版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項訓(xùn)練考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,將△ABC繞點A逆時針旋轉(zhuǎn)70°得到△ADE,點B、C的對應(yīng)點分別為D、E,當點B、C、D、P在同一條直線上時,則∠PDE的度數(shù)為(
)A.55° B.70° C.80° D.110°2、如圖,在方格紙上建立的平面直角坐標系中,將繞點按順時針方向旋轉(zhuǎn)90°,得到,則點的坐標為(
).A. B.C. D.3、下列所述圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等腰三角形 B.等邊三角形 C.菱形 D.平行四邊形4、如圖,在中,,,將繞點順時針旋轉(zhuǎn)得到,點A、B的對應(yīng)點分別是,,點是邊的中點,連接,,.則下列結(jié)論錯誤的是(
)A. B.,C. D.5、如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A'B'C,連接AA',若∠1=25°,則∠BAA'的度數(shù)是(
)A.70° B.65° C.60° D.55°6、將矩形繞點順時針旋轉(zhuǎn),得到矩形.當時,下列針對值的說法正確的是(
)A.或 B.或 C. D.7、在下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A.等邊三角形 B.直角三角形 C.正五邊形 D.矩形8、下列交通標識中,不是軸對稱圖形,是中心對稱圖形的是()A. B. C. D.9、如圖,由個小正方形組成的田字格,的頂點都是小正方形的頂點,在田字格上能畫出與成軸對稱,且頂點都在小正方形頂點上的三角形的個數(shù)共有()A.2個 B.3個 C.4個 D.5個10、下列圖形中既是中心對稱圖形,又是軸對稱圖形的是(
)A. B.C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,矩形ABCD中,AB=2,BC=1,將矩形ABCD繞頂點C順時針旋轉(zhuǎn)90°,得到矩形EFCG,連接AE,取AE的中點H,連接DH,則_______.2、如圖,正方形ABCD的邊長是5,E是邊BC上一點且BE=2,F(xiàn)為邊AB上的一個動點,連接EF,以EF為邊向右作等邊三角形EFG,連接CG,則CG長的最小值為______.3、在中,頂點,,.將與正方形組成的圖形繞點逆時針旋轉(zhuǎn),每次旋轉(zhuǎn),則第2022次旋轉(zhuǎn)結(jié)束時,點的坐標是________.4、如圖,菱形ABCD的邊長為2,∠A=60°,E是邊AB的中點,F(xiàn)是邊AD上的一個動點,將線段EF繞著點E順時針旋轉(zhuǎn)60°得到EG,連接DG、CG,則DG+CG的最小值為_____.5、如圖,將繞點A逆時針旋轉(zhuǎn)角得到,點B的對應(yīng)點D恰好落在邊上,若,則旋轉(zhuǎn)角的度數(shù)是______.6、如圖,在平面直角坐標系中,點C的坐標為(﹣1,0),點A的坐標為(﹣3,3),將點A繞點C順時針旋轉(zhuǎn)90°得到點B,則點B的坐標為___.7、如圖,已知:,,以AB為邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).當時,則PD的長為______.8、在平面直角坐標系中,直角如圖放置,點A的坐標為,,每一次將繞點O逆時針旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)后得到,第二次旋轉(zhuǎn)后得到,依次類推,則點的坐標為______.9、如圖,已知點的坐標是,,點的坐標是,,菱形的對角線交于坐標原點,則點的坐標是______.10、如圖,把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到,交AC于點D,若,則∠A=°三、解答題(6小題,每小題5分,共計30分)1、如圖,△AOB中,OA=OB=6,將△AOB繞點O逆時針旋轉(zhuǎn)得到△COD.OC與AB交于點G,CD分別交OB、AB于點E、F.(1)∠A與∠D的數(shù)量關(guān)系是:∠A______∠D;(2)求證:△AOG≌△DOE;(3)當A,O,D三點共線時,恰好OB⊥CD,求此時CD的長.2、如圖1,在△ABC中,∠BAC=90°,AB=AC,點D在邊AC上,CD⊥DE,且CD=DE,連接BE,取BE的中點F,連接DF.(1)請直接寫出∠ADF的度數(shù)及線段AD與DF的數(shù)量關(guān)系;(2)將圖1中的△CDE繞點C按逆時針旋轉(zhuǎn),①如圖2,(1)中∠ADF的度數(shù)及線段AD與DF的數(shù)量關(guān)系是否仍然成立?請說明理由;②如圖3,連接AF,若AC=3,CD=1,求S△ADF的取值范圍.3、為等邊三角形,AB=8,AD⊥BC于點D,E為線段AD上一點,.以AE為邊在直線AD右側(cè)構(gòu)造等邊三角形AEF,連接CE,N為CE的中點.(1)如圖1,EF與AC交于點G,連接NG,BE,直接寫出NG與BE的數(shù)量關(guān)系;(2)如圖2,將繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為,M為線段EF的中點,連接DN,MN.當時,猜想∠DNM的大小是否為定值,如果是定值,請寫出∠DNM的度數(shù)并證明,如果不是,請說明理由;(3)連接BN,在繞點A逆時針旋轉(zhuǎn)過程中,請直接寫出線段BN的最大值.4、已知正方形ABCD,將線段BA繞點B旋轉(zhuǎn)(),得到線段BE,連接EA,EC.(1)如圖1,當點E在正方形ABCD的內(nèi)部時,若BE平分∠ABC,AB=4,則∠AEC=______°,四邊形ABCE的面積為______;(2)當點E在正方形ABCD的外部時,①在圖2中依題意補全圖形,并求∠AEC的度數(shù);②作∠EBC的平分線BF交EC于點G,交EA的延長線于點F,連接CF.用等式表示線段AE,F(xiàn)B,F(xiàn)C之間的數(shù)量關(guān)系,并證明.5、(1)方法感悟:如圖1,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證:DE+BF=EF.感悟解題方法,并完成下列填空:將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°.因此,點G,B,H在同一條直線上.∵∠EAF=45°,∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°,∴∠1+∠3=45°.即∠GAF=∠______.又∵AG=AE,AF=AF,∴______.∴______=EF.故DE+BF=EF.(2)方法遷移:如圖2,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.(3)問題拓展:如圖3,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B,∠D滿足什么關(guān)系時,可使得DE+BF=EF?請說明理由.6、如圖,在的方格紙中,已知格點P,請按要求畫格點圖形(頂點均在格點上).(1)在圖1中畫一個銳角三角形,使P為其中一邊的中點,再畫出該三角形向右平移2個單位后的圖形.(2)在圖2中畫一個以P為一個頂點的鈍角三角形,使三邊長都不相等,再畫出該三角形繞點P旋轉(zhuǎn)后的圖形.-參考答案-一、單選題1、B【解析】【分析】首先根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,AB=AD,據(jù)此即可求得,據(jù)此即可求得.【詳解】解:將△ABC繞點A逆時針旋轉(zhuǎn)70°得到△ADE,,,AB=AD,,,又點B、C、D、P在同一條直線上,,故選:B.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等邊對等角的應(yīng)用,三角形內(nèi)角和定理,熟練掌握和運用旋轉(zhuǎn)的性質(zhì)是解決本題的關(guān)鍵.2、A【解析】【分析】根據(jù)網(wǎng)格結(jié)構(gòu)作出旋轉(zhuǎn)后的圖形,然后根據(jù)平面直角坐標系寫出點B′的坐標即可.【詳解】△A′B′O如圖所示,點B′(2,1).故選A.【考點】本題考查了坐標與圖形變化,熟練掌握網(wǎng)格結(jié)構(gòu),作出圖形是解題的關(guān)鍵.3、C【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、等腰三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;B、等邊三角形是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;C、菱形既是軸對稱圖形,又是中心對稱圖形,故本選項正確;D、平行四邊形不是軸對稱圖形,是中心對稱圖形,故本選項錯誤.故選C.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、D【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可判斷A;根據(jù)直角三角形的性質(zhì)、三角形外角的性質(zhì)、平行線的判定方法可判斷B;根據(jù)平行四邊形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)可判斷C;利用等腰三角形的性質(zhì)和含30°角的直角三角形的性質(zhì)可判斷D.【詳解】A.∵將△ABC繞點C順時針旋轉(zhuǎn)60°得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,∴△BCE是等邊三角形,∴BE=BC,故A正確;B.∵點F是邊AC中點,∴CF=BF=AF=AC,∵∠BCA=30°,∴BA=AC,∴BF=AB=AF=CF,∴∠FCB=∠FBC=30°,延長BF交CE于點H,則∠BHE=∠HBC+∠BCH=90°,∴∠BHE=∠DEC=90°,∴BF//ED,∵AB=DE,∴BF=DE,故B正確.C.∵BF∥ED,BF=DE,∴四邊形BEDF是平行四邊形,∴BC=BE=DF,∵AB=CF,BC=DF,AC=CD,∴△ABC≌△CFD,∴,故C正確;D.∵∠ACB=30°,∠BCE=60°,∴∠FCG=30°,∴FG=CG,∴CG=2FG.∵∠DCE=∠CDG=30°,∴DG=CG,∴DG=2FG.故D錯誤.故選D.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),含30°角的直角邊等于斜邊的一半,以及平行四邊形的判定與性質(zhì)等知識,綜合性較強,正確理解旋轉(zhuǎn)性質(zhì)是解題的關(guān)鍵.5、B【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=A′C,然后判斷出△ACA′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CAA′=45°,再根據(jù)三角形的內(nèi)角和定理可得結(jié)果.【詳解】∵Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B′=20°=∠BAC∴∠BAA′=180°-70°-45°=65°,故選:B.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.6、A【解析】【分析】當GB=GC時,點G在BC的垂直平分線上,分兩種情況討論,依據(jù)∠DAG=60°,即可得到旋轉(zhuǎn)角α的度數(shù).【詳解】如圖,當GB=GC時,點G在BC的垂直平分線上,分兩種情況討論:①當點G在AD右側(cè)時,取BC的中點H,連接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四邊形ABHM是矩形,∴AM=BH=,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等邊三角形,∴∠DAG=60°,∴旋轉(zhuǎn)角α=60°;②當點G在AD左側(cè)時,同理可得△ADG是等邊三角形,∴∠DAG=60°,∴旋轉(zhuǎn)角α=360°-60°=300°,故選:A.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì)的運用,解題時注意:對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角.7、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念逐一判斷可得.【詳解】解:A.等邊三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;B.直角三角形既不是軸對稱圖形,也不是中心對稱圖形,不符合題意;C.正五邊形是軸對稱圖形,不是中心對稱圖形,不符合題意;D.矩形既是軸對稱圖形,又是中心對稱圖形,符合題意;故選:D.【考點】本題主要考查中心對稱圖形和軸對稱圖形,解題的關(guān)鍵是掌握把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形,如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.8、D【解析】【分析】根據(jù)軸對稱圖形和中心對稱圖形的概念,對各選項分析判斷即可得解.把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形;如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形.【詳解】解:A.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;B.既是軸對稱圖形,又是中心對稱圖形,故本選項不符合題意;C.既不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;D.不是軸對稱圖形,是中心對稱圖形,故本選項符合題意.故選:D.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.9、C【解析】【分析】因為頂點都在小正方形上,故可分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸進行尋找.【詳解】分別以大正方形的兩條對角線AB、EF及MN、CH為對稱軸,作軸對稱圖形:則△ABM、△ANB、△EHF、△EFC都是符合題意的三角形.故選:C.【考點】考查了利用軸對稱涉及圖案的知識,關(guān)鍵是根據(jù)要求頂點在格點上尋找對稱軸,有一定難度,不要漏解.10、C【解析】【詳解】解:選項A,B中的圖形是軸對稱圖形,不是中心對稱圖形,故A,B不符合題意;選項C中的圖形既是軸對稱圖形,也是中心對稱圖形,故C符合題意;選項D中的圖形不是軸對稱圖形,是中心對稱圖形,故D不符合題意,故選C【考點】本題考查的是軸對稱圖形與中心對稱圖形的識別,把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,把一個圖形繞某點旋轉(zhuǎn)后能夠與自身重合,則這個圖形是中心對稱圖形,掌握“軸對稱圖形與中心對稱圖形的定義”是解本題的關(guān)鍵.二、填空題1、【解析】【分析】根據(jù)題意構(gòu)造并證明,通過全等得到,再結(jié)合矩形的性質(zhì)、旋轉(zhuǎn)的性質(zhì),及可求解;【詳解】如圖,延長DH交EF于點k,∵H是的中點又則故答案為:【考點】本題主要考查了矩形的性質(zhì)、三角形的全等證明,掌握相關(guān)知識并結(jié)合旋轉(zhuǎn)的性質(zhì)正確構(gòu)造全等三角形是解題的關(guān)鍵.2、【解析】【分析】由題意分析可知,點F為主動點,運動軌跡是線段AB,G為從動點,所以以點E為旋轉(zhuǎn)中心構(gòu)造全等關(guān)系,得到點G的運動軌跡,也是一條線段,之后通過垂線段最短構(gòu)造直角三角形獲得CG最小值.【詳解】解:由題意可知,點F是主動點,點G是從動點,點F在線段AB上運動,點G的軌跡也是一條線段,將△EFB繞點E旋轉(zhuǎn)60°,使EF與EG重合,得到△EFB≌△EGH,從而可知△EBH為等邊三角形,∵四邊形ABCD是正方形,∴∠FBE=90°,∴∠GHE=∠FBE=90°,∴點G在垂直于HE的直線HN上,延長HG交DC于點N,過點C作CM⊥HN于M,則CM即為CG的最小值,過點E作EP⊥CM于P,可知四邊形HEPM為矩形,∠PEC=30°,∠EPC=90°,則CM=MP+CP=HE+EC=2+=,故答案為:.【考點】本題考查了線段最值問題,分清主動點和從動點,通過旋轉(zhuǎn)構(gòu)造全等,從而判斷出點G的運動軌跡,是本題的關(guān)鍵,之后運用垂線段最短,構(gòu)造圖形計算,是最值問題中比較典型的類型.3、【解析】【分析】先求出AB,再利用正方形的性質(zhì)確定C點坐標,由于2020=4×505,所以第2020次旋轉(zhuǎn)結(jié)束時,正方形ABCD回到初始位置,再旋轉(zhuǎn)2次,得出C的坐標便是答案值.【詳解】∵A(4,3),B(4,-3),∴AB=3-(-3)=6,∵四邊形ABCD為正方形,∴BC=AB=6,∴C(10,-3),∵△OAB與正方形ABCD組成的圖形繞點O逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)90°,∴每4次一個循環(huán),∵2022=4×505+2,∴第2020次旋轉(zhuǎn)結(jié)束時,正方形ABCD回到初始位置,從初始位置再旋轉(zhuǎn)兩次,就到第2022次旋轉(zhuǎn)到的位置,∴點C的坐標為(-10,3).故答案為:(-10,3).【考點】本題考查了坐標與圖形變化-旋轉(zhuǎn),正方形的性質(zhì),解答本題的關(guān)鍵是找出C點坐標變化的規(guī)律.4、【解析】【分析】取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.根據(jù)菱形的性質(zhì),可得△ADB是等邊三角形,從而得到△AEN是等邊三角形,可證得△AEF≌△NEG,進而得到點G的運動軌跡是射線NG,繼而得到GD+GC=GE+GC≥EC,在Rt△BEH和Rt△ECH中,由勾股定理,即可求解.【詳解】如圖,取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.∵四邊形ABCD是菱形∴AD=AB,∵∠A=60°,∴△ADB是等邊三角形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等邊三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GND=180°﹣60°﹣60°=60°,∴點G的運動軌跡是射線NG,∴D,E關(guān)于射線NG對稱,∴GD=GE,∴GD+GC=GE+GC≥EC,在Rt△BEH中,∠H=90°,BE=1,∠EBH=60°,∴BH=BE=,EH=,在Rt△ECH中,EC==,∴GD+GC≥,∴GD+GC的最小值為.故答案為:.【考點】本題主要考查了菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識,熟練掌握菱形的性質(zhì),等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),勾股定理等知識是解題的關(guān)鍵.5、【解析】【分析】先求出,由旋轉(zhuǎn)的性質(zhì),得到,,則,即可求出旋轉(zhuǎn)角的度數(shù).【詳解】解:根據(jù)題意,∵,∴,由旋轉(zhuǎn)的性質(zhì),則,,∴,∴;∴旋轉(zhuǎn)角的度數(shù)是50°;故答案為:50°.【考點】本題考查了旋轉(zhuǎn)的性質(zhì),三角形的內(nèi)角和定理,解題的關(guān)鍵是熟練掌握旋轉(zhuǎn)的性質(zhì)進行計算.6、(2,2)【解析】【分析】過點A作AE⊥x軸于E,過點B作BF⊥x軸于F.利用全等三角形的性質(zhì)解決問題即可.【詳解】解:如圖,過點A作AE⊥x軸于E,過點B作BF⊥x軸于F.∵∠AEC=∠ACB=∠CFB=90°,∴∠ACE+∠BCF=90°,∠BCF+∠B=90°,∴∠ACE=∠B,在△AEC和△CFB中,,∴△AEC≌△CFB(AAS),∴AE=CF,EC=BF,∵A(﹣3,3),C(﹣1,0),∴AE=CF=3,OC=1,EC=BF=2,∴OF=CF﹣OC=2,∴B(2,2),故答案為:(2,2).【考點】本題考查坐標與圖形變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.7、【解析】【分析】由于AD=AB,∠DAB=90°,則把△APD繞點A順時針旋轉(zhuǎn)90°得到△AFB,AD與AB重合,PA旋轉(zhuǎn)到AF的位置,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AP=AF,∠PAF=90°,PD=FB,則△APF為等腰直角三角形,得到∠APF=45°,,即有∠BPF=∠APB+∠APF=45°+45°=90°,然后在Rt△FBP中,根據(jù)勾股定理可計算出FB的長,即可得到PD的長.【詳解】解:∵AD=AB,∠DAB=90°,∴把△APD繞點A順時針旋轉(zhuǎn)90°得到△AFB,AD與AB重合,PA旋轉(zhuǎn)到FA的位置,如圖,∴AP=AF,∠PAF=90°,PD=FB,∴△APF為等腰直角三角形,∴∠APF=45°,,∴∠BPF=∠APB+∠APF=45°+45°=90°,在Rt△FBP中,PB=4,,∴由勾股定理得,∴,故答案為:【考點】本題考查了正方形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等腰直角三角形的判定和性質(zhì)以及勾股定理.正確的作出輔助線是解題關(guān)鍵.8、(,)【解析】【分析】由題意可得,(,),根據(jù)題意,每旋轉(zhuǎn)四次,點B就又回到第一象限,用可知點在第三象限,即可得到答案.【詳解】在直角中,點A的坐標為,,(,)由已知可得:第一次旋轉(zhuǎn)后,如圖,在第二象限,(,)第二次旋轉(zhuǎn)后,在第三象限,(,)第三次旋轉(zhuǎn)后,在第四象限,(,)第四次旋轉(zhuǎn)后,在第一象限,(,)......如此,旋轉(zhuǎn)4次一循環(huán)點在第三象限,(,)故答案為:(,).【考點】本題考查了旋轉(zhuǎn)變換,涉及含30度角的直角三角形,確定旋轉(zhuǎn)幾次一循環(huán)是解題的關(guān)鍵.9、【解析】【分析】根據(jù)菱形具有的平行四邊形基本性質(zhì),對角線互相平分,且交點為坐標原點,則,關(guān)于原點對稱,因此在直角坐標系中兩點的坐標關(guān)于原點對稱,橫坐標與橫坐標互為相反數(shù),縱坐標與縱坐標互為相反數(shù)便可得.【詳解】∵四邊形是菱形,對角線相交于坐標原點∴根據(jù)平行四邊形對角線互相平分的性質(zhì),和;和均關(guān)于原點對稱根據(jù)直角坐標系上一點關(guān)于原點對稱的點為可得已知點的坐標是,則點的坐標是.故答案為:.【考點】本題旨在考查菱形的基本性質(zhì)及直角坐標系中關(guān)于原點對稱點的坐標的知識點,熟練理解掌握該知識點為解題的關(guān)鍵.10、55【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得,,再由直角三角形兩銳角互余,即可求解.【詳解】解:∵把△ABC繞點C按順時針方向旋轉(zhuǎn)35°,得到∴,,∵,∴∴∠A=55°.故答案為:55【考點】本題主要考查了圖形的旋轉(zhuǎn),直角三角形兩銳角的關(guān)系,熟練掌握旋轉(zhuǎn)的性質(zhì),直角三角形兩銳角互余是解題的關(guān)鍵.三、解答題1、(1)=(2)證明見解析(3),詳見解析【解析】【分析】(1)根據(jù)旋轉(zhuǎn)性質(zhì)及等腰三角形性質(zhì)即可得答案;(2)由旋轉(zhuǎn)性質(zhì)知∠AOB=∠DOC,可證得∠AOG=∠DOE,結(jié)合OA=OB及(1)中結(jié)論,得證;(3)分兩種情況討論,設(shè)∠A=x°,先利用三角形內(nèi)角和求出x的值,再借助勾股定理求出CD的長度即可.(1)解:由旋轉(zhuǎn)知,∠A=∠C,∠B=∠D,∵OA=OB,∴OC=OD,∠A=∠B=∠C=∠D∴∠A=∠D,故答案為:=.(2)證明:由旋轉(zhuǎn)知,OA=OC,OB=OD,∠AOB=∠COD,∴∠AOB-∠BOC=∠COD-∠BOC,即∠AOG=∠DOE,∵OA=OB,∴OA=OB=OC=OD,又∵∠A=∠D,∴△AOG≌△DOE.(3)解:分兩種情況討論,①如圖所示,設(shè)∠A=∠B=∠C=∠D=x°,則∠DOB=2x°,∵OB⊥CD,∴∠OED=90°,∴x+2x=90°,解得:x=30,即∠D=30°,在Rt△ODE中,OE=3,由勾股定理得:DE=,∵OC=OD,OE⊥CD,∴CD=2DE=.②當D與A重合時,如圖所示,同理,得:CD=.綜上所述,當A,O,D三點共線時,OB⊥CD,此時CD的長為.【考點】本題考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形性質(zhì)、全等三角形的判定、勾股定理等知識點,解題關(guān)鍵是利用旋轉(zhuǎn)性質(zhì)得到邊、角的關(guān)系.2、(1)∠ADF=45°,AD=DF;(2)①成立,理由見解析;②1≤S△ADF≤4.【解析】【分析】(1)延長DF交AB于H,連接AF,先證明△DEF≌△HBF,得BH=CD,再證明△ADH為等腰直角三角形,利用三線合一及等腰直角三角形邊的關(guān)系即可得到結(jié)論;(2)①過B作DE的平行線交DF延長線于H,連接AH、AF,先證明△DEF≌△HBF,延長ED交BC于M,再證明∠ACD=∠ABH,得△ACD≌△ABH,得AD=AH,等量代換可得∠DAH=90°,即△ADH為等腰直角三角形,利用三線合一及等腰直角三角形邊的關(guān)系即可得到結(jié)論;②先確定D點的軌跡,求出AD的最大值和最小值,代入S△ADF=求解即可.(1)解:∠ADF=45°,AD=DF,理由如下:延長DF交AB于H,連接AF,∵∠EDC=∠BAC=90°,∴DE∥AB,∴∠ABF=∠FED,∵F是BE中點,∴BF=EF,又∠BFH=∠DFE,∴△DEF≌△HBF,∴BH=DE,HF=FD,∵DE=CD,AB=AC,∴BH=CD,AH=AD,∴△ADH為等腰直角三角形,∴∠ADF=45°,又HF=FD,∴AF⊥DH,∴∠FAD=∠ADF=45°,即△ADF為等腰直角三角形,∴AD=DF;(2)解:①結(jié)論仍然成立,∠ADF=45°,AD=DF,理由如下:過B作DE的平行線交DF延長線于H,連接AH、AF,如圖所示,則∠FED=∠FBH,∠FHB=∠EFD,∵F是BE中點,∴BF=EF,∴△DEF≌△HBF,∴BH=DE,HF=FD,∵DE=CD,∴BH=CD,延長ED交BC于M,∵BH∥EM,∠EDC=90°,∴∠HBC+∠DCB=∠DMC+∠DCB=90°,又∵AB=AC,∠BAC=90°,∴∠ABC=45°,∴∠HBA+∠DCB=45°,∵∠ACD+∠DCB=45°,∴∠HBA=∠ACD,∴△ACD≌△ABH,∴AD=AH,∠BAH=∠CAD,∴∠CAD+∠DAB=∠BAH+∠DAB=90°,即∠HAD=90°,∴∠ADH=45°,∵HF=DF,∴AF⊥DF,即△ADF為等腰直角三角形,∴AD=DF.②由①知,S△ADF=DF2=AD2,由旋轉(zhuǎn)知,當A、C、D共線時,且D在A、C之間時,AD取最小值為3-1=2,當A、C、D共線時,且C在A、D之間時,AD取最大值為3+1=4,∴1≤S△ADF≤4.【考點】本題考查了等腰直角三角形性質(zhì)及判定、全等三角形判定及性質(zhì)、勾股定理等知識點.構(gòu)造全等三角形及將面積的最值轉(zhuǎn)化為線段的最值是解題關(guān)鍵.遇到題干中有“中點”時,采用平行線構(gòu)造出對頂三角形全等是常用輔助線.3、(1)(2)∠DNM的大小是定值,為120°(3)【解析】【分析】(1)連接CF.由等邊三角形的性質(zhì)易證△BAE≌△CAF(SAS),即得出.再根據(jù)三角形中位線定理即可求出;(2)連接BE,CF.利用全等三角形的性質(zhì)證明∠EBC+∠BCF=120°,再利用三角形的中位線定理,三角形的外角的性質(zhì)證明∠DNM=∠EBC+∠BCF即可;(3)取AC的中點J,連接BJ,結(jié)合三角形的中位線定理可求出BJ,JN.最后根據(jù)三角形三邊關(guān)系即可得出結(jié)論.(1)解:如圖,連接CF.∵△ABC是等邊三角形,AD⊥BC,∴AB=BC=AC,∠BAD=∠CAD=30°.∵△AEF是等邊三角形,∴∠EAF=60°,G為EF中點,∴∠EAG=∠GAF=30°.即在△BAE和△CAF中,,∴△BAE≌△CAF(SAS),∴,∵N為CE的中點,G為EF中點,∴,∴;(2)∠DNM=120°是定值,證明如下,如圖,連接BE,CF.同(1)可證△BAE≌△CAF(SAS),∴∠ABE=∠ACF.∵∠ABC+∠ACB=60°+60°=120°,∴∠EBC+∠BCF=∠ABC-∠ABE+∠ACB+∠ACF=120°.∵EN=NC,EM=MF,∴MN∥CF,∴∠ENM=∠ECF,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN=∠EBC,∵∠END=∠NDC+∠NCD,∴∠DNM=∠DNE+∠ENM=∠NDC+∠ACB+∠ACN+∠ECF=∠EBC+∠ACB+∠ACF=∠EBC+∠BCF=120°.綜上可知∠DNM的大小是定值,為120°;(3)如圖,取AC的中點J,連接BJ,BN.∵AJ=CJ,EN=NC,∴JN=AE=.∵BJ=AD=,∴BN≤BJ+JN,即BN≤,故線段BN的最大值為.【考點】本題屬于幾何變換綜合題,考查了等邊三角形的性質(zhì),全等三角形的判定和性質(zhì),三角形的中位線定理,三角形三邊關(guān)系的應(yīng)用.解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題,屬于中考壓軸題.4、(1)135,(2)①作圖見解析,45°;②【解析】【分析】(1)過點E作于點K,由正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)及角平分線的定義可得,再利用等腰三角形的性質(zhì)和解直角三角形可求出,,繼而可證明,便可求解;(2)①根據(jù)題意作圖即可;由正方形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)可得,再根據(jù)三角形內(nèi)角和定理及等腰三角形的性質(zhì)求出,即可求解;②過點B作垂足為H,由等腰三角形的性質(zhì)得到,再證明即可得到,再推出為等腰直角三角形,即可得到三者之間的關(guān)系.(1)過點E作于點K四邊形ABCD是正方形BE平分∠ABC,AB=4,將線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年分享與成長我的職務(wù)述職
- 2026年施工安全與質(zhì)量控制的成功案例
- 2025年美術(shù)專業(yè)化筆試及答案
- 2025年潮南區(qū)教師招聘筆試真題及答案
- 2025年棗莊礦務(wù)局醫(yī)院筆試題及答案
- 2025年事業(yè)單位交通委考試題及答案
- 2025年岱山人事考試及答案
- 2025年溫江人事考試及答案
- 2026年房地產(chǎn)市場的信任構(gòu)建與維護策略
- 2026年河北水利發(fā)展集團有限公司公開招聘工作人員1名筆試備考試題及答案解析
- 《看圖找關(guān)系》(教學(xué)設(shè)計)-2024-2025學(xué)年六年級上冊數(shù)學(xué)北師大版
- 新版高中物理必做實驗?zāi)夸浖捌鞑?(電子版)
- 心理與教育測量課件
- ABAQUS在隧道及地下工程中的應(yīng)用
- 【郎朗:千里之行我的故事】-朗朗千里之行在線閱讀
- 相似件管理規(guī)定
- 長沙市財政評審中心 2023年第一期材料價格手冊簽章版
- 病原生物與免疫學(xué)試題(含答案)
- 尼帕病毒專題知識宣講
- 現(xiàn)代企業(yè)管理制度
- GB/T 24312-2022水泥刨花板
評論
0/150
提交評論