ABD.【考點(diǎn)】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識進(jìn)行求解.三、填空題1、##【分析】連接OA、OC,先求出∠ABC的度數(shù),然后得到∠AOC,再由弧長公式即可求出答案.【詳解】解:連接OA、OC,如圖,∵四邊形ABCD是⊙O的內(nèi)接四邊形,∠D=110°,∴,∴,∴;故答案為:.【點(diǎn)睛】本題考查了弧長的計算以及圓周角定理,解答本題的關(guān)鍵是掌握弧長公式.2、【分析】過O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點(diǎn),然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長,利用勾股定理求出直角邊OA的長即可;再由C為AB的中點(diǎn),由AB的長求出AC的長,在直角三角形OAC中,由OA及AC的長,利用勾股定理即可求出OC的長,即為O點(diǎn)到AB的距離.【詳解】解:過O作OC⊥AB,則有C為AB的中點(diǎn),∵OA=OB,∠AOB=90°,AB=a,∴根據(jù)勾股定理得:OA2+OB2=AB,∴OA=,在Rt△AOC中,OA=,AC=AB=,根據(jù)勾股定理得:OC==.故答案為:;【點(diǎn)睛】此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來解決問題.3、24【解析】【分析】利用因式分解法解方程得到x1=3,x2=5,再根據(jù)菱形的性質(zhì)得到菱形的邊長為5,利用勾股定理計算出菱形的另一條對角線長,然后根據(jù)菱形的面積公式計算.【詳解】解:x2-8x+15=0,(x-3)(x-5)=0,x-3=0或x-5=0,∴x1=3,x2=5,∵菱形一條對角線長為8,∴菱形的邊長為5,∵菱形的另一條對角線長=2×=6,∴菱形的面積=×6×8=24.故答案為:24.【考點(diǎn)】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.也考查了菱形的性質(zhì).4、65°【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得知,從而求得的度數(shù),又因?yàn)榈膶?yīng)角是,即可求出的度數(shù).【詳解】繞著點(diǎn)時針旋轉(zhuǎn),得到,的對應(yīng)角是故答案為:.【考點(diǎn)】此題考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是正確確定對應(yīng)角.5、【分析】先求出A、B、C坐標(biāo),再證明三角形BOC是等邊三角形,最后根據(jù)扇形面積公式計算即可.【詳解】過C作CD⊥OA于D∵一次函數(shù)的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,∴當(dāng)時,,B點(diǎn)坐標(biāo)為(0,1)當(dāng)時,,A點(diǎn)坐標(biāo)為∴∵作的外接圓,∴線段AB中點(diǎn)C的坐標(biāo)為,∴三角形BOC是等邊三角形∴∵C的坐標(biāo)為∴∴故答案為:【點(diǎn)睛】本題主要考查了一次函數(shù)的綜合運(yùn)用,求扇形面積.用已知點(diǎn)的坐標(biāo)表示相應(yīng)的線段是解題的關(guān)鍵.四、簡答題1、(1);(2)①連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求,點(diǎn)的坐標(biāo)為;②存在;點(diǎn)的坐標(biāo)為或.【解析】【分析】(1)由,得到A(-2,0),C(3,0),即可寫出拋物線的交點(diǎn)式.(2)①因?yàn)殛P(guān)于對稱軸對稱,所以,由兩點(diǎn)之間線段最短,知連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求,先用待定系數(shù)法求出解析式,將對稱軸代入得到點(diǎn)坐標(biāo).②設(shè)點(diǎn),根據(jù)拋物線的解析式、直線的解析式,寫出Q、M的坐標(biāo),分當(dāng)在上方、下方兩種情況,列關(guān)于m的方程,解出并取大于-2的解,即可寫出的坐標(biāo).【詳解】(1)∵,,結(jié)合圖象,得A(-2,0),C(3,0),∴拋物線可表示為:,∴拋物線的表達(dá)式為;(2)①∵關(guān)于對稱軸對稱,∴,∴連接交拋物線對稱軸于點(diǎn),則點(diǎn)即為所求.將點(diǎn),的坐標(biāo)代入一次函數(shù)表達(dá)式,得直線的函數(shù)表達(dá)式為.拋物線的對稱軸為直線,當(dāng)時,,故點(diǎn)的坐標(biāo)為;②存在;設(shè)點(diǎn),則,.當(dāng)在上方時,,,,解得(舍)或;當(dāng)在下方時,,,,解得(舍)或,綜上所述,的值為或5,點(diǎn)的坐標(biāo)為或.【考點(diǎn)】本題考查了二次函數(shù)與一次函數(shù)綜合問題,熟練掌握待定系數(shù)法求解析式、最短路徑問題是解題的基礎(chǔ),動點(diǎn)問題中分類討論與數(shù)形結(jié)合轉(zhuǎn)化為方程問題是解題的關(guān)鍵.2、(1)(2)(3)存在,P的坐標(biāo)為【解析】【分析】(1)把A、C點(diǎn)的坐標(biāo)代入拋物線的解析式列出b、c的方程組,解得b、c便可.(2)連接BC與對稱軸交于點(diǎn)F,此時ΔACF的周長最小,求得BC的解析式,再求得BC與對稱軸的交點(diǎn)坐標(biāo)便可.(3)設(shè)P(m,m2-2m-3)(m>3),根據(jù)相似三角形的比例式列出m的方程解答便可.(1)解:把A、C點(diǎn)的坐標(biāo)代入拋物線的解析式得,解得(2)解:直線BC與拋物線的對稱軸交于點(diǎn)F,連接AF,如圖1,此時,AF+CF=BF+CF=BC的值最小,∵AC為定值,∴此時ΔAFC的周長最小,由(1)知,∴拋物線的解析式為:∴對稱軸為直線令,得解得或設(shè)直線BC的解析式為得解得∴直線BC的解析式為:∴當(dāng)時,(3)解:設(shè)P(m,m2-2m-3)(m>3),過P作PH⊥BC于H,過D作DG⊥BC于G,如圖2,則PH=5DG,E(m,m-3),∴PE=m2-3m,DE=m-3,解得m=3或m=5,經(jīng)檢驗(yàn),,即故m=5∴點(diǎn)P的坐標(biāo)為P(5,12).故存在點(diǎn)P,使點(diǎn)P到直線BC的距離是點(diǎn)D到直線BC的距離的5倍,其P點(diǎn)坐標(biāo)為【考點(diǎn)】本題是二次函數(shù)的綜合題,主要考查了待定系數(shù)法,二次函數(shù)的圖象與性質(zhì),相似三角形的性質(zhì)與判定,軸對稱的性質(zhì)應(yīng)用求線段的最值,第(2)題關(guān)鍵是確定F的位置,第(3)題關(guān)鍵在于構(gòu)建相似三角形.五、解答題1、(1)該麥種的發(fā)芽概率約為95%;(2)約需麥種790千克【分析】(1)利用頻率估計麥種的發(fā)芽率,大數(shù)次實(shí)驗(yàn),當(dāng)頻率固定到一個穩(wěn)定值時,可根據(jù)頻率公式=頻數(shù)÷總數(shù)計算即可;(2)設(shè)約需麥種x千克,根據(jù)x千克轉(zhuǎn)化為克×1000,再轉(zhuǎn)為顆?!?0×1000,根據(jù)發(fā)芽率再×95%,根據(jù)芽轉(zhuǎn)苗再×80%,等于三公頃地需要的苗總數(shù),例方程x×1000÷50×1000×95%×80%=4000000×3,解方程即可(1)解:根據(jù)實(shí)驗(yàn)數(shù)量變大,發(fā)芽數(shù)也在增大,2850÷3000×100%=95%,故該麥種的發(fā)芽概率約為95%;(2)解:設(shè)約需麥種x千克,x×1000÷50×1000×95%×80%=4000000×3,化簡得15200x=12000000,解得x=789,答:約需麥種790千克【點(diǎn)睛】本題考查用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題,掌握用頻率估計發(fā)芽率,一元一次方程解應(yīng)用題的方法與步驟是解題關(guān)鍵.2、(1)當(dāng)時,四邊形PQCD為平行四邊形;(2)當(dāng)t=2秒時,PQ與⊙O相切.【解析】【分析】(1)由題意得:,,則,再由四邊形PQCD是平行四邊形,得到DP=CQ,由此建立方程求解即可;(2)設(shè)PQ與⊙O相切于點(diǎn)H過點(diǎn)P作PE⊥BC,垂足為E.先證明四邊形ABEP是矩形,得到PE=AB=12cm.由AP=BE=tcm,CQ=2tcm,得到BQ=(22﹣2t)cm,EQ=22﹣3t)cm;再由切線長定理得到AP=PH,HQ=BQ,則PQ=PH+HQ=AP+BQ=t+22﹣2t=(22﹣t)cm;在Rt△PEQ中,PE2+EQ2=PQ2,則122+(22﹣3t)2=(22﹣t)2,即:8t2﹣88t+144=0,由此求解即可.【詳解】解:(1)由題意得:,,∴,∵四邊形PQCD是平行四邊形,∴DP=CQ

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論