綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項測評試題(詳解)_第1頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項測評試題(詳解)_第2頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項測評試題(詳解)_第3頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項測評試題(詳解)_第4頁
綜合解析人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項測評試題(詳解)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

人教版9年級數(shù)學(xué)上冊【旋轉(zhuǎn)】專項測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在中,,將繞點C逆時針旋轉(zhuǎn)得到,點A,B的對應(yīng)點分別為D,E,連接.當(dāng)點A,D,E在同一條直線上時,下列結(jié)論一定正確的是(

)A. B. C. D.2、已知點與點關(guān)于原點對稱,則點的坐標(biāo)(

)A. B. C. D.3、如圖,和都是等腰直角三角形,,四邊形是平行四邊形,下列結(jié)論中錯誤的是(

)A.以點為旋轉(zhuǎn)中心,逆時針方向旋轉(zhuǎn)后與重合B.以點為旋轉(zhuǎn)中心,順時針方向旋轉(zhuǎn)后與重合C.沿所在直線折疊后,與重合D.沿所在直線折疊后,與重合4、如圖,平面直角坐標(biāo)系中,點在第一象限,點在軸的正半軸上,,,將繞點逆時針旋轉(zhuǎn),點的對應(yīng)點的坐標(biāo)是(

)A. B. C. D.5、在平面直角坐標(biāo)系中,點關(guān)于原點對稱的點的坐標(biāo)是(

)A. B. C. D.6、在圖中,將方格紙中的圖形繞O點順時針旋轉(zhuǎn)90°得到的圖形是(

)A. B. C. D.7、將拋物線先繞坐標(biāo)原點旋轉(zhuǎn),再向右平移個單位長度,所得拋物線的解析式為(

)A. B.C. D.8、將按如圖方式放在平面直角坐標(biāo)系中,其中,,頂點的坐標(biāo)為,將繞原點逆時針旋轉(zhuǎn),每次旋轉(zhuǎn)60°,則第2023次旋轉(zhuǎn)結(jié)束時,點對應(yīng)點的坐標(biāo)為(

)A. B. C. D.9、將繞點旋轉(zhuǎn)得到,則下列作圖正確的是()A. B. C. D.10、如圖,在中,,,,將繞點順時針旋轉(zhuǎn)度得到,當(dāng)點的對應(yīng)點恰好落在邊上時,則的長為()A.1.6 B.1.8 C.2 D.2.6第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,正比例函數(shù)y=kx(k≠0)的圖像經(jīng)過點A(2,4),AB⊥x軸于點B,將△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,則直線AC的函數(shù)表達(dá)式為_____.2、如圖,在四邊形ABCD中,,將繞點C順時針旋轉(zhuǎn)60°后,點D的對應(yīng)點恰好與點A重合,得到,,,則BD=______.3、如圖,正方形的邊長為2,將正方形繞點O順時針旋轉(zhuǎn)得到正方形,連接,當(dāng)點恰好落在直線上時,線段的長度是______4、如圖,在中,,,,為內(nèi)一點,則的最小值為__________.5、如圖,在平面直角坐標(biāo)系中,點P(1,1),N(2,0),△MNP和△M1N1P1的頂點都在格點上,△MNP與△M1N1P1是關(guān)于某一點中心對稱,則對稱中心的坐標(biāo)為_____.6、如圖,把△ABC繞著點A逆時針旋轉(zhuǎn)90°得到△ADE,連接BE,CD,M是BE的中點,若AM=,則CD的長為_______.7、已知點A(﹣2,b)與點B(a,3)關(guān)于原點對稱,則a﹣b=______.8、如圖,矩形ABCD中,AB=3,BC=4,以點A為中心,將矩形ABCD旋轉(zhuǎn)得到矩形AB'C'D',使得點B'落在邊AD上,則∠C'AC的度數(shù)為_____°.9、如圖,在平面直角坐標(biāo)系中,,由繞點順時針旋轉(zhuǎn)而得,則所在直線的解析式是___.10、點與點關(guān)于原點對稱,則點的坐標(biāo)是_________.三、解答題(6小題,每小題5分,共計30分)1、閱讀下列材料:問題:如圖(1),已知正方形ABCD中,E、F分別是BC、CD邊上的點,且∠EAF=45°.解決下列問題:(1)圖(1)中的線段BE、EF、FD之間的數(shù)量關(guān)系是______.(2)圖(2),已知正方形ABCD的邊長為8,E、F分別是BC、CD邊上的點,且∠EAF=45°,AG⊥EF于點G,求△EFC的周長.2、在Rt△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE.探索:(1)連接EC,如圖①,試探索線段BC,CD,CE之間滿足的等量關(guān)系,并證明結(jié)論;(2)如圖②,在四邊形ABCD中,∠ABC=∠ACB=45°,若BD=7,將邊AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE.連接DE、CE,求線段CE的長.(3)AD與CE交于點N,BD與CE交于點M,在(2)的條件下,試探究BD與CE的位置關(guān)系,并加以證明3、如圖,在中,∠ACB=90°,AC=BC.點D是BC延長線上一點,連接AD.將線段AD繞點A逆時針旋轉(zhuǎn)90°,得到線段AE.過點E作,交AB于點F.(1)①直接寫出∠AFE的度數(shù)是______;②求證:∠DAC=∠E;(2)用等式表示線段AF與DC的數(shù)量關(guān)系,并證明.4、問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點D作△BCD的BC邊上的高DE,

易證△ABC≌△BDE,從而得到△BCD的面積為.初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.簡單應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點B順時針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)5、如圖,在直角坐標(biāo)平面內(nèi),已知點A的坐標(biāo)(﹣2,0).(1)圖中點B的坐標(biāo)是______;(2)點B關(guān)于原點對稱的點C的坐標(biāo)是_____;點A關(guān)于y軸對稱的點D的坐標(biāo)是______;(3)四邊形ABDC的面積是______;(4)在y軸上找一點F,使,那么點F的所有可能位置是______.6、如圖1,直線上有一點O,過點O在直線上方作射線.將一直角三角板的直角頂點放在點O處,一條直角邊在射線上,另一邊在直線上方.將直角三角板繞著點O按每秒的速度逆時針旋轉(zhuǎn)一周,設(shè)旋轉(zhuǎn)時間為t秒.(1)當(dāng)直角三角板旋轉(zhuǎn)到如圖2的位置時,恰好平分,此時,與之間有何數(shù)量關(guān)系?并說明理由;(2)在旋轉(zhuǎn)的過程中,若射線的位置保持不變,且.①當(dāng)邊與射線相交時(如圖3),則的值為_______;②當(dāng)邊所在的直線與平行時,求t的值.-參考答案-一、單選題1、D【解析】【分析】由旋轉(zhuǎn)可知,即可求出,由于,則可判斷,即A選項錯誤;由旋轉(zhuǎn)可知,由于,即推出,即B選項錯誤;由三角形三邊關(guān)系可知,即可推出,即C選項錯誤;由旋轉(zhuǎn)可知,再由,即可證明為等邊三角形,即推出.即可求出,即證明,即D選項正確;【詳解】由旋轉(zhuǎn)可知,∵點A,D,E在同一條直線上,∴,∵,∴,故A選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵為鈍角,∴,∴,故B選項錯誤,不符合題意;∵,∴,故C選項錯誤,不符合題意;由旋轉(zhuǎn)可知,∵,∴為等邊三角形,∴.∴,∴,故D選項正確,符合題意;故選D.【考點】本題考查旋轉(zhuǎn)的性質(zhì),三角形三邊關(guān)系,等邊三角形的判定和性質(zhì)以及平行線的判定.利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.2、B【解析】【分析】根據(jù)關(guān)于原點對稱點的坐標(biāo)變化特征直接判斷即可.【詳解】解:點與點關(guān)于原點對稱,則點的坐標(biāo)為,故選:B.【考點】本題考查了關(guān)于原點對稱點的坐標(biāo),解題關(guān)鍵是明確關(guān)于原點對稱的兩個點橫縱坐標(biāo)都互為相反數(shù).3、B【解析】【分析】本題通過觀察全等三角形,找旋轉(zhuǎn)中心,旋轉(zhuǎn)角,逐一判斷.【詳解】解:A.根據(jù)題意可知AE=AB,AC=AD,∠EAC=∠BAD=,△EAC≌△BAD,旋轉(zhuǎn)角∠EAB=90°,不符合題意;B.因為平行四邊形是中心對稱圖形,要想使△ACB和△DAC重合,△ACB應(yīng)該以對角線的交點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)180°,即可與△DAC重合,符合題意;C.根據(jù)題意可∠EAC=135°,∠EAD=360°﹣∠EAC﹣∠CAD=135°,AE=AE,AC=AD,△EAC≌△EAD,不符合題意;D.根據(jù)題意可知∠BAD=135°,∠EAD=360°﹣∠BAD﹣∠BAE=135°,AE=AB,AD=AD,△EAD≌△BAD,不符合題意.故選B.【考點】本題主要考查平行四邊形的對稱性:平行四邊形是中心對稱圖形,對稱中心是兩對角線的交點.4、B【解析】【分析】如圖,作軸于.解直角三角形求出,即可.【詳解】解:如圖,作軸于.由題意:,,,,,,,故選:B.【考點】本題考查坐標(biāo)與圖形變化——旋轉(zhuǎn),解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.5、C【解析】【分析】根據(jù)關(guān)于原點對稱的點的坐標(biāo)特點解答.【詳解】解:點P(-3,-5)關(guān)于原點對稱的點的坐標(biāo)是(3,5),故選:C.【考點】本題考查的是關(guān)于原點的對稱的點的坐標(biāo),平面直角坐標(biāo)系中任意一點P(x,y),關(guān)于原點的對稱點是(-x,-y),即關(guān)于原點的對稱點,橫縱坐標(biāo)都變成相反數(shù).6、B【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),找出圖中三角形的關(guān)鍵處(旋轉(zhuǎn)中心)按順時針方向旋轉(zhuǎn)90°后的形狀即可選擇答案.【詳解】根據(jù)旋轉(zhuǎn)的性質(zhì)可知,繞O點順時針旋轉(zhuǎn)90°得到的圖形是.故選B.【考點】本題考查了旋轉(zhuǎn)的性質(zhì).旋轉(zhuǎn)變化前后,對應(yīng)線段、對應(yīng)角分別相等,圖形的大小、形狀都不改變.7、C【解析】【分析】先根據(jù)點繞坐標(biāo)原點旋轉(zhuǎn)的坐標(biāo)變換規(guī)律、待定系數(shù)法求出旋轉(zhuǎn)后的拋物線的解析式,再根據(jù)二次函數(shù)的圖象平移的規(guī)律即可得.【詳解】將拋物線的頂點式為則其與x軸的交點坐標(biāo)為,頂點坐標(biāo)為點繞坐標(biāo)原點旋轉(zhuǎn)的坐標(biāo)變換規(guī)律:橫、縱坐標(biāo)均變?yōu)橄喾磾?shù)則繞坐標(biāo)原點旋轉(zhuǎn)后,所得拋物線與x軸的交點坐標(biāo)為,頂點坐標(biāo)為設(shè)旋轉(zhuǎn)后所得拋物線為將點代入得:,解得即旋轉(zhuǎn)后所得拋物線為則再向右平移個單位長度,所得拋物線的解析式為即故選:C.【考點】本題考查了點繞坐標(biāo)原點旋轉(zhuǎn)的坐標(biāo)變換規(guī)律、待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)的圖象平移的規(guī)律,熟練掌握坐標(biāo)旋轉(zhuǎn)變換規(guī)律和二次函數(shù)的圖象平移規(guī)律是解題關(guān)鍵.8、A【解析】【分析】根據(jù)旋轉(zhuǎn)性質(zhì),可知6次旋轉(zhuǎn)為1個循環(huán),故先需要求出前6次循環(huán)對應(yīng)的A點坐標(biāo)即可,利用全等三角形性質(zhì)求出第一次旋轉(zhuǎn)對應(yīng)的A點坐標(biāo),之后第2次旋轉(zhuǎn),根據(jù)圖形位置以及長,即可求出,第3、4、5次分別利用關(guān)于原點中心對稱,即可求出,最后一次和A點重合,再判斷第2023次屬于循環(huán)中的第1次,最后即可得出答案.【詳解】解:由題意可知:6次旋轉(zhuǎn)為1個循環(huán),故只需要求出前6次循環(huán)對應(yīng)的A點坐標(biāo)即可第一次旋轉(zhuǎn)時:過點作軸的垂線,垂足為,如下圖所示:由的坐標(biāo)為可知:,,在中,,由旋轉(zhuǎn)性質(zhì)可知:,,,,在與中:,,,此時點對應(yīng)坐標(biāo)為,當(dāng)?shù)诙涡D(zhuǎn)時,如下圖所示:此時A點對應(yīng)點的坐標(biāo)為.當(dāng)?shù)?次旋轉(zhuǎn)時,第3次的點A對應(yīng)點與A點中心對稱,故坐標(biāo)為.當(dāng)?shù)?次旋轉(zhuǎn)時,第4次的點A對應(yīng)點與第1次旋轉(zhuǎn)的A點對應(yīng)點中心對稱,故坐標(biāo)為.當(dāng)?shù)?次旋轉(zhuǎn)時,第5次的點A對應(yīng)點與第2次旋轉(zhuǎn)的A點對應(yīng)點中心對稱,故坐標(biāo)為.第6次旋轉(zhuǎn)時,與A點重合.故前6次旋轉(zhuǎn),點A對應(yīng)點的坐標(biāo)分別為:、、、、、.由于,故第2023次旋轉(zhuǎn)時,A點的對應(yīng)點為.故選:A.【考點】本題主要是考查了旋轉(zhuǎn)性質(zhì)、中心對稱求點坐標(biāo)、三角形全等以及點的坐標(biāo)特征,熟練利用條件證明全等三角形,;通過旋轉(zhuǎn)和中心對稱求解對應(yīng)點坐標(biāo),是求解該題的關(guān)鍵.9、D【解析】【分析】把一個圖形繞某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn).【詳解】解:觀察選項中的圖形,只有D選項為△ABO繞O點旋轉(zhuǎn)了180°.【考點】本題考察了旋轉(zhuǎn)的定義.10、A【解析】【分析】由將△ABC繞點A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點B的對應(yīng)點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.【詳解】由旋轉(zhuǎn)的性質(zhì)可知,,∵,,∴為等邊三角形,∴,∴,故選A.【考點】此題考查旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵在于利用旋轉(zhuǎn)的性質(zhì)得出AD=AB二、填空題1、y=-0.5x+5【解析】【分析】直接把點A(2,4)代入正比例函數(shù)y=kx,求出k的值即可;由A(2,4),AB⊥x軸于點B,可得出OB,AB的長,再由△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,由旋轉(zhuǎn)不變性的性質(zhì)可知DC=OB,AD=AB,故可得出C點坐標(biāo),再把C點和A點坐標(biāo)代入y=ax+b,解出解析式即可.【詳解】解:∵正比例函數(shù)y=kx(k≠0)經(jīng)過點A(2,4)∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x軸于點B,∴OB=2,AB=4,∵△ABO繞點A逆時針旋轉(zhuǎn)90°得到△ADC,∴DC=OB=2,AD=AB=4∴C(6,2)設(shè)直線AC的解析式為y=ax+b,把(2,4)(6,2)代入解析式可得:,解得:,所以解析式為:y=-0.5x+5【考點】本題考查的是一次函數(shù)圖象上點的坐標(biāo)特點及圖形旋轉(zhuǎn)的性質(zhì),熟知一次函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.2、【解析】【分析】連接BE,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCE=60°,CB=CE,BD=AE,再判斷△BCE為等邊三角形得到BE=BC=9,∠CBE=60°,從而有∠ABE=90°,然后利用勾股定理計算出AE即可.【詳解】解:連接BE,如圖,∵△DCB繞點C順時針旋轉(zhuǎn)60°后,點D的對應(yīng)點恰好與點A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE為等邊三角形,∴BE=BC=9,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,AE=.故答案為:.【考點】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.3、或【解析】【分析】分當(dāng)點恰好落在線段的延長線上時,當(dāng)點恰好落在線段上時,兩種情況討論求解即可.【詳解】解:如圖1所示,當(dāng)點恰好落在線段的延長線上時,連接OB,過點O作于E,∴,∵四邊形OABC和四邊形都是正方形,∴,∴∴,∴;如圖2所示,當(dāng)點恰好落在線段上時,連接OB,過點O作于E,同理可求出,∴;綜上所述,或,故答案為:或.【考點】本題主要考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),勾股定理,正確畫出圖形作出輔助線是解題的關(guān)鍵.4、【解析】【分析】將△APB繞點A順時針旋轉(zhuǎn)60°,得到△,連接、,作CN⊥交的延長線于點N,則△≌△APB,由題意可證△是等邊三角形,所以,所以當(dāng)共線時,最小,求出即可;【詳解】將△APB繞點A順時針旋轉(zhuǎn)60°,得到△,連接、,作CN⊥交的延長線于點N,則△≌△APB,∴∠BAP=∠,∴,,,∴△是等邊三角形,∴,∴,∴當(dāng)共線時,最小,∴∠CAN=180°-∠,CN⊥AN,∴∠ACN=30°,∴,,∴,∴,∴=;故答案為:.【考點】本題考查了全等三角形判定與性質(zhì),旋轉(zhuǎn)的性質(zhì),以及等邊三角形的性質(zhì)和求線段最值的問題,掌握做輔助線是解題的關(guān)鍵.5、(2,1)【解析】【分析】觀察圖形,根據(jù)中心對稱的性質(zhì)即可解答.【詳解】∵點P(1,1),N(2,0),∴由圖形可知M(3,0),M1(1,2),N1(2,2),P1(3,1),∵關(guān)于中心對稱的兩個圖形,對應(yīng)點的連線都經(jīng)過對稱中心,并且被對稱中心平分,∴對稱中心的坐標(biāo)為(2,1),故答案為(2,1).【考點】本題考查了中心對稱的性質(zhì):①關(guān)于中心對稱的兩個圖形能夠完全重合;②關(guān)于中心對稱的兩個圖形,對應(yīng)點的連線都經(jīng)過對稱中心,并且被對稱中心平分.6、【解析】【分析】延長AM到F,使AM=MF,連接BF,證△AEM≌△FBM,得AE=FB,∠AEM=∠FBM,△ABC繞著點A逆時針旋轉(zhuǎn)90°得到△ADE,得AB=AD,∠CAE=∠BAD=90°,再證AC=BF,∠CAD=∠ABF,得△BFA≌△ACD,即可得答案.【詳解】解:如上圖:延長AM到F,使AM=MF,∵M(jìn)是BE的中點,∴BM=EM,∵∠AME=∠FMB,∴△AEM≌△FBM,∴AE=FB,∠AEM=∠FBM,∵△ABC繞著點A逆時針旋轉(zhuǎn)90°得到△ADE,∴AB=AD,AC=AE,∠CAE=∠BAD=90°,∴AC=BF,∠CAD=90°-∠EAD,∵∠ABF=∠ABM+∠FBM=∠ABM+∠AEM=180°-∠BAE=180°-(∠BAD+∠EAD)=180°-90°-∠EAD=90°-∠EAD,∴∠CAD=∠ABF,在△BFA和△ACD中,∴△BFA≌△ACD,∴FA=CD,∵AM=,∴CD=FA=2AM=2,故答案為:2.【考點】本題考查旋轉(zhuǎn)的性質(zhì),三角形全等的判定與性質(zhì),解題的關(guān)鍵是延長AM到F,使AM=MF,證△BFA≌△ACD.7、5【解析】【分析】根據(jù)平面直角坐標(biāo)系中,關(guān)于原點對稱的點橫、縱坐標(biāo)都互為相反數(shù),求出a,b的值即可.【詳解】∵點A(﹣2,b)與點B(a,3)關(guān)于原點對稱,∴,,∴故答案為:5.【考點】本題考查平面直角坐標(biāo)系中,關(guān)于原點對稱的點的坐標(biāo)的特點,掌握特殊位置關(guān)系的點的坐標(biāo)變化是解答本題的關(guān)鍵.8、90【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得,利用全等三角形的性質(zhì)可得,結(jié)合圖形及矩形的性質(zhì)可得,即可得出結(jié)果.【詳解】解:∵將矩形ABCD旋轉(zhuǎn)得到矩形,∴,∴,∵,∴,即,故答案為:90.【考點】題目主要考查矩形的基本性質(zhì),旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)等,理解題意,結(jié)合圖形,綜合運用這些知識點是解題關(guān)鍵.9、.【解析】【分析】過點C作CD⊥x軸于點D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),從而求得點C坐標(biāo),設(shè)直線AC的解析式為y=kx+b,將點A,點C坐標(biāo)代入求得k和b,從而得解.【詳解】解:∵∴過點作軸于點,∴∠BOA=∠ADC=90°.∵∠BAC=90°,∴∠BAO+∠CAD=90°.∵∠ABO+∠BAO=90°,∴∠CAD=∠ABO.∵AB=AC,

∴.∴∴設(shè)直線的解析式為,將點,點坐標(biāo)代入得∴∴直線的解析式為.故答案為.【考點】本題是幾何圖形旋轉(zhuǎn)與待定系數(shù)法求一次函數(shù)解析式的綜合題,難度中等.10、(﹣2,﹣1).【解析】【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反可得答案.【詳解】∵點A(2,1)與點B關(guān)于原點對稱,∴點B的坐標(biāo)是(﹣2,﹣1),故答案為(﹣2,﹣1).【考點】本題考查了關(guān)于原點對稱的點的坐標(biāo).三、解答題1、(1)EF=BE+DF(2)過程見解析【解析】【分析】對于(1),先將△DAF繞點A順時針旋轉(zhuǎn)90°,得到△BAH,可得△ADF≌△ABH,再根據(jù)全等三角形的性質(zhì)得AF=AH,∠EAF=∠EAH,然后根據(jù)“SAS”證明△FAE≌△HAE,根據(jù)全等三角形的對應(yīng)邊相等得出答案;對于(2),先根據(jù)(1),得△FAE≌△HAE,可得AG=AB=AD,再根據(jù)“HL”證明Rt△AEG≌Rt△ABE,得EG=BE,同理GF=DF,可得答案.(1)EF=BE+DF.理由如下:如圖,將△DAF繞點A順時針旋轉(zhuǎn)90°,得到△BAH,∴△ADF≌△ABH,∴∠DAF=∠BAH,AF=AH,∴∠EAF=∠EAH=45°.∵AE=AE,∴△FAE≌△HAE,∴EF=HE=BE+HB,∴EF=BE+DF;(2)由(1),得△FAE≌△HAE,AG,AB分別是△FAE和△HAE的高,∴AG=AB=AD=8.在Rt△AEG和Rt△ABE中,,∴Rt△AEG≌Rt△ABE(HL),∴EG=BE,同理GF=DF,∴△EFG的周長=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【考點】這是一道關(guān)于正方形和旋轉(zhuǎn)的綜合題目,考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形的判定和性質(zhì)等.2、(1)BC=CE+DC,證明見解析;(2)7;(3)BD⊥CE,證明見解析【解析】【分析】(1)根據(jù)∠BAC=∠DAE=90°,得出∠BAD=∠CAE,證明△BAD≌△CAE(SAS),得出BD=CE即可;(2)根據(jù)∠ABC=∠ACB=45°,得出∠BAC=180°-∠ABC-∠ACB=90°,根據(jù)∠DAE=90°,可證∠BAD=∠CAE,可證△BAD≌△CAE,可得BD=CE=7;(3)由(2)得△BAD≌△CAE得出∠ADB=∠AEC,根據(jù)∠EAD=90°得出∠AEN+∠ANE=90°根據(jù)對頂角性質(zhì)得出∠ANE=∠DNM

可求∠DNM+∠ADB=∠ANE+∠AEC=90°即可.【詳解】證明:(1)結(jié)論:BC=CE+DC證明如下:∵∠BAC=∠DAE=90°,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠BAD=∠CAE,∴△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∵BC=BD+DC,∴BC=CE+DC;(2)∵∠ABC=∠ACB=45°,∴∠BAC=180°-∠ABC-∠ACB=90°,∵∠DAE=90°,∴∠BAC+∠CAD=∠CAD+∠DAE,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=7;(3)結(jié)論:BD⊥CE.設(shè)EC與AD交于N,BD與CE交于M,如圖2,由(2)得△BAD≌△CAE,∴∠ADB=∠AEC,∵∠EAD=90°,∴∠AEN+∠ANE=90°,∵∠ANE=∠DNM,∴∠DNM+∠ADB=∠ANE+∠AEC=90°,∴∠NMD=90°,∴BD⊥CE.【考點】本題考查三角形全等判定與性質(zhì),圖形性質(zhì)性質(zhì),線段和差,直線位置關(guān)系,掌握三角形全等判定與性質(zhì),圖形性質(zhì)性質(zhì),線段和差,直線位置關(guān)系是解題關(guān)鍵.3、(1)①;②見解析(2);證明見解析【解析】【分析】(1)①根據(jù)AC=BC,∠ACB=90°,得出,根據(jù),得出,即可得出的度數(shù);②延長EF交EF于點G,并得出,由,,得出∠DAC=∠E;(2)先證明,得出,根據(jù)得出,從而得出,即可得出.(1)解:①∵AC=BC,∠ACB=90°,,,,;②延長EF交EF于點G,如圖所示:,,,∵將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,,;(2);理由如下:∵將線段AD繞點A逆時針旋轉(zhuǎn)90°得到線段AE,,∵在和中,,,,,,.【考點】本題主要考查了等腰直角三角形的性質(zhì),三角形全等的判定和性質(zhì),平行線的性質(zhì),解直角三角形,旋轉(zhuǎn)的性質(zhì),作出相應(yīng)的輔助線,熟練掌握全等三角形的判定方法是解題的關(guān)鍵.4、見解析【解析】【詳解】試題分析:(1)初步探究:如圖②,過點D作BC的垂線,與BC的延長線交于點E,由垂直的性質(zhì)就可以得出△ABC≌△BDE,就有DE=BC=a,進(jìn)而由三角形的面積公式得出結(jié)論,(2)簡單運用:如圖③,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,由等腰三角形的性質(zhì)可以得出BF=BC,由條件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面積公式就可以得出結(jié)論.試題解析:(1)△BCD的面積為,理由:如圖②,過點D作BC的垂線,與BC的延長線交于點E,∴∠BED=∠ACB=90°,∵線段AB繞點B順時針旋轉(zhuǎn)90°得到線段BE,∴AB=BD,∠ABD=90°,∴∠ABC+∠DBE=90°,∵∠A+∠ABC=90°,∴∠A=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS),∴BC=DE=a,∵S△BCD=∴S△BCD=,(2)簡單應(yīng)用:如圖③,過點A作AF⊥BC與F,過點D作DE⊥BC的延長線于點E,∴∠AFB=∠E=90°,BF=,∴∠FAB+∠ABF=90°,∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD,∵線段BD是由線段AB旋轉(zhuǎn)得到的,∴AB=BD,在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=,∵S△BCD=,∴S△BCD=,∴△BCD的面積為,5、(1)(﹣3,4)(2)(3,﹣4),(2,0)(3)16(4)(0,4)或(0,﹣4)【解析】【分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論