版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》綜合練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是()A.30° B.60° C.30°或150° D.60°或120°2、如圖,已知⊙O的半徑為4,M是⊙O內(nèi)一點(diǎn),且OM=2,則過(guò)點(diǎn)M的所有弦中,弦長(zhǎng)是整數(shù)的共有()A.1條 B.2條 C.3條 D.4條3、如圖是一圓錐的側(cè)面展開圖,其弧長(zhǎng)為,則該圓錐的全面積為A.60π B.85π C.95π D.169π4、如圖,一段公路的轉(zhuǎn)彎處是一段圓弧,則的展直長(zhǎng)度為()A.3π B.6π C.9π D.12π5、如圖,矩形中,,,,分別是,邊上的動(dòng)點(diǎn),,以為直徑的與交于點(diǎn),.則的最大值為(
).A.48 B.45 C.42 D.406、已知⊙O的半徑等于3,圓心O到點(diǎn)P的距離為5,那么點(diǎn)P與⊙O的位置關(guān)系是()A.點(diǎn)P在⊙O內(nèi) B.點(diǎn)P在⊙O外 C.點(diǎn)P在⊙O上 D.無(wú)法確定7、如圖,一個(gè)油桶靠在直立的墻邊,量得并且則這個(gè)油桶的底面半徑是()A. B. C. D.8、丁丁和當(dāng)當(dāng)用半徑大小相同的圓形紙片分別剪成扇形(如圖)做圓錐形的帽子,請(qǐng)你判斷哪個(gè)小朋友做成的帽子更高一些()A.丁丁 B.當(dāng)當(dāng) C.一樣高 D.不確定9、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個(gè)輪子的半徑長(zhǎng)為()A.m B.m C.5m D.m10、如圖,AC是⊙O的直徑,弦AB//CD,若∠BAC=32°,則∠AOD等于(
)A.64° B.48° C.32° D.76°第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場(chǎng)大雨過(guò)后,水面寬為80cm,則水位上升______cm.2、如圖,在⊙O中,是⊙O的直徑,,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),是上的一動(dòng)點(diǎn),下列結(jié)論:①;②;③;④的最小值是10.上述結(jié)論中正確的個(gè)數(shù)是_________.3、一個(gè)扇形的弧長(zhǎng)是,面積是,則這個(gè)扇形的圓心角是___度.4、如圖,在Rt△ABC中,∠ACB=30°,⊙E為內(nèi)切圓,若BE=4,則△BCE的面積為___________.5、如圖,在的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的正方形,其中A、B、C為格點(diǎn),作的外接圓,則的長(zhǎng)等于_____.6、如圖,在甲,,,,以點(diǎn)為圓心,的長(zhǎng)為半徑作圓,交于點(diǎn),交于點(diǎn),陰影部分的面積為__________(結(jié)果保留).7、如圖,AB是⊙O的直徑,C是⊙O上的點(diǎn),過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D.若∠A=32°,則∠D=_____度.8、如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E.若AB=10,AE=1,則弦CD的長(zhǎng)是_____.9、如圖,⊙O的直徑AB=26,弦CD⊥AB,垂足為E,OE:BE=5:8,則CD的長(zhǎng)為______.10、如圖,矩形ABCD的對(duì)角線交于點(diǎn)O,以點(diǎn)A為圓心,AB的長(zhǎng)為半徑畫弧,剛好過(guò)點(diǎn)O,以點(diǎn)D為圓心,DO的長(zhǎng)為半徑畫弧,交AD于點(diǎn)E,若AC=2,則圖中陰影部分的面積為_____.(結(jié)果保留π)三、解答題(5小題,每小題6分,共計(jì)30分)1、已知:如圖,△ABC中,AB=AC,AB>BC.求作:線段BD,使得點(diǎn)D在線段AC上,且∠CBD=∠BAC.作法:①以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫圓;②以點(diǎn)C為圓心,BC長(zhǎng)為半徑畫弧,交⊙A于點(diǎn)P(不與點(diǎn)B重合);③連接BP交AC于點(diǎn)D.線段BD就是所求作的線段.(1)使用直尺和圓規(guī),依作法補(bǔ)全圖形(保留作圖痕跡);(2)完成下面的證明.證明:連接PC.∵AB=AC,∴點(diǎn)C在⊙A上.∵點(diǎn)P在⊙A上,∴∠CPB=∠BAC.()(填推理的依據(jù))∵BC=PC,∴∠CBD=.()(填推理的依據(jù))∴∠CBD=∠BAC.2、如圖,,點(diǎn)在上,且,以為圓心,為半徑作圓.(1)討論射線與公共點(diǎn)個(gè)數(shù),并寫出對(duì)應(yīng)的取值范圍;(2)若是上一點(diǎn),,當(dāng)時(shí),求線段與的公共點(diǎn)個(gè)數(shù).3、已知P為⊙O上一點(diǎn),過(guò)點(diǎn)P作不過(guò)圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有點(diǎn)A、B(不與P、Q重合),連接AP、BP,若∠APQ=∠BPQ(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時(shí),求⊙O的半徑。(2)如圖2,連接AB,交PQ于點(diǎn)M,點(diǎn)N在線段PM上(不與P、M重合),連接ON、OP,設(shè)∠NOP=α,∠OPN=β,若AB平行于ON,探究α與β的數(shù)量關(guān)系。4、在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn)A,D的坐標(biāo)分別是,其中.(1)若點(diǎn)B在x軸的上方,①,求的長(zhǎng);②,且.證明:四邊形是菱形;(2)拋物線經(jīng)過(guò)點(diǎn)B,C.對(duì)于任意的,當(dāng)a,m的值變化時(shí),拋物線會(huì)不同,記其中任意兩條拋物線的頂點(diǎn)為(與不重合),則命題“對(duì)所有的a,b,當(dāng)時(shí),一定不存在的情形.”是否正確?請(qǐng)說(shuō)明理由.5、已知:..求作:,使它經(jīng)過(guò)點(diǎn)和點(diǎn),并且圓心在的平分線上,-參考答案-一、單選題1、D【解析】【分析】由圖可知,OA=10,OD=5.根據(jù)特殊角的三角函數(shù)值求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠E的度數(shù)即可.【詳解】解:由圖可知,OA=10,OD=5,在Rt△OAD中,∵OA=10,OD=5,AD==,∴tan∠1=,∴∠1=60°,同理可得∠2=60°,∴∠AOB=∠1+∠2=60°+60°=120°,∴∠C=60°,∴∠E=180°-60°=120°即弦AB所對(duì)的圓周角的度數(shù)是60°或120°,故選D.【考點(diǎn)】本題考查了圓周角定理、圓內(nèi)接四邊形的對(duì)角互補(bǔ)、解直角三角形的應(yīng)用等,正確畫出圖形,熟練應(yīng)用相關(guān)知識(shí)是解題的關(guān)鍵.2、C【解析】【分析】過(guò)點(diǎn)M作AB⊥OM交⊙O于點(diǎn)A、B,根據(jù)勾股定理求出AM,根據(jù)垂徑定理求出AB,進(jìn)而得到答案.【詳解】解:過(guò)點(diǎn)M作AB⊥OM交⊙O于點(diǎn)A、B,連接OA,則AM=BM=AB,在Rt△AOM中,AM===,∴AB=2AM=,則≤過(guò)點(diǎn)M的所有弦≤8,則弦長(zhǎng)是整數(shù)的共有長(zhǎng)度為7的兩條,長(zhǎng)度為8的一條,共三條,故選:C.【考點(diǎn)】本題考查了垂徑定理,勾股定理,掌握垂直于選的直徑平分這條弦,并平分弦所對(duì)的兩條弧是解題關(guān)鍵.3、B【解析】【分析】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,先根據(jù)弧長(zhǎng)公式得到=10π,解得R=12,再利用圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng)得到2π?r=10π,解得r=5,然后計(jì)算底面積與側(cè)面積的和.【詳解】設(shè)圓錐的底面圓的半徑為r,扇形的半徑為R,根據(jù)題意得=10π,解得R=12,2π?r=10π,解得r=5,所以該圓錐的全面積=π?52+?10π?12=85π.故選B.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).4、B【解析】【詳解】分析:直接利用弧長(zhǎng)公式計(jì)算得出答案.詳解:的展直長(zhǎng)度為:=6π(m).故選B.點(diǎn)睛:此題主要考查了弧長(zhǎng)計(jì)算,正確掌握弧長(zhǎng)公式是解題關(guān)鍵.5、A【解析】【分析】過(guò)A點(diǎn)作AH⊥BD于H,連接OM,如圖,先利用勾股定理計(jì)算出BD=75,則利用面積法可計(jì)算出AH=36,再證明點(diǎn)O在AH上時(shí),OH最短,此時(shí)HM有最大值,最大值為24,然后根據(jù)垂徑定理可判斷MN的最大值.【詳解】解:過(guò)A點(diǎn)作AH⊥BD于H,連接OM,如圖,在Rt△ABD中,BD=,∵×AH×BD=×AD×AB,∴AH==36,∵⊙O的半徑為26,∴點(diǎn)O在AH上時(shí),OH最短,∵HM=,∴此時(shí)HM有最大值,最大值為:24,∵OH⊥MN,∴MN=2MH,∴MN的最大值為2×24=48.故選:A.【考點(diǎn)】本題考查了垂徑定理:直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條?。部疾榱司匦蔚男再|(zhì)和勾股定理.6、B【解析】【分析】根據(jù)d,r法則逐一判斷即可.【詳解】解:∵r=3,d=5,∴d>r,∴點(diǎn)P在⊙O外.故選:B.【考點(diǎn)】本題考查了點(diǎn)與圓的位置關(guān)系,熟練掌握d,r法則是解題的關(guān)鍵.7、C【解析】【分析】根據(jù)切線的性質(zhì),連接過(guò)切點(diǎn)的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點(diǎn)A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點(diǎn)】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).8、B【解析】【分析】由圖形可知,丁丁扇形的弧長(zhǎng)大于當(dāng)當(dāng)扇形的弧長(zhǎng),根據(jù)弧長(zhǎng)與圓錐底面圓的周長(zhǎng)相等,可得丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,由扇形的半徑相等,即母線長(zhǎng)相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,根據(jù)勾股定理由即,可得丁丁的h小于當(dāng)當(dāng)?shù)膆即可.【詳解】解:由圖形可知,丁丁扇形的弧長(zhǎng)大于當(dāng)當(dāng)扇形的弧長(zhǎng),根據(jù)弧長(zhǎng)與圓錐底面圓的周長(zhǎng)相等,∴丁丁剪成扇形做圓錐形的帽子的底面半徑r大于當(dāng)當(dāng)剪成扇形做圓錐形的帽子的底面半徑r,∵扇形的半徑相等,即母線長(zhǎng)相等R,設(shè)圓錐底面圓半徑為r,母線為R,圓錐的高為h,,根據(jù)勾股定理由即,∴丁丁的h小于當(dāng)當(dāng)?shù)膆,∴由勾股定理可得當(dāng)當(dāng)做成的圓錐形的帽子更高一些.故選:B.【考點(diǎn)】本題考查扇形作圓錐帽子的應(yīng)用,利用圓錐的母線底面圓的半徑,和圓錐的高三者之間關(guān)系,根據(jù)勾股定理確定出當(dāng)當(dāng)?shù)拿弊痈呤墙忸}關(guān)鍵.9、D【解析】【分析】連接OB,由垂徑定理得出BD的長(zhǎng);連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個(gè)輪子的半徑長(zhǎng)為m,故選:D.【考點(diǎn)】本題主要考查垂徑定理的應(yīng)用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.10、A【解析】【分析】由AB//CD,∠BAC=32°,根據(jù)平行線的性質(zhì),即可求得∠ACD的度數(shù),又由在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半,即可求得∠AOD的度數(shù).【詳解】解:∵弦AB//CD,∠BAC=32°,∴∠ACD=∠BAD=32°,∴∠AOD=2∠ACD=2×32°=64°.故選:A【考點(diǎn)】此題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是注意掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半.二、填空題1、10或70【解析】【分析】分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進(jìn)行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當(dāng)水位上升到圓心以下時(shí)
水面寬80cm時(shí),則,水面上升的高度為:;當(dāng)水位上升到圓心以上時(shí),水面上升的高度為:,綜上可得,水面上升的高度為30cm或70cm,故答案為:10或70.【考點(diǎn)】本題考查了垂徑定理的應(yīng)用,掌握垂徑定理、靈活運(yùn)用分類討論的思想是解題的關(guān)鍵.2、3【解析】【分析】①根據(jù)點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn)可知,進(jìn)而可得;②根據(jù)一條弧所對(duì)的圓周角等于圓心角的一半即可得結(jié)論;③根據(jù)等弧對(duì)等角,可知只有當(dāng)和重合時(shí),,;④作點(diǎn)關(guān)于的對(duì)稱點(diǎn),連接,DF,此時(shí)的值最短,等于的長(zhǎng),然后證明DF是的直徑即可得到結(jié)論.【詳解】解:,點(diǎn)是點(diǎn)關(guān)于的對(duì)稱點(diǎn),,,①正確;,∴②正確;的度數(shù)是60°,的度數(shù)是120°,∴只有當(dāng)和重合時(shí),,∴只有和重合時(shí),,③錯(cuò)誤;作關(guān)于的對(duì)稱點(diǎn),連接,交于點(diǎn),連接交于點(diǎn),此時(shí)的值最短,等于的長(zhǎng).連接,并且弧的度數(shù)都是60°,是的直徑,即,∴當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值最小,最小值是10,∴④正確.故答案為:3.【考點(diǎn)】本題考查了圓的綜合知識(shí),涉及圓周角、圓心角、弧、弦的關(guān)系、最短距離的確定等,掌握?qǐng)A的基本性質(zhì)并靈活運(yùn)用是解題關(guān)鍵.3、150【解析】【分析】根據(jù)弧長(zhǎng)公式計(jì)算.【詳解】根據(jù)扇形的面積公式可得:,解得r=24cm,再根據(jù)弧長(zhǎng)公式,解得.故答案為:150.【考點(diǎn)】本題考查了弧長(zhǎng)的計(jì)算及扇形面積的計(jì)算,要記熟公式:扇形的面積公式,弧長(zhǎng)公式.4、【解析】【分析】如圖(見(jiàn)解析),先根據(jù)三角形內(nèi)切圓的性質(zhì)、直角三角形的性質(zhì)、切線長(zhǎng)定理可求出,再設(shè),利用勾股定理可求出x的值,從而可得BC的長(zhǎng),然后利用三角形的面積公式即可得.【詳解】如圖,設(shè)圓E與三邊的相切點(diǎn)分別為點(diǎn),連接則,且由題意得:,,圓E為的內(nèi)切圓平分,BE平分,則在中,,在中,由切線長(zhǎng)定理得:設(shè),則,在中,由勾股定理得:即解得則的面積為故答案為:.【考點(diǎn)】本題考查了三角形內(nèi)切圓的性質(zhì)、切線長(zhǎng)定理、圓的切線的性質(zhì)、勾股定理等知識(shí)點(diǎn),掌握理解三角形內(nèi)切圓的性質(zhì)是解題關(guān)鍵.5、【解析】【分析】由AB、BC、AC長(zhǎng)可推導(dǎo)出△ACB為等腰直角三角形,連接OC,得出∠BOC=90°,計(jì)算出OB的長(zhǎng)就能利用弧長(zhǎng)公式求出的長(zhǎng)了.【詳解】∵每個(gè)小方格都是邊長(zhǎng)為1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB為等腰直角三角形,∴∠A=∠B=45°,∴連接OC,則∠COB=90°,∵OB=∴的長(zhǎng)為:=故答案為:.【考點(diǎn)】本題考查了弧長(zhǎng)的計(jì)算以及圓周角定理,解題關(guān)鍵是利用三角形三邊長(zhǎng)通過(guò)勾股定理逆定理得出△ACB為等腰直角三角形.6、【解析】【分析】連接BE,根據(jù)正切的定義求出∠A,根據(jù)扇形面積公式、三角形的面積公式計(jì)算即可.【詳解】解:連接BE,在Rt△ABC中,∠ABC=90°,∴tanA=,∴∠A=60°,∵BA=BE,∴△ABE為等邊三角形,∴∠ABE=30°,∴∠EBC=30°,∴陰影部分的面積=×2×2×+=故答案為.【考點(diǎn)】本題考查的是扇形面積計(jì)算、等邊三角形的判定和性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.7、26【解析】【詳解】分析:連接OC,根據(jù)圓周角定理得到∠COD=2∠A,根據(jù)切線的性質(zhì)計(jì)算即可.詳解:連接OC,由圓周角定理得,∠COD=2∠A=64°,∵CD為⊙O的切線,∴OC⊥CD,∴∠D=90°-∠COD=26°,故答案為26.點(diǎn)睛:本題考查的是切線的性質(zhì)、圓周角定理,掌握?qǐng)A的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑是解題的關(guān)鍵.8、6【解析】【分析】連接OC,根據(jù)勾股定理求出CE,根據(jù)垂徑定理計(jì)算即可.【詳解】連接OC,∵AB是⊙O的直徑,弦CD⊥AB,∴CD=2CE,∠OEC=90°,∵AB=10,AE=1,∴OC=5,OE=5﹣1=4,在Rt△COE中,CE==3,∴CD=2CE=6,故答案為6.【考點(diǎn)】本題考查了垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧是解題的關(guān)鍵.9、24【解析】【分析】連接OC,由題意得OE=5,BE=8,再由垂徑定理得CE=DE,∠OEC=90°,然后由勾股定理求出CE=12,即可求解.【詳解】解:連接OC,如圖所示:∵直徑AB=26,∴OC=OB=13,∵OE:BE=5:8,∴OE=5,BE=8,∵弦CD⊥AB,∴CE=DE,∠OEC=90°,∴CE==12,∴CD=2CE=24,故答案為:24.【考點(diǎn)】本題考查的是垂徑定理、勾股定理等知識(shí),熟練掌握垂徑定理,由勾股定理求出CE的長(zhǎng)是解題的關(guān)鍵.10、【解析】【分析】由圖可知,陰影部分的面積是扇形ABO和扇形DEO的面積之和,然后根據(jù)題目中的數(shù)據(jù),可以求得AB、OA、DE的長(zhǎng),∠BAO和∠EDO的度數(shù),從而可以解答本題.【詳解】解:∵四邊形ABCD是矩形,∴OA=OC=OB=OD,∵AB=AO,∴△ABO是等邊三角形,∴∠BAO=60°,∴∠EDO=30°,∵AC=2,∴OA=OD=1,∴圖中陰影部分的面積為:,故答案為:.【考點(diǎn)】本題主要考查扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握扇形面積、矩形的性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析;(2)圓周角定理;,圓周角定理的推論【解析】【分析】(1)利用幾何語(yǔ)言畫出對(duì)應(yīng)的幾何圖形;(2)先根據(jù)圓周角定理得到,再利用等腰三角形的性質(zhì)得到,從而得到.【詳解】解:(1)如圖,為所作;(2)證明:連接,如圖,,點(diǎn)在上.點(diǎn)在上,(圓周角定理),,(圓周角定理的推論).故答案為:圓周角定理;;圓周角定理的推論.【考點(diǎn)】本題考查了作圖復(fù)雜作圖、也考查了圓周角定理,解題的關(guān)鍵是掌握復(fù)雜作圖的五種基本作圖的基本方法,一般是結(jié)合了幾何圖形的性質(zhì)和基本作圖方法.熟悉基本幾何圖形的性質(zhì),結(jié)合幾何圖形的基本性質(zhì)把復(fù)雜作圖拆解成基本作圖,逐步操作.2、(1)見(jiàn)解析
(2)0個(gè)【解析】【分析】(1)作于點(diǎn),由,可得點(diǎn)到射線的距離,根據(jù)直線與圓的位置關(guān)系的定義即可判斷射線OA與圓M的公共點(diǎn)個(gè)數(shù);(2)連接.可得,由可得,得到,故當(dāng)時(shí),可判斷線段與的公共點(diǎn)個(gè)數(shù).【詳解】(1)如圖,作于點(diǎn).,∴點(diǎn)到射線的距離.∴當(dāng)時(shí),與射線只有一個(gè)公共點(diǎn);當(dāng)時(shí),與射線沒(méi)有公共點(diǎn);當(dāng)時(shí),與射線有兩個(gè)公共點(diǎn);當(dāng)時(shí),與射線只有一個(gè)公共點(diǎn).(2)如圖,連接..,.∴當(dāng)時(shí),線段與的公共點(diǎn)個(gè)數(shù)為0.【考點(diǎn)】本題主要考查了直線與圓的位置關(guān)系,根據(jù)圓心到直線的距離判斷位置關(guān)系是解題的關(guān)鍵.3、(1);(2)α+2β=90°,見(jiàn)解析【解析】【分析】(1)連接AB,由已知得到∠APB=∠APQ+BPQ=90°,根據(jù)圓周角定理證得AB是⊙O的直徑,然后根據(jù)勾股定理求得直徑,即可求得半徑;(2)連接OA、OB、OQ,由證得∠APQ=∠BPQ,即可證得OQ⊥ON,然后根據(jù)三角形內(nèi)角和定理證得2∠OPN+∠PON+∠NOQ=180°,,即可證得α+2β=90°.【詳解】(1)連接AB,∵∠APQ=∠BPQ=45°,∴∠APB=∠APQ+BPQ=90°,∴AB是⊙O的直徑,∴AB=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025山東菏澤曹縣蘇教高級(jí)中學(xué)教師招聘6人備考考試試題及答案解析
- 2026福建三明市建寧縣公開招聘緊缺急需專業(yè)教師19人參考筆試題庫(kù)附答案解析
- 2025新疆第十四師昆玉市學(xué)校引進(jìn)高層次人才18人考試參考試題及答案解析
- 2026華能云南滇東能源有限責(zé)任公司招聘60人參考筆試題庫(kù)附答案解析
- 深度解析(2026)《GBT 25866-2010玉米干全酒糟(玉米DDGS)》(2026年)深度解析
- 2025河南輕工職業(yè)學(xué)院2025年公開招聘工作人員(博士)5人模擬筆試試題及答案解析
- 深度解析(2026)《GBT 25811-2010染料試驗(yàn)用標(biāo)準(zhǔn)漂白滌綸布》
- 2026福建龍巖人民醫(yī)院招聘醫(yī)學(xué)類緊缺急需專業(yè)畢業(yè)生4人備考考試試題及答案解析
- 高校畢業(yè)生專業(yè)結(jié)構(gòu)與產(chǎn)業(yè)需求錯(cuò)配-基于OECD《技能戰(zhàn)略》供需匹配指數(shù)
- 2025重慶市長(zhǎng)壽區(qū)城市管理服務(wù)中心招聘數(shù)字城管工作人員3人參考筆試題庫(kù)附答案解析
- 中醫(yī)藥轉(zhuǎn)化研究中的專利布局策略
- COPD巨噬細(xì)胞精準(zhǔn)調(diào)控策略
- 網(wǎng)店代發(fā)合作合同范本
- 心源性休克的液體復(fù)蘇挑戰(zhàn)與個(gè)體化方案
- 九師聯(lián)盟2026屆高三上學(xué)期12月聯(lián)考英語(yǔ)(第4次質(zhì)量檢測(cè))(含答案)
- 2025年醫(yī)院法律法規(guī)培訓(xùn)考核試題及答案
- (2025年)人民法院聘用書記員考試試題(含答案)
- 字節(jié)跳動(dòng)+Agent+實(shí)踐手冊(cè)
- 銷售香薰技巧培訓(xùn)課件
- 雨課堂在線學(xué)堂《醫(yī)學(xué)文獻(xiàn)檢索》作業(yè)單元考核答案
- 計(jì)調(diào)年終總結(jié)匯報(bào)
評(píng)論
0/150
提交評(píng)論