版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版9年級數(shù)學上冊【旋轉】綜合測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、圖,在中,,將繞頂點順時針旋轉到,當首次經(jīng)過頂點時,旋轉角(
)A.30° B.40° C.45° D.60°2、以下是我國部分博物館標志的圖案,其中既是軸對稱圖形又是中心對稱圖形的是(
)A. B.C. D.3、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(
)A. B. C. D.4、在平面直角坐標系中,點關于原點對稱的點的坐標是(
)A. B. C. D.5、如圖,與關于成中心對稱,不一定成立的結論是(
)A. B.C. D.6、如圖,在中,,將繞點逆時針旋轉得到,其中點與點是對應點,且點在同一條直線上;則的長為(
)A. B. C. D.7、如圖,在中,,,D為內(nèi)一點,分別連接PA、PB、PC,當時,,則BC的值為(
)A.1 B. C. D.28、如圖,在平面直角坐標系中,已知點P(0,2),點A(4,2).以點P為旋轉中心,把點A按逆時針方向旋轉60°,得點B.在,,,四個點中,直線PB經(jīng)過的點是(
)A. B. C. D.9、如圖,已知是等邊三角形,邊長為,將繞點逆時針旋轉后點的對應點的坐標是(
)A. B. C. D.10、如圖,在正方形ABCD中,將邊BC繞點B逆時針旋轉至,連接,,若,,則線段BC的長度為().A.4 B.5 C. D.第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在菱形OBCD中,OB=1,相鄰兩內(nèi)角之比為1:2,將菱形OBCD繞頂點O順時針旋轉90°,得到菱形OB′C′D′視為一次旋轉,則菱形旋轉45次后點C的坐標為_____.2、如圖,在△ABC中,∠CAB=45°,若∠CAB'=25°,則旋轉角的度數(shù)為_____.3、如圖,正方形的邊長為4,點E是對角線上的動點(點E不與A,C重合),連接交于點F,線段繞點F逆時針旋轉得到線段,連接.下列結論:①;②;③若四邊形的面積是正方形面積的一半,則的長為;④.其中正確的是_________.(填寫所有正確結論的序號)4、如圖,菱形ABCD的邊長為2,∠A=60°,E是邊AB的中點,F(xiàn)是邊AD上的一個動點,將線段EF繞著點E順時針旋轉60°得到EG,連接DG、CG,則DG+CG的最小值為_____.5、如圖,將等邊△AOB放在平面直角坐標系中,點A的坐標為,點B在第一象限,將等邊△AOB繞點O順時針旋轉180°得到△A′OB′,則點B′的坐標是__________.6、如圖:為五個等圓的圓心,且在一條直線上,請在圖中畫一條直線,將這五個圓分成面積相等的兩個部分,并說明這條直線經(jīng)過的兩點是___________.7、如圖,將n個邊長都為1cm的正方形按如圖所示擺放,點A1,A2,…,An分別是正方形的中心,則n個正方形重疊形成的重疊部分的面積和為________8、如圖,將矩形繞點逆時針旋轉,連接,,當為______時.9、如圖,矩形ABCD中,AB=2,BC=1,將矩形ABCD繞頂點C順時針旋轉90°,得到矩形EFCG,連接AE,取AE的中點H,連接DH,則_______.10、如圖,將繞點O逆時針旋轉后得到,若恰好經(jīng)過點A,且,則的度數(shù)為_____________.三、解答題(6小題,每小題5分,共計30分)1、如圖1,等腰中,,點,分別在邊,上,,連接,點,,分別為,,的中點.(1)觀察猜想:圖1中,線段與的數(shù)量關系是______,位置關系是______.(2)探究證明:把繞點逆時針方向旋轉到圖2的位置,連接,,,判斷的形狀,并說明理由;(3)拓展延伸:把繞點在平面內(nèi)自由旋轉,若,,請直接寫出面積的最大值.2、在Rt△ABC中,∠BAC=90°,AB=AC,動點D在直線BC上(不與點B,C重合),連接AD,把AD繞點A逆時針旋轉90°得到AE,連接DE,F(xiàn),G分別是DE,CD的中點,連接FG.【特例感知】(1)如圖1,當點D是BC的中點時,F(xiàn)G與BD的數(shù)量關系是,F(xiàn)G與直線BC的位置關系是;【猜想論證】(2)當點D在線段BC上且不是BC的中點時,(1)中的結論是否仍然成立?①請在圖2中補全圖形;②若成立,請給出證明;若不成立,請說明理由.【拓展應用】(3)若AB=AC=,其他條件不變,連接BF、CF.當△ACF是等邊三角形時,請直接寫出△BDF的面積.3、如圖,四邊形OABC是矩形,點A、C在坐標軸上,△ODE是△OCB繞點O順時針旋轉90度得到的,點D在x軸上,直線BD交y軸于點F,交OE于點H,線段BC、OC的長是方程的的解,且OC>BC.(1)求直線BD的解析式;(2)求△OFH的面積;4、定義:將圖形M繞點P順時針旋轉90°得到圖形N,則圖形N稱為圖形M關于點P的“垂直圖形”.例如:在下圖中,點D為點C關于點P的“垂直圖形”.(1)點A關于原點O的“垂直圖形”為點B.①若點A的坐標為(0,2),直接寫出點B的坐標;②若點B的坐標為(2,1),直接寫出點A的坐標;(2)E(-3,3),F(xiàn)(-2,3),G(a,0).線段EF關于點G的“垂直圖形”記為E′F′,點E的對應點為E′,點F的對應點為F′.①求點E′的坐標;②當點G運動時,求的最小值.5、如圖,等腰Rt△ABC中,∠A=45°,∠ABC=90°,點D在AC上,將△ABD繞點B沿順時針方向旋轉90°后,得到△CBE.(1)求∠DCE的度數(shù);(2)若AB=4,CD=3AD,求DE的長.6、如圖,已知正方形點在邊上,以為邊在左側作正方形;以為鄰邊作平行四邊形連接.(1)判斷和的數(shù)量及位置關系,并說明理由;(2)將繞點順時針旋轉,在旋轉過程中,和的數(shù)量及位置關系是否發(fā)生變化?請說明理由.-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形的性質及旋轉的性質可知,然后可得,則有,進而問題可求解.【詳解】解:∵四邊形是平行四邊形,,∴,由旋轉的性質可得,∴,∴;故選B.【考點】本題主要考查平行四邊形的性質與旋轉的性質,熟練掌握平行四邊形的性質與旋轉的性質是解題的關鍵.2、A【解析】【分析】根據(jù)中心對稱圖形和軸對稱圖形的概念逐項分析即可,軸對稱圖形:平面內(nèi),一個圖形沿一條直線折疊,直線兩旁的部分能夠完全重合的圖形.中心對稱圖形:在平面內(nèi),把一個圖形繞著某個點旋轉,如果旋轉后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.【詳解】A.既是軸對稱圖形又是中心對稱圖形,故該選項符合題意;B.是軸對稱圖形,但不是中心對稱圖形,故該選項不符合題意;C.不是軸對稱圖形,但是中心對稱圖形,故該選項不符合題意;D.既不是軸對稱圖形也不是中心對稱圖形,故該選項不符合題意.故選A.【考點】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合,掌握中心對稱圖形與軸對稱圖形的概念是解題的關鍵.3、D【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷即可.【詳解】解:A、是中心對稱圖形,但不是軸對稱圖形,不符合題意;B、是軸對稱圖像,但不是中心對稱圖形,不符合題意;C、是軸對稱圖形,但不是中心對稱圖形,不符合題意;D、是軸對稱圖形,也是中心對稱圖形,符合題意;故選:D【考點】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合,掌握以上知識是解題的關鍵.4、C【解析】【分析】根據(jù)坐標系中對稱點與原點的關系判斷即可.【詳解】關于原點對稱的一組坐標橫縱坐標互為相反數(shù),所以(3,2)關于原點對稱的點是(-3,-2),故選C.【考點】本題考查原點對稱的性質,關鍵在于牢記基礎知識.5、D【解析】【分析】根據(jù)中心對稱的性質即可判斷.【詳解】解:對應點的連線被對稱中心平分,A,B正確;成中心對稱圖形的兩個圖形是全等形,那么對應線段相等,C正確;和不是對應角,D錯誤.故選:D.【考點】本題考查成中心對稱兩個圖形的性質:對應點的連線被對稱中心平分;成中心對稱圖形的兩個圖形是全等形.6、A【解析】【分析】根據(jù)旋轉的性質說明△ACC′是等腰直角三角形,且∠CAC′=90°,理由勾股定理求出CC′值,最后利用B′C=CC′-C′B′即可.【詳解】解:根據(jù)旋轉的性質可知AC=AC′,∠ACB=∠AC′B′=45°,BC=B′C′=1,∴△ACC′是等腰直角三角形,且∠CAC′=90°,∴CC′==4,∴B′C=4-1=3.故選:A.【考點】本題主要考查了旋轉的性質、勾股定理,在解決旋轉問題時,要借助旋轉的性質找到旋轉角和旋轉后對應的量.7、C【解析】【分析】將△BPA順時針旋轉60°,到△BMN處,得到△BPM,△ABN是等邊三角形,證明C、P、M、N四點共線,且∠CAN=90°,設BC=x,則AB=BN=2x,AC=,利用勾股定理計算即可.【詳解】將△BPA順時針旋轉60°,到△BMN處,則△BPM,△ABN是等邊三角形,∠BPM=∠BMP=60°,∠BAN=60°,PM=PB,BA=BN,PA=MN,∵∠CPB=∠BPA=∠APC=∠BMN=120°,∴∠BMP+∠BMN=180°,∠BPC+∠BPM=180°,∴C、P、M、N四點共線,∴CP+PM+MN=CP+PB+PA=,∵∠BAC=30°,∠BAN=60°,∴∠CAN=90°,設BC=x,則AB=BN=2x,AC=,∴,解得x=,x=-,舍去,故選C.【考點】本題考查了旋轉的性質,等邊三角形的判定和性質,勾股定理,直角三角形的性質,熟練掌握旋轉的性質是解題的關鍵.8、B【解析】【分析】根據(jù)含30°角的直角三角形的性質可得B(2,2+2),利用待定系數(shù)法可得直線PB的解析式,依次將M1,M2,M3,M4四個點的一個坐標代入y=x+2中可解答.【詳解】解:∵點A(4,2),點P(0,2),∴PA⊥y軸,PA=4,由旋轉得:∠APB=60°,AP=PB=4,如圖,過點B作BC⊥y軸于C,∴∠BPC=30°,∴BC=2,PC=2,∴B(2,2+2),設直線PB的解析式為:y=kx+b,則,∴,∴直線PB的解析式為:y=x+2,當y=0時,x+2=0,x=-,∴點M1(-,0)不在直線PB上,當x=-時,y=-3+2=1,∴M2(-,-1)在直線PB上,當x=1時,y=+2,∴M3(1,4)不在直線PB上,當x=2時,y=2+2,∴M4(2,)不在直線PB上.故選:B.【考點】本題考查的是圖形旋轉變換,待定系數(shù)法求一次函數(shù)的解析式,確定點B的坐標是解本題的關鍵.9、B【解析】【分析】過點作于點過點作軸于點求出點的坐標,再利用全等三角形的性質求解.【詳解】解:過點作于點,過點作軸于點.是等邊三角形,,,,,,,,,,在和中,,≌,,,,故選:.【考點】本題主要考查了等邊三角形的判定與性質,旋轉的性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題.10、D【解析】【分析】根據(jù)旋轉的性質,可知BC=BC'.取點O為線段CC'的中點,并連接BO.根據(jù)等腰三角形三線合一的性質、正方形的性質及直角三角形的性質,可證得Rt△OBC≌Rt△C'CD,從而證得OC=C'D,BO=CC',再利用勾股定理即可求解.【詳解】解:如圖,取點O為線段CC'的中點,并連接BO.依題意得,BC=BC'∴BO⊥CC'∴∠BOC=90°在正方形ABCD中,BC=CD,∠BCD=90°∴∠OCB+∠C'CD=90°又∵∠CC'D=90°∴∠C'DC+∠C'CD=90°∴∠OCB=∠C'DC在Rt△OBC和Rt△C'CD中∴Rt△OBC≌Rt△C'CD(AAS)∴OC=C'D=2∴CC'=2OC=2×2=4∴BO=CC'=4在Rt△BOC中BC===故選:D.【考點】本題考查了旋轉的性質、正方形的性質、等腰三角形的性質、直角三角形的性質、全等三角形的判定和性質及勾股定理的運用等知識,解題的關鍵是輔助線的添加.二、填空題1、(,﹣)【解析】【分析】先求出菱形的內(nèi)角度數(shù),過作軸于點,在△中,利用特殊角度數(shù)及邊長求解和長,則點坐標可求,由,得出菱形4次旋轉一周,4次一個循環(huán),由,得出菱形旋轉45次后點與點重合,即可得出答案.【詳解】解:∵四邊形OBCD是菱形,相鄰兩內(nèi)角之比為1:2,∴∠C=∠BOD=60°,∠D=∠OBC=120°.根據(jù)旋轉性質可得∠OB′C′=120°,∴∠C′B′H=60°.過C′作C′H⊥y軸于點H,如圖所示:在Rt△C′B′H中,B′C′=1,,..坐標為,,∵360°÷90°=4,∴菱形4次旋轉一周,4次一個循環(huán),∵45÷4=11……1,菱形旋轉45次后點與點重合,坐標為,;故答案為:,.【考點】本題主要考查了菱形的性質,旋轉的性質,以及坐標與圖形變化,解決此類問題要熟知旋轉后的不變量,得出規(guī)律是解題的關鍵.2、20°##20度【解析】【分析】根據(jù)題干所給角度即可直接求出的大小,即旋轉角的大?。驹斀狻拷猓骸?,∴旋轉角的度數(shù)為,故答案為:20°.【考點】本題考查旋轉的性質.根據(jù)題意找出即為旋轉角是解答本題的關鍵.3、①②④【解析】【分析】過E作EM⊥BC,EN⊥CD,可證△BEM≌△FEN得BE=EF,故①正確;可證四邊形BEFG是正方形得∠EBG=90°,BE=BG,可證∠ABE=∠CBG,進而得到△ABE≌△CBG,所以∠BAE=∠BCG,得∠BCA+∠BCG=90°,即∠ACG=90°,可證②正確;由可求BE=,過E作EH⊥AB,則∠AEH=180°-∠BAC-∠AHE=45°,知AH=HE,設AH=HE=x,則BH=4-x,由,得到AH=HE=2,從而得到,知③錯誤;由②可知,△ABE≌△CBG,所以AE=CG,而CG+CE=AE+CE=AC可求,④正確.【詳解】解:過E作EM⊥BC,EN⊥CD∵四邊形ABCD是正方形,AC平分∠BCD∴EM=EN∵∠EMC=∠MCN=∠ENC=90°∴∠MEN=90°∵EF⊥BE∴∠BEM+∠MEF=∠FEN+∠MEF=90°∴∠BEM=∠FEN∵∠EMB=∠ENF=90°,EM=EN∴△BEM≌△FEN∴BE=EF故①正確;∵∠BEF=∠EFG=90°,EF=FG,BE=EF∴BE=FG,BE∥FG∴四邊形BEFG是平行四邊形∵∠BEF=90°,BE=EF∴四邊形BEFG是正方形∴∠EBG=90°,BE=BG∵∠ABC=90°∴∠ABE+∠EBC=∠EBC+∠CBG=90°∴∠ABE=∠CBG又∵AB=BC,BE=BG∴△ABE≌△CBG∴∠BAE=∠BCG∵∠BAE+∠BCA=90°∴∠BCA+∠BCG=90°,即∠ACG=90°故②正確;∵∴∴BE=過E作EH⊥AB∵四邊形ABCD是正方形∴∠BAC=45°∵∠AHE=90°∴∠AEH=180°-∠BAC-∠AHE=45°∴AH=HE設AH=HE=x,則BH=4-x∵∴解得∴AH=HE=2∴故③錯誤;由②可知,△ABE≌△CBG∴AE=CG∴CG+CE=AE+CE=AC∵∠ACB=45°∴AC=∴CG+CE=故④正確,所以答案為:①②④.【考點】本題是正方形綜合題,主要考查了旋轉的性質,正方形的判定與性質,角平分線的性質,勾股定理,全等三角形的判定與性質,熟練掌握全等三角形的判定與性質,綜合運用正方形的判定與性質定理,勾股定理等知識是解題的關鍵.4、【解析】【分析】取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.根據(jù)菱形的性質,可得△ADB是等邊三角形,從而得到△AEN是等邊三角形,可證得△AEF≌△NEG,進而得到點G的運動軌跡是射線NG,繼而得到GD+GC=GE+GC≥EC,在Rt△BEH和Rt△ECH中,由勾股定理,即可求解.【詳解】如圖,取AD的中點N.連接EN,EC,GN,作EH⊥CB交CB的延長線于H.∵四邊形ABCD是菱形∴AD=AB,∵∠A=60°,∴△ADB是等邊三角形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等邊三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GND=180°﹣60°﹣60°=60°,∴點G的運動軌跡是射線NG,∴D,E關于射線NG對稱,∴GD=GE,∴GD+GC=GE+GC≥EC,在Rt△BEH中,∠H=90°,BE=1,∠EBH=60°,∴BH=BE=,EH=,在Rt△ECH中,EC==,∴GD+GC≥,∴GD+GC的最小值為.故答案為:.【考點】本題主要考查了菱形的性質,等邊三角形的判定和性質,全等三角形的判定和性質,勾股定理等知識,熟練掌握菱形的性質,等邊三角形的判定和性質,全等三角形的判定和性質,勾股定理等知識是解題的關鍵.5、【解析】【分析】先根據(jù)等邊三角形的性質、點A坐標求出點B坐標,再根據(jù)點坐標關于原點對稱規(guī)律:橫坐標和縱坐標均變?yōu)橄喾磾?shù),即可得出答案.【詳解】如圖,作軸于H為等邊三角形,點B坐標為等邊繞點O順時針旋轉得到點與點B關于原點O對稱點的坐標是故答案為:.【考點】本題考查了等邊三角形的性質、圖形旋轉的性質等知識點,根據(jù)等邊三角形的性質和點A坐標求出點B坐標是解題關鍵.6、D與【解析】【分析】平分5個圓,那么每份應是2.5,由過平行四邊形中心的任意直線都能平分平行四邊形的面積,應先作出平行四邊形的中心,再把第5個圓平分即可.【詳解】點D恰好是平行四邊形的中心,則這里過D和O3即可.故答案為:D和O3.【考點】本題考查了作圖-應用與設計作圖以及平行四邊形的判定和性質,正確的作出圖形是解題的關鍵.7、【解析】【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為n-1陰影部分的和.【詳解】由題意可得陰影部分面積等于正方形面積的,即是,5個這樣的正方形重疊部分(陰影部分)的面積和為×4,n個這樣的正方形重疊部分(陰影部分)的面積和為×(n-1)=cm2.【考點】本題考查了正方形的性質,熟悉正方形的性質是解題關鍵.8、60【解析】【分析】連接,過作于,交于,根據(jù)等腰三角形的性質與判定得,,進而得到垂直平分,證得為等邊三角形便可.【詳解】解:連接,過作于,交于,如下圖,要使,則,,,,,四邊形和四邊形都是矩形,,垂直平分,,由旋轉性質知,,,是等邊三角形,,故當為時,.故答案為:.【考點】本題主要考查了矩形的性質,旋轉的性質,等邊三角形的性質與判定,關鍵是證明垂直平分.9、【解析】【分析】根據(jù)題意構造并證明,通過全等得到,再結合矩形的性質、旋轉的性質,及可求解;【詳解】如圖,延長DH交EF于點k,∵H是的中點又則故答案為:【考點】本題主要考查了矩形的性質、三角形的全等證明,掌握相關知識并結合旋轉的性質正確構造全等三角形是解題的關鍵.10、45°##45度【解析】【分析】由旋轉的性質得出OA=OC,∠D=∠B,∠AOC=∠DOB=30°,從而得到∠C=∠OAC=75°,再求出∠AOD=30°,由三角形的外角性質求出∠D,即可.【詳解】解:由旋轉的性質得:OA=OC,∠D=∠B,∠AOC=∠DOB=30°,∴∠C=∠OAC=(180°-30°)÷2=75°,∵OC⊥OB,∴∠COB=90°,∴∠AOD=90°-30°-30°=30°,∴∠D=∠OAC-∠AOD=75°-30°=45°,∴∠B=45°.故答案為:45°【考點】本題考查了旋轉的性質、等腰三角形的性質、三角形內(nèi)角和定理;熟練掌握旋轉的性質,并能進行推理計算是解決問題的關鍵.三、解答題1、(1),;(2)是等腰直角三角形,理由見解析;(3)98【解析】【分析】(1)根據(jù)題意可證得,利用三角形的中位線定理得出,,即可得出數(shù)量關系,再利用三角形的中位線定理得出,得出,通過角的轉換得出與互余,證得.(2)先證明,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出結論.(3)當最大時,的面積最大,而最大值是,,計算得出結論.【詳解】(1)線段PM與PN的數(shù)量關系是,位置關系是.∵等腰中,,∴AB=AC,∵AD=AE,∴AB-AD=AC-AE,∴BD=CE,∵點,,分別為,,的中點,∴,,∴;∵,∴,∵,∴,∵(兩直線平行內(nèi)錯角相等),∴,∴.(2)是等腰直角三角形.證明:由旋轉可知,,,,∴,∴,,根據(jù)三角形的中位線定理可得,,,∴,∴是等腰三角形,同(1)的方法可得,,∴,同(1)的方法得,,,∵,∴,∵,∴,∴,∴是等腰直角三角形.(3)由(2)知,是等腰直角三角形,,∴最大時,面積最大,∵點在的延長線上,BD最大,∴,∴,∴.【考點】本題主要考查了三角形中位線定理,等腰直角三角形的性質與判定,全等三角形的性質與判定,直角三角形的性質的綜合運用,熟練掌握中位線定理是解題關鍵.2、(1)FG=BD,F(xiàn)G⊥BC;(2)①補全圖形見解析;②結論仍然成立,理由見解析;(3)△BDF的面積為或.【解析】【分析】(1)根據(jù)等腰直角三角形的性質以及中位線定理可得結果;(2)①根據(jù)題意畫出圖形即可;②根據(jù)旋轉的性質證明△ABD≌△ACE,結合中位線定理證明結論;(3)分兩種情況進行討論:當點D在點B的左側時;當點D在點C的右側時,分別畫出圖形結合等邊三角形的性質解答.【詳解】(1)∵∠BAC=90°,AB=AC,點D是BC的中點,∴AD⊥BC,AD=BD=CD,∠ABC=∠ACB=45°,∵F,G分別是DE,CD的中點,∴FGAD,F(xiàn)G∥AD,∴FGBD,F(xiàn)G⊥BC,故答案為:FGBD,F(xiàn)G⊥BC;(2)①補全圖形如圖所示;②結論仍然成立,理由如下:如圖2,連接CE,∵把AD繞點A逆時針旋轉90°得到AE,∴∠BAC=∠DAE=90°,AD=AE,∴∠BAD=∠CAE,又∵AB=AC,∴△ABD≌△ACE(SAS),∴CE=BD,∠ACE=∠B=∠ACB=45°,∴∠DCE=90°,∵F,G分別是DE,CD的中點,∴FGCEBD,F(xiàn)G∥CE,∴FG⊥BC;(3)當點D在點B的左側時,如圖3﹣1中,作AM⊥BC于M,連接FG,∵∠BAC=90°,AB=AC,AM⊥BC,∴BC=2,BM=CM=AMBC=1,∠BAM=∠CAM=45°,∵AD=AE,∠DAE=90°,點F是DE中點,∴∠EAF=∠CAM=45°,AF=FD=EF,∵△AFC是等邊三角形,∴AF=AC=FC,∠FAC=∠AFC=∠ACF=60°,∴∠CAE=15°=∠BAD,∴∠ADM=∠ABC﹣∠BAD=30°,∴DMAM,∴BD=DM﹣BM,由(2)的結論可得:FG⊥BC,F(xiàn)GBD,∴△BDF的面積;當點D在點C的右側時,如圖3﹣2中,作AM⊥BC于M,連接FG,∵∠BAC=90°,AB=AC,AM⊥BC,∴BC=2,BM=CM=AMBC=1,∠BAM=∠CAM=45°,∵AD=AE,∠DAE=90°,點F是DE中點,∴∠EAF=∠CAM=45°,AF=FD=EF,∠DAF=45°,∵△AFC是等邊三角形,∴AF=AC=FC,∠FAC=∠AFC=∠ACF=60°,∴∠CAD=∠CAF﹣∠DAF=15°,∴∠ADM=∠ACB﹣∠CAD=30°,∴DMAM,∴BD=DM+BM1,由(2)的結論可得:FG⊥BC,F(xiàn)GBD,∴△BDF的面積.綜上所述:△BDF的面積為或.【考點】本題考查了等腰三角形的性質,旋轉的性質,等邊三角形的性質以及全等三角形的判定與性質,熟練掌握以上性質定理是解本題的關鍵.3、(1)(2)【解析】【分析】(1)解二元一次方程組可得B(-2,4),再由△ODE≌△OCB,可知D(4,0),用待定系數(shù)法求直線BD的解析式即可;(2)求出F(0,),直線OE的解析式為y=x,進而求出H的坐標,即可求△OFH的面積;(1)解:解得∵OC>BC,∴CO=4,BC=2,∴B(-2,4),∵△ODE是△OCB繞點O順時針旋轉90度得到,∴△ODE≌△OCB,∴OD=OC,DE=BC,∴D(4,0),E(4,2),設直線BD的解析式為y=kx+b,將點B與D代入可得,解得,∴BD的解析式為;(2)由,令,得設直線OE的解析式為y=k1x,將點E代入可得k1=,,,解得,,△OFH的面積.【考點】本題考查一次函數(shù)的綜合,掌握待定系數(shù)法求函數(shù)解析式,旋轉的性質,解二元一次方程組,求一次函數(shù)與坐標軸的交點問題,兩直線與坐標軸圍成的三角形面積,數(shù)形結合是解題的關鍵.4、(1)①B(2,0)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓學校非盈利財務制度
- 中心校普通話培訓制度
- 倒班上崗培訓制度及流程
- 車間培訓核算管理制度
- 沃爾瑪企業(yè)培訓制度
- 培訓學員自主管理制度
- 企業(yè)無安全教育培訓制度
- 老員工培訓制度及流程
- 藥企安全教育培訓制度
- 員工轉崗離崗培訓制度
- 學堂在線 雨課堂 學堂云 實繩結技術 章節(jié)測試答案
- 《陸上風電場工程設計概算編制規(guī)定及費用標準》(NB-T 31011-2019)
- 介入導管室有關知識課件
- 銀行客戶經(jīng)理壓力與情緒管理培訓
- 推廣經(jīng)理半年工作計劃
- 無人機駕駛員培訓計劃及大綱
- 價格說明函格式范本正規(guī)范本(通用版)
- 水車澆水施工方案
- 110kV線路運維方案
- 智能化弱電工程常見質量通病的避免方法
- 《中國古代文學通識讀本》pdf
評論
0/150
提交評論