考點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》定向練習(xí)試題(含詳細(xì)解析)_第1頁
考點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》定向練習(xí)試題(含詳細(xì)解析)_第2頁
考點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》定向練習(xí)試題(含詳細(xì)解析)_第3頁
考點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》定向練習(xí)試題(含詳細(xì)解析)_第4頁
考點(diǎn)解析-人教版8年級數(shù)學(xué)下冊《平行四邊形》定向練習(xí)試題(含詳細(xì)解析)_第5頁
已閱讀5頁,還剩30頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)下冊《平行四邊形》定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,在菱形ABCD中,AB=5,AC=8,過點(diǎn)B作BE⊥CD于點(diǎn)E,則BE的長為()A. B. C.6 D.2、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.3、如圖,已知菱形ABCD的對角線AC,BD的長分別為6,8,AE⊥BC,垂足為點(diǎn)E,則AE的長是()A.5 B.2 C. D.4、如圖,點(diǎn)E是長方形ABCD的邊CD上一點(diǎn),將ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),若AD=10,AB=8,那么AE長為()A.5 B.12 C.5 D.135、如圖,把一張長方形紙片ABCD沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)為點(diǎn)B′,AB′與DC相交于點(diǎn)E,則下列結(jié)論正確的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CDC.AD=AE D.AE=CE6、已知菱形的邊長為6,一個(gè)內(nèi)角為60°,則菱形較長的對角線長是()A. B. C.3 D.67、如圖,已知平行四邊形ABCD的面積為8,E、F分別是BC、CD的中點(diǎn),則△AEF的面積為()A.2 B.3 C.4 D.58、如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得點(diǎn)A,C之間的距離為6cm,點(diǎn)B,D之間的距離為8cm,則紙條的寬為()A.5cm B.4.8cm C.4.6cm D.4cm9、菱形ABCD的對角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.810、下列說法正確的是()A.平行四邊形的對角線互相平分且相等 B.矩形的對角線相等且互相平分C.菱形的對角線互相垂直且相等 D.正方形的對角線是正方形的對稱軸第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、菱形的對角線之比為3:4,且面積為24,則它的對角線分別為________.2、如圖,在正方形ABCD中,點(diǎn)M,N為CD,BC上的點(diǎn),且DM=CN,AM與DN交于點(diǎn)P,連接AN,點(diǎn)Q為AN中點(diǎn),連接PQ,若AB=10,DM=4,則PQ的長為__________________.3、如圖,△ABC中,AC=BC=3,AB=2,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB上的動點(diǎn),則PE+PF的最小值是_____.4、如圖,在四邊形中,,分別是的中點(diǎn),分別以為直徑作半圓,這兩個(gè)半圓面積的和為,則的長為_______.5、如圖,直線l經(jīng)過正方形ABCD的頂點(diǎn)B,點(diǎn)A,C到直線l的距離分別是1,3,則正方形ABCD的面積是_____.6、如圖,在△ABC中,∠ACB=90°,以AC,BC和AB為邊向上作正方形ACED和正方形BCMI和正方形ABGF,點(diǎn)G落在MI上,若AC+BC=7,空白部分面積為16,則圖中陰影部分的面積是_____.7、如圖,在平行四邊形ABCD中,AB=4,BC=5,以點(diǎn)C為圓心,適當(dāng)長為半徑畫弧,交BC于點(diǎn)P,交CD于點(diǎn)Q,再分別以點(diǎn)P,Q為圓心,大于PQ的長為半徑畫弧,兩弧相交于點(diǎn)N,射線CN交BA的延長線于點(diǎn)E,則AE的長是_____.8、如圖,在正方形紙片ABCD中,E是CD的中點(diǎn),將正方形紙片折疊,點(diǎn)B落在線段AE上的點(diǎn)G處,折痕為AF.若,則CF的長為_____.9、如圖,正方形ABCD的邊長為做正方形,使A,B,C,D是正方形各邊的中點(diǎn);做正方形,使是正方形各邊的中點(diǎn)……以此類推,則正方形的邊長為__________.10、如圖,在矩形ABCD中,AB=2,AD=2,E為BC邊上一動點(diǎn),F(xiàn)、G為AD邊上兩個(gè)動點(diǎn),且∠FEG=30°,則線段FG的長度最大值為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,在菱形ABCD中,點(diǎn)E,F(xiàn)分別是邊AB和BC上的點(diǎn),且BE=BF.求證:∠DEF=∠DFE.

2、如圖,四邊形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分別為E、F.求證:BE=BF.3、如圖,在Rt△ABC中,∠ACB=90°.

(1)作AB的垂直平分線l,交AB于點(diǎn)D,連接CD,分別作∠ADC,∠BDC的平分線,交AC,BC于點(diǎn)E,F(xiàn)(尺規(guī)作圖,不寫作法,保作圖痕跡);(2)求證:四邊形CEDF是矩形.4、在△ABC中,AB=AC=x,BC=12,點(diǎn)D,E分別為BC,AC的中點(diǎn),線段BE的垂直平分線交邊BC于點(diǎn)F,(1)當(dāng)x=10時(shí),求線段AD的長.(2)x取何值時(shí),點(diǎn)F與點(diǎn)D重合.(3)當(dāng)DF=1時(shí),求x2的值.5、如圖,在?ABCD中,對角線AC,BD交于點(diǎn)O,E是BD延長線上一點(diǎn),且△ACE是等邊三角形.(1)求證:四邊形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四邊形ABCD的面積.-參考答案-一、單選題1、B【解析】【分析】根據(jù)菱形的性質(zhì)求得的長,進(jìn)而根據(jù)菱形的面積等于,即可求得的長【詳解】解:如圖,設(shè)的交點(diǎn)為,四邊形是菱形,,,在中,,菱形的面積等于故選B【點(diǎn)睛】本題考查了菱形的性質(zhì),掌握菱形的性質(zhì),求得的長是解題的關(guān)鍵.2、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.3、D【解析】【分析】根據(jù)菱形的性質(zhì)得出BO、CO的長,在Rt△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】解:∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=,故選:D.【點(diǎn)睛】此題考查了菱形的性質(zhì),也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.4、C【解析】【分析】根據(jù)矩形的性質(zhì),折疊的性質(zhì),勾股定理即可得到結(jié)論.【詳解】解:∵四邊形ABCD是矩形,∴,,,∵將△ADE沿著AE對折,點(diǎn)D恰好折疊到邊BC上的F點(diǎn),∴,,∴,∴,∵,∴,∴,∴,∴,故選:C.【點(diǎn)睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題.5、D【解析】【分析】根據(jù)翻折變換的性質(zhì)可得∠BAC=∠CAB′,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠BAC=∠ACD,從而得到∠ACD=∠CAB′,然后根據(jù)等角對等邊可得AE=CE,從而得解.【詳解】解:∵矩形紙片ABCD沿對角線AC折疊,點(diǎn)B的對應(yīng)點(diǎn)為B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴結(jié)論正確的是D選項(xiàng).故選D.【點(diǎn)睛】本題考查了翻折變換的性質(zhì),平行線的性質(zhì),矩形的對邊互相平行,等角對等邊的性質(zhì),熟記各性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.6、B【解析】【分析】根據(jù)一個(gè)內(nèi)角為60°可以判斷較短的對角線與兩鄰邊構(gòu)成等邊三角形,求出較長的對角線的一半,再乘以2即可得解.【詳解】解:如圖,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等邊三角形,菱形的邊長為6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形較長的對角線長BD是:2×3=6.故選:B.【點(diǎn)睛】本題考查了菱形的性質(zhì)和勾股定理,等邊三角形的判定,解題關(guān)鍵是熟練運(yùn)用菱形的性質(zhì)和等邊三角形的判定求出對角線長.7、B【解析】【分析】連接AC,由平行四邊形的性質(zhì)可得,再由E、F分別是BC,CD的中點(diǎn),即可得到,,,由此求解即可.【詳解】解:如圖所示,連接AC,∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,AB=CD,AB∥CD,∴∵E、F分別是BC,CD的中點(diǎn),∴,,,∴,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),與三角形中線有關(guān)的面積問題,解題的關(guān)鍵在于能夠熟練掌握平行四邊形的性質(zhì).8、B【解析】【分析】由題意作AR⊥BC于R,AS⊥CD于S,根據(jù)題意先證出四邊形ABCD是平行四邊形,再由AR=AS得平行四邊形ABCD是菱形,再根據(jù)勾股定理求出AB,最后利用菱形ABCD的面積建立關(guān)系得出紙條的寬AR的長.【詳解】解:作AR⊥BC于R,AS⊥CD于S,連接AC、BD交于點(diǎn)O.由題意知:AD∥BC,AB∥CD,∴四邊形ABCD是平行四邊形,∵兩個(gè)矩形等寬,∴AR=AS,∵AR?BC=AS?CD,∴BC=CD,∴平行四邊形ABCD是菱形,∴AC⊥BD,在Rt△AOB中,∵OA=3cm,OB=4cm,∴AB==5cm,∵平行四邊形ABCD是菱形,∴AB=BC=5cm,∴菱形ABCD的面積,即,解得:cm.故選:B.【點(diǎn)睛】本題主要考查菱形的判定以及勾股定理等知識,解題的關(guān)鍵是掌握一組鄰邊相等的平行四邊形是菱形以及菱形的面積等于對角線相乘的一半.9、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.10、B【解析】【分析】根據(jù)平行四邊形、矩形、菱形、正方形的性質(zhì)定理判斷即可.【詳解】解:平行四邊形的對角線互相平分,不一定相等,A錯(cuò)誤;矩形的對角線相等且互相平分,B正確;菱形的對角線互相垂直,不一定相等,C錯(cuò)誤;正方形的對角線所在的直線是正方形的對稱軸,D錯(cuò)誤;故選:B.【點(diǎn)睛】本題考查了命題的真假判斷,掌握平行四邊形、矩形、菱形、正方形的性質(zhì)是解題的關(guān)鍵.二、填空題1、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對角線分別為3x、4x,再根據(jù)菱形的面積等于兩對角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負(fù)值舍去),∴菱形的兩對角線的長分別為,.故答案為:6和8.【點(diǎn)睛】本題考查了菱形的面積,主要利用了菱形的對角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.2、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質(zhì)求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質(zhì)得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì),直角三角形斜邊上的中線,勾股定理等知識,解題的關(guān)鍵是熟練掌握正方形的性質(zhì).3、##【解析】【分析】首先證明四邊四邊形ABCD是菱形,作出F關(guān)于AB的對稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,求出ME即可.【詳解】解:作出F關(guān)于AB的對稱點(diǎn)M,再過M作ME′⊥AD,交AB于點(diǎn)P′,此時(shí)P′E′+P′F最小,此時(shí)P′E′+P′F=ME′,過點(diǎn)A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四邊形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小為.故答案為:.【點(diǎn)睛】本題考查翻折變換,等腰三角形的性質(zhì),軸對稱?最短問題等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.4、4【解析】【分析】根據(jù)題意連接BD,取BD的中點(diǎn)M,連接EM、FM,EM交BC于N,根據(jù)三角形的中位線定理推出EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,推出∠ABC=∠ENC,∠MFN=∠C,求出∠EMF=90°,根據(jù)勾股定理求出ME2+FM2=EF2,根據(jù)圓的面積公式求出陰影部分的面積即可.【詳解】解:連接BD,取BD的中點(diǎn)M,連接EM、FM,延長EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分別是AD、BC、BD的中點(diǎn),∴EM=AB,F(xiàn)M=CD,EM∥AB,F(xiàn)M∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴陰影部分的面積是:π(ME2+FM2)=EF2π=8π,∴EF=4.故答案為:4.【點(diǎn)睛】本題主要考查對勾股定理,三角形的內(nèi)角和定理,多邊形的內(nèi)角和定理,三角形的中位線定理,圓的面積,平行線的性質(zhì),面積與等積變形等知識點(diǎn)的理解和掌握,能正確作輔助線并求出ME2+FM2的值是解答此題的關(guān)鍵.5、10【解析】【分析】根據(jù)正方形的性質(zhì),結(jié)合題意易求證,,,即可利用“ASA”證明,得出.最后根據(jù)勾股定理可求出,即正方形的面積為10.【詳解】∵四邊形ABCD是正方形,∴,,∴.根據(jù)題意可知:,,∴,,∴在和中,,∴,∴.∵在中,,∴正方形ABCD的面積是10.故答案為:10.【點(diǎn)睛】本題考查正方形的性質(zhì),全等三角形的判定和性質(zhì)以及勾股定理.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.6、【解析】【分析】根據(jù)余角的性質(zhì)得到,根據(jù)全等三角形的性質(zhì)得到,推出,根據(jù)勾股定理得到,解方程組得到,接著由圖可知空白部分為重疊部分,陰影部分為非重疊部分,所以2倍的空白部分與陰影部分面積和等于三個(gè)正方形與三角形面積和.結(jié)合即可得出結(jié)論.依此即可求解.【詳解】解:如圖,四邊形是正方形,,,,,,,∵,即,,在中,,,,,,,陰影部分的面積和=三個(gè)正方形面積+三角形面積-2倍空白部分面積=.故答案為:.【點(diǎn)睛】本題考查勾股定理的知識,有一定難度,解題關(guān)鍵是將勾股定理和正方形的面積公式進(jìn)行靈活的結(jié)合和應(yīng)用.7、1【解析】【分析】根據(jù)基本作圖,得到EC是∠BCD的平分線,由AB∥CD,得到∠BEC=∠ECD=∠ECB,從而得到BE=BC,利用線段差計(jì)算即可.【詳解】根據(jù)基本作圖,得到EC是∠BCD的平分線,∴∠ECD=∠ECB,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案為:1.【點(diǎn)睛】本題考查了角的平分線的尺規(guī)作圖,等腰三角形的判定,平行線的性質(zhì),平行四邊形的性質(zhì),熟練掌握尺規(guī)作圖,靈活運(yùn)用等腰三角形的判定定理是解題的關(guān)鍵.8、【解析】【分析】設(shè)BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關(guān)于x的方程,求解x即可.【詳解】解:設(shè)BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質(zhì)可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)及翻轉(zhuǎn)折疊的性質(zhì),勾股定理,拓展一元一次方程,準(zhǔn)確運(yùn)用題目中的條件表示出EF列出方程式解題的關(guān)鍵.9、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長,再根據(jù)勾股定理求出和的長,找出規(guī)律,即可得出正方形的邊長.【詳解】解:∵A,B,C,D是正方形各邊的中點(diǎn)∴,∵正方形ABCD的邊長為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長為故答案為:.【點(diǎn)睛】本題考查了正方形性質(zhì)、勾股定理的應(yīng)用,解此題的關(guān)鍵是能根據(jù)計(jì)算結(jié)果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.10、【解析】【分析】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形,故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長度最大,則由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,則AF=,則FG=AD-AF=.【詳解】如圖所示,在中,F(xiàn)G邊的高為AB=2,∠FEG=30°,為定角定高的三角形故當(dāng)E與B點(diǎn)或C點(diǎn)重合,G與D點(diǎn)重合或F與A點(diǎn)重合時(shí),F(xiàn)G的長度最大∵矩形ABCD中,AB=2,AD=2∴∠ABD=60°∴∠ABF=60°-30°=30°∴AF=∴FG=AD-AF=.故答案為:.【點(diǎn)睛】本題考查了四邊形中動點(diǎn)問題,圖解法數(shù)學(xué)思想依據(jù)是數(shù)形結(jié)合思想.它的應(yīng)用能使復(fù)雜問題簡單化、抽象問題具體化.特殊四邊形的幾何問題,很多困難源于問題中的可動點(diǎn).如何合理運(yùn)用各動點(diǎn)之間的關(guān)系,同學(xué)們往往缺乏思路,常常導(dǎo)致思維混亂.實(shí)際上求解特殊四邊形的動點(diǎn)問題,關(guān)鍵是是利用圖解法抓住它運(yùn)動中的某一瞬間,尋找合理的代數(shù)關(guān)系式,確定運(yùn)動變化過程中的數(shù)量關(guān)系,圖形位置關(guān)系,分類畫出符合題設(shè)條件的圖形進(jìn)行討論,就能找到解決的途徑,有效避免思維混亂.三、解答題1、見解析【分析】根據(jù)菱形的性質(zhì)可得AB=BC=CD=AD,∠A=∠C,再由BE=BF,可推出AE=CF,即可利用SAS證明△ADE≌△CDF得到DE=DF,則∠DEF=∠DFE.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∠A=∠C,∵BE=BF,∴AB-BE=BC-BF,即AE=CF,∴△ADE≌△CDF(SAS),∴DE=DF,∴∠DEF=∠DFE.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì)與判定,解題的關(guān)鍵在于能夠熟練掌握菱形的性質(zhì).2、見解析【分析】根據(jù)菱形的性質(zhì),可得AD=DC,AB=BC,∠A=∠C.從而得到△AED≌△CFD.從而得到AE=CF.即可求證.【詳解】證明:∵四邊形ABCD是菱形,∴AD=DC,AB=BC,∠A=∠C.∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∴△AED≌△CFD(AAS).∴AE=CF.∴AB﹣AE=BC﹣CF.即:BE=BF.【點(diǎn)睛】本題主要考查了菱形的性質(zhì),全等三角形的判定和性質(zhì),熟練掌握菱形的對角相等,對邊相等是解題的關(guān)鍵.3、(1)見解析(2)見解析【分析】(1)利用垂直平分線和角平分線的尺規(guī)作圖法,進(jìn)行作圖即可.(2)利用直角三角形斜邊中線性質(zhì),以及角平分線的性質(zhì)直接證明與都是,最后加上,即可證明結(jié)論.【詳解】(1)答案如下圖所示:

分別以A、B兩點(diǎn)為圓心,以大于長為半徑畫弧,連接弧的交點(diǎn)的直線即為垂直平分線l,其與AB的交點(diǎn)為D,以點(diǎn)D為圓心,適當(dāng)長為半徑畫弧,分別交DA于點(diǎn)M,交CD于點(diǎn)N,交BD于點(diǎn)T,然后分別以點(diǎn)M,N為圓心,大于為半徑畫弧,連接兩弧交點(diǎn)與D點(diǎn)的連線交AC于點(diǎn)E,同理分別以點(diǎn)T,N為圓心,大于為半徑畫弧,連接兩弧交點(diǎn)與D點(diǎn)的連線交BC于點(diǎn)F.(2)證明:點(diǎn)是AB與其垂直平分線l的交點(diǎn),點(diǎn)是AB的中點(diǎn),是Rt△ABC上的斜邊的中線,,DE、DF分別是ADC,∠BDC的角平分線,,,,,,,,在四邊形CEDF中,,四邊形CEDF是矩形.【點(diǎn)睛】本題主要是考查了尺規(guī)作圖、直角三角形斜邊中線性質(zhì)以及矩形的判定,熟練利用直角三角形斜邊中線性質(zhì),找到三角形全等的判定條件,并且選擇合適的矩形判定條件,是解決本題的關(guān)鍵.4、(1)8;(2)12;(3)72或216【分析】(1)根據(jù)等腰三角形的性質(zhì)以及勾股定理即可解決問題.

(2)如圖2中,當(dāng)點(diǎn)F與D重合時(shí),連接DE.求出此時(shí)x的值即可判斷.

(3)分兩種情形分別求解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論