達(dá)標(biāo)測(cè)試人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題訓(xùn)練練習(xí)題_第1頁(yè)
達(dá)標(biāo)測(cè)試人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題訓(xùn)練練習(xí)題_第2頁(yè)
達(dá)標(biāo)測(cè)試人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題訓(xùn)練練習(xí)題_第3頁(yè)
達(dá)標(biāo)測(cè)試人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題訓(xùn)練練習(xí)題_第4頁(yè)
達(dá)標(biāo)測(cè)試人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題訓(xùn)練練習(xí)題_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》專題訓(xùn)練考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,點(diǎn)E是△ABC內(nèi)一點(diǎn),∠AEB=90°,D是邊AB的中點(diǎn),延長(zhǎng)線段DE交邊BC于點(diǎn)F,點(diǎn)F是邊BC的中點(diǎn).若AB=6,EF=1,則線段AC的長(zhǎng)為()A.7 B. C.8 D.92、如圖,在四邊形中,AB∥CD,添加下列一個(gè)條件后,一定能判定四邊形是平行四邊形的是()A. B. C. D.3、如圖,在?ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB于E,在線段AB上,連接EF、CF.則下列結(jié)論:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正確的是(

)A.②④ B.①②④

C.①②③④

D.②③④4、菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E,F(xiàn)分別是AD,CD邊上的中點(diǎn),連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.85、如圖,已知是平分線上的一點(diǎn),,,是的中點(diǎn),,如果是上一個(gè)動(dòng)點(diǎn),則的最小值為()A. B. C. D.6、如圖,在長(zhǎng)方形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在點(diǎn)F處,連接CF,當(dāng)△CEF為直角三角形時(shí),則BE的長(zhǎng)是()A.4 B.3 C.4或8 D.3或67、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長(zhǎng)交BE于點(diǎn)P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長(zhǎng)為()A.5 B.2 C.2 D.38、勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,是數(shù)形結(jié)合的重要紐帶.?dāng)?shù)學(xué)家歐幾里得利用如圖驗(yàn)證了勾股定理:以直角三角形ABC的三條邊為邊長(zhǎng)向外作正方形ACHI,正方形ABED,正方形BCGF,連接BI,CD,過(guò)點(diǎn)C作CJ⊥DE于點(diǎn)J,交AB于點(diǎn)K.設(shè)正方形ACHI的面積為S1,正方形BCGF的面積為S2,長(zhǎng)方形AKJD的面積為S3,長(zhǎng)方形KJEB的面積為S4,下列結(jié)論:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正確的結(jié)論有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)9、直角三角形的兩條直角邊分別為5和12,那么這個(gè)三角形的斜邊上的中線長(zhǎng)為()A.6 B.6.5 C.10 D.1310、的周長(zhǎng)為32cm,AB:BC=3:5,則AB、BC的長(zhǎng)分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、正方形的對(duì)角線長(zhǎng)為cm,則它的周長(zhǎng)為__________cm.2、在直角墻角FOE中有張硬紙片正方形ABCD靠墻邊滑動(dòng),如圖所示,AD=2,A點(diǎn)沿墻往下滑動(dòng)到O點(diǎn)的過(guò)程中,正方形的中心點(diǎn)M到O的最小值是______.3、如圖,在?ABCD中,BC=3,CD=4,點(diǎn)E是CD邊上的中點(diǎn),將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點(diǎn)G到AB的距離為______.4、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.5、已知Rt△ABC的周長(zhǎng)是24,斜邊上的中線長(zhǎng)是5,則S△ABC=_____.6、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點(diǎn),N為BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),將△BMN沿直線MN折疊,使點(diǎn)B落在點(diǎn)E處,連接DE,CE,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為_____.7、已知長(zhǎng)方形ABCD中,AB=4,BC=10,M為BC中點(diǎn),P為AD上的動(dòng)點(diǎn),則以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長(zhǎng)是______________________.8、如圖,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC是格點(diǎn)三角形,點(diǎn)D為AC的中點(diǎn),則線段BD的長(zhǎng)為_____.9、判斷:(1)菱形的對(duì)角線互相垂直且相等____()____(2)菱形的對(duì)角線把菱形分成四個(gè)全等的直角三角形____()____10、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點(diǎn)A,O,B,C循環(huán),點(diǎn)A的坐標(biāo)為(2,0),按此規(guī)律進(jìn)行下去,則點(diǎn)P2021的坐標(biāo)為_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖1,正方形ABCD的邊長(zhǎng)為a,E為邊CD上一動(dòng)點(diǎn)(點(diǎn)E與點(diǎn)C、D不重合),連接AE交對(duì)角線BD于點(diǎn)P,過(guò)點(diǎn)P作PF⊥AE交BC于點(diǎn)F.(1)求證:PA=PF;(2)如圖2,過(guò)點(diǎn)F作FQ⊥BD于Q,在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,PQ的長(zhǎng)度是否發(fā)生變化?若不變,求出PQ的長(zhǎng);若變化,請(qǐng)說(shuō)明變化規(guī)律.(3)請(qǐng)寫出線段AB、BF、BP之間滿足的數(shù)量關(guān)系,不必說(shuō)明理由.2、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),,M關(guān)于直線AF對(duì)稱.

(1)求證:B,M關(guān)于AE對(duì)稱;(2)若的平分線交AE的延長(zhǎng)線于G,求證:.3、如圖,是的中位線,延長(zhǎng)到,使,連接.求證:.

4、如圖所示,正方形中,點(diǎn)E,F(xiàn)分別為BC,CD上一點(diǎn),點(diǎn)M為EF上一點(diǎn),D,M關(guān)于直線AF對(duì)稱.連結(jié)DM并延長(zhǎng)交AE的延長(zhǎng)線于N,求證:.5、如圖,在長(zhǎng)方形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,將∠B沿直線AE折疊,使點(diǎn)B落在點(diǎn)處.

(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),與AD交于點(diǎn)F,求證:FA=FC;(2)如圖2,當(dāng)點(diǎn)E不與點(diǎn)C重合,且點(diǎn)在對(duì)角線AC上時(shí),求CE的長(zhǎng).-參考答案-一、單選題1、C【解析】【分析】根據(jù)直角三角形的性質(zhì)求出DE,由EF=1,得到DF,再根據(jù)三角形中位線定理即可求出線段AC的長(zhǎng).【詳解】解:∵∠AEB=90,D是邊AB的中點(diǎn),AB=6,∴DE=AB=3,∵EF=1,∴DF=DE+EF=3+1=4.∵D是邊AB的中點(diǎn),點(diǎn)F是邊BC的中點(diǎn),∴DF是ABC的中位線,∴AC=2DF=8.故選:C.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形中位線定理,求出DF的長(zhǎng)是解題的關(guān)鍵.2、C【解析】【分析】由平行線的性質(zhì)得,再由,得,證出,即可得出結(jié)論.【詳解】解:一定能判定四邊形是平行四邊形的是,理由如下:,,,,,又,四邊形是平行四邊形,故選:C.【點(diǎn)睛】本題考查了平行四邊形的判定,解題的關(guān)鍵是熟練掌握平行四邊形的判定,證明出.3、B【解析】【分析】根據(jù)易得DF=CD,由平行四邊形的性質(zhì)AD∥BC即可對(duì)①作出判斷;延長(zhǎng)EF,交CD延長(zhǎng)線于M,可證明△AEF≌△DMF,可得EF=FM,由直角三角形斜邊上中線的性質(zhì)即可對(duì)②作出判斷;由△AEF≌△DMF可得這兩個(gè)三角形的面積相等,再由MC>BE易得S△BEC<2S△EFC,從而③是錯(cuò)誤的;設(shè)∠FEC=x,由已知及三角形內(nèi)角和可分別計(jì)算出∠DFE及∠AEF,從而可判斷④正確與否.【詳解】①∵F是AD的中點(diǎn),∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠BCD=2∠DCF,故①正確;②延長(zhǎng)EF,交CD延長(zhǎng)線于M,∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF,∵F為AD中點(diǎn),∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FE,∴∠ECF=∠CEF,故②正確;③∵EF=FM,∴S△EFC=S△CFM,∵M(jìn)C>BE,,∴S△BEC<2S△EFC,故S△BEC=2S△CEF,故③錯(cuò)誤;④設(shè)∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正確,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上中線的性質(zhì),三角形的面積等知識(shí),構(gòu)造輔助線證明三角形全等是本題的關(guān)鍵和難點(diǎn).4、A【解析】【分析】根據(jù)中位線定理可得對(duì)角線AC的長(zhǎng),再由菱形面積等于對(duì)角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點(diǎn),EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點(diǎn)睛】本題主要考查菱形的性質(zhì)與中位線定理,熟練掌握中位線定理和菱形面積公式是關(guān)鍵.5、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進(jìn)而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點(diǎn)P是∠AOB平分線上的一點(diǎn),,∴,∵PD⊥OA,M是OP的中點(diǎn),∴,∴∵點(diǎn)C是OB上一個(gè)動(dòng)點(diǎn)∴當(dāng)時(shí),PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點(diǎn)睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.6、D【解析】【分析】當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí)連接,先利用勾股定理計(jì)算出,根據(jù)折疊的性質(zhì)得,而當(dāng)為直角三角形時(shí),只能得到,所以點(diǎn)A、F、C共線,即沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,則,,可計(jì)算出然后利用勾股定理求解即可;②當(dāng)點(diǎn)F落在邊上時(shí).此時(shí)為正方形,由此即可得到答案.【詳解】解:當(dāng)為直角三角形時(shí),有兩種情況:①當(dāng)點(diǎn)F落在矩形內(nèi)部時(shí),如圖所示.連接,在中,,,∴,∵△ABE沿折疊,使點(diǎn)B落在點(diǎn)F處,∴,BE=EF,當(dāng)為直角三角形時(shí),只能得到,∴∴點(diǎn)A、F、C共線,即△ABE沿折疊,使點(diǎn)B落在對(duì)角線上的點(diǎn)F處,∴,∴,設(shè)BE=EF=x,則EC=BC-BE=8-x,∵,∴,解得,∴BE=3;②當(dāng)點(diǎn)F落在邊上時(shí),如圖所示,由折疊的性質(zhì)可知AB=AF,BE=EF,∠AEF=∠B=90°,∠FEC=90°,∴為正方形,∴,綜上所述,BE的長(zhǎng)為3或6.故選D.【點(diǎn)睛】本題考查折疊問(wèn)題:折疊前后兩圖形全等,即對(duì)應(yīng)線段相等;對(duì)應(yīng)角相等.也考查了矩形的性質(zhì),正方形的性質(zhì)與判定以及勾股定理.解題的關(guān)鍵是要注意本題有兩種情況,需要分類討論,避免漏解.7、D【解析】【分析】過(guò)點(diǎn)D作DH⊥BC,交BC的延長(zhǎng)線于點(diǎn)H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結(jié)果.【詳解】過(guò)點(diǎn)D作DH⊥BC,交BC的延長(zhǎng)線于點(diǎn)H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),勾股定理,解題的關(guān)鍵是熟練運(yùn)用這些性質(zhì)解決問(wèn)題.8、C【解析】【分析】根據(jù)SAS證△ABI≌△ADC即可得證①正確,過(guò)點(diǎn)B作BM⊥IA,交IA的延長(zhǎng)線于點(diǎn)M,根據(jù)邊的關(guān)系得出S△ABI=S1,即可得出②正確,過(guò)點(diǎn)C作CN⊥DA交DA的延長(zhǎng)線于點(diǎn)N,證S1=S3即可得證③正確,利用勾股定理可得出S1+S2=S3+S4,即能判斷④不正確.【詳解】解:①∵四邊形ACHI和四邊形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正確;②過(guò)點(diǎn)B作BM⊥IA,交IA的延長(zhǎng)線于點(diǎn)M,∴∠BMA=90°,∵四邊形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四邊形AMBC是矩形,∴BM=AC,∵S△ABI=AI?BM=AI?AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正確;③過(guò)點(diǎn)C作CN⊥DA交DA的延長(zhǎng)線于點(diǎn)N,∴∠CNA=90°,∵四邊形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD?AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四邊形AKCN是矩形,∴CN=AK,∴S△ACD=AD?CN=AD?AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3,即③正確;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④錯(cuò)誤;綜上,共有3個(gè)正確的結(jié)論,故選:C.【點(diǎn)睛】本題主要考查勾股定理,正方形的性質(zhì),矩形性質(zhì),全等三角形的判定和性質(zhì)等知識(shí),熟練掌握勾股定理和全等三角形的判定和性質(zhì)是解題的關(guān)鍵.9、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長(zhǎng),再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長(zhǎng)為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長(zhǎng)==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.10、C【解析】【分析】根據(jù)平行四邊形的性質(zhì),可得AB=CD,BC=AD,然后設(shè),可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設(shè),∵的周長(zhǎng)為32cm,∴,即,解得:,∴.故選:C【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),熟練掌握平行四邊形的對(duì)邊相等是解題的關(guān)鍵.二、填空題1、16【解析】【分析】根據(jù)正方形對(duì)角線的長(zhǎng),可將正方形的邊長(zhǎng)求出,進(jìn)而可將正方形的周長(zhǎng)求出.【詳解】解:設(shè)正方形的邊長(zhǎng)為x,∵正方形的對(duì)角線長(zhǎng)為cm,∴,解得:x=4,∴正方形的邊長(zhǎng)為:4(cm),∴正方形的周長(zhǎng)為4×4=16(cm).故答案為:16.【點(diǎn)睛】本題考查了正方形的性質(zhì),勾股定理,解決本題的關(guān)鍵是掌握正方形的性質(zhì).2、2【解析】【分析】取的中點(diǎn)為,連接,根據(jù)直角三角形的性質(zhì)求出OG和MG的長(zhǎng),然后根據(jù)兩點(diǎn)之間線段最短即可求解.【詳解】解:取的中點(diǎn)為,連接,為正方形,,,為中點(diǎn),,又為直角三角形,,的軌跡是以為圓心的圓弧,最小值為當(dāng)三點(diǎn)共線時(shí),即,故答案為:2.【點(diǎn)睛】本題考查了正方形的性質(zhì),直角三角形斜邊的中線等于斜邊的一半,以及兩點(diǎn)之間線段最短等知識(shí),正確作出輔助線是解答本題的關(guān)鍵.3、2##【解析】【分析】根據(jù)折疊性質(zhì)和平行四邊形的性質(zhì)可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長(zhǎng),進(jìn)而可得GF的值.【詳解】解:如圖,GF⊥AB于點(diǎn)F,∵點(diǎn)E是CD邊上的中點(diǎn),∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點(diǎn)F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點(diǎn)睛】本題考查了折疊的性質(zhì)、平行四邊形的性質(zhì)、勾股定理等知識(shí),證明△ABG≌△EAD是解題的關(guān)鍵.4、菱形【解析】【分析】先在坐標(biāo)系中畫出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.5、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長(zhǎng)求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識(shí)是解題的關(guān)鍵.6、cm或2cm【解析】【分析】分兩種情況:①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,由菱形的性質(zhì)得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當(dāng)CE=CD上,CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當(dāng)DE=DC時(shí),連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M(jìn)為AB的中點(diǎn),∴AM=BM=1,由折疊的性質(zhì)得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點(diǎn)共線,設(shè)BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當(dāng)CE=CD時(shí),CE=CD=AD,此時(shí)點(diǎn)E與A重合,N與點(diǎn)C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當(dāng)△CDE為等腰三角形時(shí),線段BN的長(zhǎng)為cm或2cm;故答案為cm或2cm.【點(diǎn)睛】本題考查了折疊變換的性質(zhì)、菱形的性質(zhì)、全等三角形的判定與性質(zhì)、三點(diǎn)共線、勾股定理、直角三角形的性質(zhì)、等腰三角形的性質(zhì)等知識(shí),熟練掌握并靈活運(yùn)用是解題的關(guān)鍵.7、5或或【解析】【分析】分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在BM的垂直平分線上,取BM的中點(diǎn)N,過(guò)點(diǎn)N作NP⊥BM交AD于P,則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理即可求解;②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理可得MN=3,從而BN=2,再由勾股定理可得BP的長(zhǎng);③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,根據(jù)勾股定理MN=3,從而BN=8,再由勾股定理可得BP的長(zhǎng);即可求解.【詳解】解:BC=10,M為BC中點(diǎn),∴BM=5,當(dāng)△BMP為等腰三角形時(shí),分三種情況:①當(dāng)BP=PM時(shí),點(diǎn)P在AM的垂直平分線上,取BM的中點(diǎn)N,過(guò)點(diǎn)N作NP⊥AD交AD于P,如圖1所示:則△PBM是等腰三角形∴底邊BM的長(zhǎng)為5②當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為銳角如圖2時(shí),則四邊形ABNP是矩形,∴PN=AB=4,∴MN=∴在Rt△PBN中,③當(dāng)BM=PM=5時(shí),當(dāng)∠PMB為鈍角如圖3時(shí),則四邊形ABNP是矩形,得AB=PN=4,同理可得∴在Rt△PBN中,綜上,以B、M、P為頂點(diǎn)組成的等腰三角形的底邊長(zhǎng)是:5或或故答案為:5或或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、勾股定理以及分類討論等知識(shí),熟練掌握矩形的性質(zhì),進(jìn)行分類討論是解題的關(guān)鍵.8、##【解析】【分析】根據(jù)勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判斷出△ABC是直角三角形,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:,,,,∴∠ABC=90°,∵點(diǎn)D為AC的中點(diǎn),∴BD為AC邊上的中線,∴BD=AC,故答案為:【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),勾股定理,勾股定理逆定理的應(yīng)用,判斷出△ABC是直角三角形是解題的關(guān)鍵.9、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對(duì)角線互相垂直且平分;(2)菱形的對(duì)角線把菱形分成四個(gè)全等的直角三角形.故答案為:(1)×;(2)√【點(diǎn)睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對(duì)角線互相垂直且平分是解題的關(guān)鍵.10、(4044,0)【解析】【分析】由題意可知:正方形的邊長(zhǎng)為2,分別求得,可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,找到規(guī)律,即求得點(diǎn)P2021在x軸正半軸,進(jìn)而求得OP的長(zhǎng)度,即可求得點(diǎn)的坐標(biāo).【詳解】由題意可知:正方形的邊長(zhǎng)為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2,2021÷4=505…1,故點(diǎn)P2021在x軸正半軸,OP的長(zhǎng)度為2021×2+2=4044,即:P2021的坐標(biāo)是(4044,0),故答案為:(4044,0).【點(diǎn)睛】本題考查了平面直角坐標(biāo)系點(diǎn)的坐標(biāo)規(guī)律,正方形的性質(zhì),找到點(diǎn)的位置是四個(gè)一循環(huán),每旋轉(zhuǎn)一次半徑增加2的規(guī)律是解題的關(guān)鍵.三、解答題1、(1)見(jiàn)解析;(2)PQ的長(zhǎng)不變,見(jiàn)解析;(3)AB+BF=PB【分析】(1)連接PC,由正方形的性質(zhì)得到,,然后依據(jù)全等三角形的判定定理證明,由全等三角形的性質(zhì)可知,,接下來(lái)利用四邊形的內(nèi)角和為360°可證明,于是得到,故此可證明;(2)連接AC交BD于點(diǎn)O,依據(jù)正方形的性質(zhì)可知為等腰直角三角形,于是可求得AO的長(zhǎng),接下來(lái),證明,依據(jù)全等三角形的性質(zhì)可得到;(3)過(guò)點(diǎn)P作,,垂足分別為M,N,首先證明為等腰直角三角形于是得到,由角平分線的性質(zhì)可得到,然后再依據(jù)直角三角形全等的證明方法證明可得到,,于是將可轉(zhuǎn)化為的長(zhǎng).【詳解】解:(1)證明:連接PC,如圖所示:∵ABCD為正方形,∴,,在和中,,∴,∴,,∵,∴.∵,∴.∴.∴,∴;(2)PQ的長(zhǎng)不變.理由:連接AC交BD于點(diǎn)O,如圖所示:∵,∴.∵,∴.∴.又∵四邊形ABCD為正方形,∴,.在和中,,∴.∴;(3)如圖所示:過(guò)點(diǎn)P作,,垂足分別為M,N.∵四邊形ABCD為正方形,∴.∵,∴,∴.∵BD平分,,,∴.在和中,,∴.∴.∵,∴.∴.【點(diǎn)睛】題目主要考查正方形的性質(zhì),全等三角形的判定和性質(zhì),勾股定理解三角形,等腰三角形的性質(zhì)等,理解題意,作出相應(yīng)輔助線,綜合運(yùn)用這些性質(zhì)定理是解題關(guān)鍵.2、(1)見(jiàn)解析;(2)見(jiàn)解析【分析】(1)由已知可證,,即可得證;(2)由上述結(jié)論可得,再證△AFG

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論