強化訓練人教版8年級數(shù)學上冊《軸對稱》專題測試練習題(含答案詳解)_第1頁
強化訓練人教版8年級數(shù)學上冊《軸對稱》專題測試練習題(含答案詳解)_第2頁
強化訓練人教版8年級數(shù)學上冊《軸對稱》專題測試練習題(含答案詳解)_第3頁
強化訓練人教版8年級數(shù)學上冊《軸對稱》專題測試練習題(含答案詳解)_第4頁
強化訓練人教版8年級數(shù)學上冊《軸對稱》專題測試練習題(含答案詳解)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學上冊《軸對稱》專題測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,已知△ABC,AB<BC,用尺規(guī)作圖的方法在BC上取一點P,使得PA+PC=BC,則下列選項正確的是(

)A. B.C. D.2、如圖,在△ABC中,AB=AC,∠C=70°,△AB′C′與△ABC關于直線EF對稱,∠CAF=10°,連接BB′,則∠ABB′的度數(shù)是(

)A.30° B.35° C.40° D.45°3、如圖,∠A=30°,∠C′=60°,△ABC與△A′B′C′關于直線l對稱,則∠B度數(shù)為(

)A. B. C. D.4、如圖,在和中,,連接交于點,連接.下列結論:①;②;③平分;④平分.其中正確的個數(shù)為().A.4 B.3 C.2 D.15、如圖,將?ABCD沿對角線AC折疊,使點B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°6、在平面直角坐標系中,點關于軸對稱的點的坐標為(

)A. B. C. D.7、下列標志中,可以看作是軸對稱圖形的是()A. B. C. D.8、下列圖案是幾家銀行的標志,其中是軸對稱圖形的有()A.1個 B.2個 C.3個 D.4個9、點A(2,-1)關于y軸對稱的點B的坐標為(

)A.(2,1) B.(-2,1) C.(2,-1) D.(-2,-1)10、一個三角形具備下列條件仍不是等邊三角形的是(

)A.一個角的平分線是對邊的中線或高線 B.兩邊相等,有一個內角是60°C.兩角相等,且兩角的和是第三個角的2倍 D.三個內角都相等第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在中,,,分別以點A,B為圓心,大于的長為半徑作弧,兩弧分別相交于點M,N,作直線,交于點D,連接,則的度數(shù)為_____.2、如圖,在△ABC中,AD⊥BC,垂足為點D,CE是邊AB上的中線,如果CD=BE,∠B=40°,那么∠BCE=_____度.3、如圖,等邊三角形ABC的邊長為2,D,E是AC,BC上兩個動點,且AD=CE,AE,BD交于點F,連接CF,則CF長度的最小值為______.4、如圖,在四邊形中,,,,點為邊上一點,連接.,與交于點,且,若,,則的長為_______________.5、如圖,在△ABC中,∠ACB的平分線交AB于點D,

DE⊥AC于點E,F為BC上一點,若DF=AD,△ACD與△CDF的面積分別為10和4,則△AED的面積為______6、如圖,已知O為△ABC三邊垂直平分線的交點,且∠A=50°,則∠BOC的度數(shù)為_____度.7、如圖,為內部一條射線,點為射線上一點,,點分別為邊上動點,則周長的最小值為______.8、等腰三角形的的兩邊分別為6和3,則它的第三邊為______.9、如圖,△ABC中,AB=AC,D、E分別在CA、BA的延長線上,連接BD、CE,且∠D+∠E=180°,若BD=6,則CE的長為__.10、如圖,BD垂直平分線段AC,AE⊥BC,垂足為E,交BD于P點,AE=7cm,AP=4cm,則P點到直線AB的距離是_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,在等邊三角形ABC中,點M為AB邊上任意一點,延長BC至點N,使CN=AM,連接MN交AC于點P,MH⊥AC于點H.(1)求證:MP=NP;(2)若AB=a,求線段PH的長(結果用含a的代數(shù)式表示).2、兩個大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,,,,,,在同一條直線上,連結.求的度數(shù).3、如圖所示,在三角形ABC中,,,作的平分線與AC交于點E,求證:.4、如圖,在中,,的垂直平分線分別交、于點D、E,的垂直平分線分別交、于點F、G.求的周長.5、如圖,點D是等邊三角形ABC的邊BC上一點,以AD為邊作等邊△ADE,連接CE.(1)求證:;(2)若∠BAD=20°,求∠AEC的度數(shù).-參考答案-一、單選題1、B【解析】【詳解】解:∵PB+PC=BC,PA+PC=BC,∴PA=PB,根據線段垂直平分線定理的逆定理可得,點P在線段AB的垂直平分線上,故可判斷B選項正確.故選B.2、C【解析】【分析】由軸對稱圖形的性質可得△BAC≌△B′AC′,進而結合三角形內角和定理即可得出答案.【詳解】如圖,連接BB′,∵△AB′C′與△ABC關于直線EF對稱,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠AC′B′=∠AB′C′=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=10°,∴∠C′AF=10°,∴∠BAB′=40°+10°+10°+40°=100°,∴∠ABB′=∠AB′B=40°,故選C.【考點】本題考查了軸對稱圖形的性質以及等腰三角形的性質,正確得出∠BAC的度數(shù)是解題關鍵.3、C【解析】【分析】由已知條件,根據軸對稱的性質可得∠C=∠C′=30°,利用三角形的內角和等于180°可求答案.【詳解】∵△ABC與△A′B′C′關于直線l對稱,∴∠A=∠A′=30°,∠C=∠C′=60°;∴∠B=180°?30°-60°=90°.故選:C.【考點】主要考查了軸對稱的性質與三角形的內角和是180度;求角的度數(shù)常常要用到“三角形的內角和是180°.4、B【解析】【分析】根據題意逐個證明即可,①只要證明,即可證明;②利用三角形的外角性質即可證明;④作于,于,再證明即可證明平分.【詳解】解:∵,∴,即,在和中,,∴,∴,①正確;∴,由三角形的外角性質得:∴°,②正確;作于,于,如圖所示:則°,在和中,,∴,∴,∴平分,④正確;正確的個數(shù)有3個;故選B.【考點】本題是一道幾何的綜合型題目,難度系數(shù)偏上,關鍵在于利用三角形的全等證明來證明線段相等,角相等.5、C【解析】【分析】根據平行四邊形性質和折疊性質得∠BAC=∠ACD=∠B′AC=∠1,再根據三角形內角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質,求出∠BAC的度數(shù)是解決問題的關鍵.6、D【解析】【分析】利用關于x軸對稱的點坐標特征:橫坐標不變,縱坐標互為相反數(shù)解答即可.【詳解】點關于軸對稱的點的坐標為(3,-2),故選:D.【考點】本題主要考查了關于坐標軸對稱的點的坐標特征,熟練掌握關于坐標軸對稱的點的坐標特征是解答的關鍵.7、D【解析】【分析】根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、不是軸對稱圖形,是中心對稱圖形,不符合題意;C、不是軸對稱圖形,是中心對稱圖形,不符合題意;D、是軸對稱圖形,符合題意.故選D.【考點】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉180度后與原圖重合.8、C【解析】【分析】根據軸對稱圖形的概念“如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠相互重合的圖形”可直接進行排除選項.【詳解】解:都是軸對稱圖形,而不是軸對稱圖形,所以是軸對稱圖形的有3個;故選C.【考點】本題主要考查軸對稱圖形的識別,熟練掌握軸對稱圖形的概念是解題的關鍵.9、D【解析】【分析】根據點坐標關于軸對稱的變換規(guī)律即可得.【詳解】解:點坐標關于軸對稱的變換規(guī)律:橫坐標互為相反數(shù),縱坐標相同.則點關于軸對稱的點的坐標為,故選:D.【考點】本題考查了點坐標與軸對稱變化,熟練掌握點坐標關于軸對稱的變換規(guī)律是解題關鍵.10、A【解析】【分析】根據等邊三角形的判定方法即可解答.【詳解】選項A,一個角的平分線是對邊的中線或高線,能判定該三角形是等腰三角形,不能判斷該三角形是等邊三角形;

選項B,兩邊相等,有一個內角是60°,根據有一個角為60°的等腰三角形是等邊三角形,即可判定該三角形是等邊三角形;選項C,兩角相等,且兩角的和是第三個角的2倍,根據三角形的內角和定理可求得該三角形的三個內角的度數(shù)都為60°,即可判定該三角形是等邊三角形;選項D,三個內角都相等,根據三角形的內角和定理可求得該三角形的三個內角的度數(shù)都為60°,即可判定該三角形是等邊三角形.故選A.【考點】本題考查了等邊三角形的判定,熟練運用等邊三角形的判定方法是解決問題的關鍵.二、填空題1、##50度【解析】【分析】根據作圖可知,,根據直角三角形兩個銳角互余,可得,根據即可求解.【詳解】解:∵在中,,,∴,由作圖可知是的垂直平分線,,,,故答案為:.【考點】本題考查了基本作圖,垂直平分線的性質,等邊對等角,直角三角形的兩銳角互余,根據題意分析得出是的垂直平分線,是解題的關鍵.2、20.【解析】【分析】連接ED,再加上AD⊥BC,利用直角三角形斜邊上的中線等于斜邊的一半,很容易可以推出△ECD為等腰三角形,根據等腰三角形的性質:等邊對等角,以及外角性質即可求出∠BCE的度數(shù).【詳解】如圖,連接ED,∵AD⊥BC,∴△ABD是直角三角形,∵CE是邊AB上的中線,∴ED=AB=BE,∴∠EDB=∠B=40°,又∵CD=BE,∴ED=CD,∴∠DEC=∠DCE,∵∠EDB是△DEC的外角,∴∠EDB=∠DEC+∠DCE=2∠DCE=40°,∴∠DCE=∠EDB=20°,∵∠DCE即∠BCE,∴∠BCE=20°.【考點】本題考查的是直角三角形的性質,等腰三角形的性質,掌握直角三角形中,斜邊上的中線等于斜邊的一半是解題的關鍵.3、【解析】【分析】由AD=CE,可知點F的路徑是一段弧,即當點D運動到AC的中點時,CF長度的最小,即點F為△ABC的中心,過B作于,過A點作交于點,則可知,由△ABC是等邊三角形,BC=2,得,進而可知,則CF長度的最小值是.【詳解】解:∵AD=CE,∴點F的路徑是一段弧,∴當點D運動到AC的中點時,CF長度的最小,即點F為△ABC的中心,過B作于,過A點作交于點,∴,∵△ABC是等邊三角形,BC=2,∴,∴.∴CF長度的最小值是.故答案為:.【考點】本題考查等邊三角形的性質,三角形中心的定義,求線段的最小值,解題的關鍵是能夠構造合適的輔助線求解.4、【解析】【分析】由,知點A,C都在BD的垂直平分線上,因此,可連接交于點,易證是等邊三角形,是等邊三角形,根據等邊三角形的性質對三角形中的線段進行等量轉換即可求出OB,OC的長度,應用勾股定理可求解.【詳解】解:如圖,連接交于點∵,,,∴垂直平分,是等邊三角形∴,,∵∴,∴∴∴∵∴是等邊三角形∴∴,∴∴【考點】本題主要考查了等邊三角形的判定與性質、勾股定理,綜合運用等邊三角形的判定與性質進行線段間等量關系的轉換是解題的關鍵.5、3【解析】【分析】如圖(見解析),過點D作,根據角平分線的性質可得,再利用三角形全等的判定定理得出,從而有,最后根據三角形面積的和差即可得出答案.【詳解】如圖,過點D作平分,又則解得故答案為:3.【考點】本題考查了角平分線的性質、直角三角形全等的判定定理等知識點,通過作輔助線,構造兩個全等的三角形是解題關鍵.6、100【解析】【分析】連接AO延長交BC于D,根據線段垂直平分線的性質可得OB=OA=OC,再根據等腰三角形的等邊對等角和三角形的外角性質可得∠BOC=2∠A,即可求解.【詳解】解:連接AO延長交BC于D,∵O為△ABC三邊垂直平分線的交點,∴OB=OA=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∵∠BOD=∠OBA+∠OAB=2∠OAB,∠COD=∠OCA+∠OAC=2∠OAC,∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2∠BAC,∵∠BAC=50°,∴∠BOC=100°.7、6【解析】【分析】作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2,與OA的交點即為點M,與OB的交點即為點N,則此時M、N符合題意,求出線段P1P2的長即可.【詳解】解:作點P關于OA的對稱點P1,點P關于OB的對稱點P2,連結P1P2與OA的交點即為點M,與OB的交點即為點N,△PMN的最小周長為PM+MN+PN=P1M+MN+P2N=P1P2,即為線段P1P2的長,連結OP1、OP2,則OP1=OP2=OP=6,又∵∠P1OP2=2∠AOB=60°,∴△OP1P2是等邊三角形,∴P1P2=OP1=6,即△PMN的周長的最小值是6.故答案是:6.【考點】本題考查了等邊三角形的性質和判定,軸對稱?最短路線問題的應用,關鍵是確定M、N的位置.8、6【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】解:由題意得:當腰為3時,則第三邊也為腰,為3,此時3+3=6.故以3,3,6不能構成三角形;當腰為6時,則第三邊也為腰,為6,此時3+6>6,故以3,6,6可構成三角形.故答案為:6.【考點】本題考查了等腰三角形的定義和三角形的三邊關系,已知條件沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.9、6【解析】【分析】在AD上截取AF=AE,連接BF,易得△ABF≌△ACE,根據全等三角形的性質可得∠BFA=∠E,CE=BF,則有∠D=∠DFB,然后根據等腰三角形的性質可求解.【詳解】解:在AD上截取AF=AE,連接BF,如圖所示:AB=AC,∠FAB=∠EAC,,BF=EC,∠BFA=∠E,∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D,BF=BD,BD=6,10、3cm.【解析】【分析】由已知條件,根據垂直平分線的性質得出AB=BC,可得到∠ABD=∠DBC,再利用角平分線上的點到角兩邊的距離相等得到答案.【詳解】解:過點P作PM⊥AB與點M,∵BD垂直平分線段AC,∴AB=CB,∴∠ABD=∠DBC,即BD為角平分線,∵AE=7cm,AP=4cm,∴AE﹣AP=3cm,又∵PM⊥AB,PE⊥CB,∴PM=PE=3(cm).故答案為:3cm.【考點】本題綜合考查了線段垂直平分線的性質及角平分線的性質,線段垂直平分線上的點到線段兩端的距離相等,角平分線上的點到角兩邊的距離相等,靈活應用線段垂直平分線及角平分線的性質是解題的關鍵.三、解答題1、(1)見詳解;(2)0.5a.【解析】【分析】(1)過點M作MQCN,證明即可;(2)利用等邊三角形的性質推出AH=HQ,則PH=HQ+PQ=0.5(AQ+CQ).(1)如下圖所示,過點M作MQCN,∵為等邊三角形,MQCN,∴,則AM=AQ,且∠A=60°,∴為等邊三角形,則MQ=AM=CN,又∵MQCN,∴∠QMP=∠CNP,在,∴,

則MP=NP;(2)∵為等邊三角形,且MH⊥AC,∴AH=HQ,

又由(1)得,,則PQ=PC,∴PH=HQ+PQ=0.5(AQ+CQ)=0.5AC=0.5a.【考點】本題考查了等邊三角形的性質與判定、三角形全等的判定,正確作出輔助線是解題的關鍵.2、∠ACD【解析】【分析】根據SAS證明△ACD≌△ABE,然后根據全等三角形的性質即可得出答案.【詳解】解:∵∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,∴∠BAE=∠CAD,在△ABE與△ACD中,,∴△ACD≌△ABE(SAS),∴∠ACD=∠B.【考點】題考查全等三角形的判定和性質、等腰直角三角形的性質等知識,解題的關鍵是正確尋找全等三角形解決問題,屬于中考常考題型

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論