2025年人教版8年級數(shù)學下冊《平行四邊形》同步測評試卷_第1頁
2025年人教版8年級數(shù)學下冊《平行四邊形》同步測評試卷_第2頁
2025年人教版8年級數(shù)學下冊《平行四邊形》同步測評試卷_第3頁
2025年人教版8年級數(shù)學下冊《平行四邊形》同步測評試卷_第4頁
2025年人教版8年級數(shù)學下冊《平行四邊形》同步測評試卷_第5頁
已閱讀5頁,還剩30頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數(shù)學下冊《平行四邊形》同步測評考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,已知正方形ABCD的邊長為6,點E,F(xiàn)分別在邊AB,BC上,BE=CF=2,CE與DF交于點H,點G為DE的中點,連接GH,則GH的長為()A. B. C.4.5 D.4.32、如圖,矩形ABCD中,AB=3,AD=4,將矩形ABCD折疊后,A點的對應點落在CD邊上,EF為折痕,A和EF交于G點,當AG+BG取最小值時,此時EF的值為()A. B.3 C.2 D.53、如圖,已知E為鄰邊相等的平行四邊形ABCD的邊BC上一點,且∠DAE=∠B=80o,那么∠CDE的度數(shù)為()A.20o B.25o C.30o D.35o4、的周長為32cm,AB:BC=3:5,則AB、BC的長分別為()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm5、四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,且滿足,則這個四邊形是()A.任意四邊形 B.平行四邊形 C.對角線相等的四邊形 D.對角線垂直的四邊形6、如圖,OA⊥OB,OB=4,P是射線OA上一動點,連接BP,以B為直角頂點向上作等腰直角三角形,在OA上取一點D,使∠CDO=45°,當P在射線OA上自O向A運動時,PD的長度的變化()A.一直增大 B.一直減小C.先增大后減小 D.保持不變7、如圖,把一張長方形紙片ABCD沿AF折疊,使B點落在處,若,要使,則的度數(shù)應為()A.20° B.55° C.45° D.60°8、菱形ABCD的對角線AC,BD相交于點O,E,F(xiàn)分別是AD,CD邊上的中點,連接EF.若EF=,BD=2,則菱形ABCD的面積為()A.2 B. C.6 D.89、如圖,矩形ABCD的對角線AC和BD相交于點O,若∠AOD=120°,AC=16,則AB的長為()A.16 B.12 C.8 D.410、如圖,在平面直角坐標系中,點A是x軸正半軸上的一個動點,點C是y軸正半軸上的點,于點C.已知,.點B到原點的最大距離為()A.22 B.18 C.14 D.10第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,直線l1⊥l3,l2⊥l3,垂足分別為P、Q,一塊含有45°的直角三角板的頂點A、B、C分別在直線l1、l2、線段PQ上,點O是斜邊AB的中點,若PQ等于,則OQ的長等于_____.2、平面直角坐標系中,四邊形ABCD的頂點坐標分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.3、如圖,菱形ABCD的兩條對角線長分別為AC=6,BD=8,點P是BC邊上的一動點,則AP的最小值為__.4、如圖,在正方形ABCD中,點M,N為CD,BC上的點,且DM=CN,AM與DN交于點P,連接AN,點Q為AN中點,連接PQ,若AB=10,DM=4,則PQ的長為__________________.5、如圖,在正方形紙片ABCD中,E是CD的中點,將正方形紙片折疊,點B落在線段AE上的點G處,折痕為AF.若,則CF的長為_____.6、如圖,△ABC中,D、E分別是AB、AC的中點,若DE=4cm,則BC=_____cm.7、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.8、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.9、在四邊形ABCD中,AB=BC=CD=DA=5cm,對角線AC,BD相交于點O,且AC=8cm,則四邊形ABCD的面積為______cm2.10、如圖,正方形ABCD的邊長為做正方形,使A,B,C,D是正方形各邊的中點;做正方形,使是正方形各邊的中點……以此類推,則正方形的邊長為__________.三、解答題(5小題,每小題6分,共計30分)1、如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,E是AC的中點,連接BD,ED,EB.求證:∠1=∠2.2、如圖,在平行四邊形中,E是上一點.(1)用尺規(guī)完成以下基本操作:在下方作,使得,交于點F.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,已知,,求的度數(shù).3、如圖,在平行四邊形中,,..點在上由點向點出發(fā),速度為每秒;點在邊上,同時由點向點運動,速度為每秒.當點運動到點時,點,同時停止運動.連接,設運動時間為秒.(1)當為何值時,四邊形為平行四邊形?(2)設四邊形的面積為,求與之間的函數(shù)關系式.(3)當為何值時,四邊形的面積是四邊形的面積的四分之三?求出此時的度數(shù).(4)連接,是否存在某一時刻,使為等腰三角形?若存在,請求出此刻的值;若不存在,請說明理由.4、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.5、如圖,在平行四邊形ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F,連接BF,AC,且AD=AF.(1)判斷四邊形ABFC的形狀并證明;(2)若AB=3,∠ABC=60°,求EF的長.-參考答案-一、單選題1、A【解析】【分析】根據(jù)正方形的四條邊都相等可得BC=DC,每一個角都是直角可得∠B=∠DCF=90°,然后利用“邊角邊”證明△CBE≌△DCF,得∠BCE=∠CDF,進一步得∠DHC=∠DHE=90°,從而知GH=DE,利用勾股定理求出DE的長即可得出答案.【詳解】解:∵四邊形ABCD為正方形,∴∠B=∠DCF=90°,BC=DC,在△CBE和△DCF中,,∴△CBE≌△DCF(SAS),∴∠BCE=∠CDF,∵∠BCE+∠DCH=90°,∴∠CDF+∠DCH=90°,∴∠DHC=∠DHE=90°,∵點G為DE的中點,∴GH=DE,∵AD=AB=6,AE=AB﹣BE=6﹣2=4,∴,∴GH=.故選A.【點睛】本題主要考查了正方形的性質,全等三角形的性質與判定,勾股定理,直角三角形斜邊上的中線,解題的關鍵在于能夠熟練掌握相關知識進行求解.2、A【解析】【分析】過點作于,由翻折的性質知點為的中點,則為的中位線,可知在上運動,當取最小值時,此時與重合,利用勾股定理和相似求出的長即可解決問題.【詳解】解:過點作于,將矩形折疊后,點的對應點落在邊上,點為的中點,為的中位線,在上運動,在上運動,當取最小值時,此時與重合,,,,,,,,,在和中,,,,,故選:A.【點睛】本題主要考查了矩形的性質,翻折的性質,全等三角形的判定與性質,勾股定理等知識,解題的關鍵是證明在上運動.3、C【解析】【分析】依題意得出AE=AB=AD,∠ADE=50°,又因為∠B=80°故可推出∠ADC=80°,∠CDE=∠ADC-∠ADE,從而求解.【詳解】∵ADBC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC-∠ADE=30°.故選:C.【點睛】考查菱形的邊的性質,同時綜合利用三角形的內角和及等腰三角形的性質,解題關鍵是利用等腰三角形的性質求得∠ADE的度數(shù).4、C【解析】【分析】根據(jù)平行四邊形的性質,可得AB=CD,BC=AD,然后設,可得到,即可求解.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可設,∵的周長為32cm,∴,即,解得:,∴.故選:C【點睛】本題主要考查了平行四邊形的性質,熟練掌握平行四邊形的對邊相等是解題的關鍵.5、B【解析】【分析】根據(jù)完全平方公式分解因式得到a=b,c=d,利用邊的位置關系得到該四邊形的形狀.【詳解】解:,,,,∴a=b,c=d,∵四邊形四條邊長分別是a,b,c,d,其中a,b為對邊,∴c、d是對邊,∴該四邊形是平行四邊形,故選:B.【點睛】此題考查了完全平方公式分解因式,平行四邊形的判定方法,熟練掌握完全平方公式分解因式是解題的關鍵.6、D【解析】【分析】過點作于,于,先根據(jù)矩形的判定與性質可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質可得,然后根據(jù)等腰直角三角形的判定與性質可得,最后根據(jù)線段的和差、等量代換即可得出結論.【詳解】解:如圖,過點作于,于,則四邊形是矩形,,∵是等腰直角三角形,∴,∴,∵,∴,∴,在和中,,∴,∴,∴,∵,∴是等腰直角三角形,∴,∴,∴的長度保持不變,故選:D.【點睛】本題考查了矩形的判定與性質、三角形全等的判定定理與性質等知識點,通過作輔助線,構造矩形和全等三角形是解題關鍵.7、B【解析】【分析】設直線AF與BD的交點為G,由題意易得,則有,由折疊的性質可知,由平行線的性質可得,然后可得,進而問題可求解.【詳解】解:設直線AF與BD的交點為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質可知,∵,∴,∴,∴;故選B.【點睛】本題主要考查折疊的性質及矩形的性質,熟練掌握折疊的性質及矩形的性質是解題的關鍵.8、A【解析】【分析】根據(jù)中位線定理可得對角線AC的長,再由菱形面積等于對角線乘積的一半可得答案.【詳解】解:∵E,F(xiàn)分別是AD,CD邊上的中點,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面積S=×AC×BD=×2×2=2,故選:A.【點睛】本題主要考查菱形的性質與中位線定理,熟練掌握中位線定理和菱形面積公式是關鍵.9、C【解析】【分析】由題意可得AO=BO=CO=DO=8,可證△ABO是等邊三角形,可得AB=8.【詳解】解:∵四邊形ABCD是矩形,∴AC=2AO=2CO,BD=2BO=2DO,AC=BD=16,∴OA=OB=8,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等邊三角形,∴AB=AO=BO=8,故選:C.【點睛】本題考查了矩形的性質,等邊三角形的性質和判定,熟練掌握矩形的性質是本題的關鍵.10、B【解析】【分析】首先取AC的中點E,連接BE,OE,OB,可求得OE與BE的長,然后由三角形三邊關系,求得點B到原點的最大距離.【詳解】解:取AC的中點E,連接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若點O,E,B不在一條直線上,則OB<OE+BE=18.若點O,E,B在一條直線上,則OB=OE+BE=18,∴當O,E,B三點在一條直線上時,OB取得最大值,最大值為18.故選:B【點睛】此題考查了直角三角形斜邊上的中線的性質以及三角形三邊關系.此題難度較大,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.二、填空題1、【解析】【分析】由“AAS”可證△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可證△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性質和直角三角形的性質可求解.【詳解】解:如圖,連接PO,并延長交l2于點H,∵l1⊥l3,l2⊥l3,∴l(xiāng)1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,,∴△ACP≌△CBQ(AAS),∴AP=CQ,PC=BQ,∴PC+CQ=AP+BQ=PQ=,∵AP∥BQ,∴∠OAP=∠OBH,∵點O是斜邊AB的中點,∴AO=BO,在△APO和△BHO中,,∴△APO≌△BHO(AAS),∴AP=BH,OP=OH,∴BH+BQ=AP+BQ=PQ,∴PQ=QH=,∵∠PQH=90°,∴PH=PQ=12,∵OP=OH,∠PQH=90°,∴OQ=PH=6.故答案為:6【點睛】本題主要考查了全等三角形的判定和性質,等腰三角形和直角三角形的性質,熟練掌握全等三角形的判定和性質定理,等腰三角形和直角三角形的性質定理是解題的關鍵.2、菱形【解析】【分析】先在坐標系中畫出四邊形ABCD,由A、B、C、D的坐標即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點睛】本題主要考查了菱形的判定,坐標與圖形,解題的關鍵在于能夠熟練掌握菱形的判定條件.3、4.8【解析】【分析】由垂線段最短,可得AP⊥BC時,AP有最小值,由菱形的性質和勾股定理可求BC的長,由菱形的面積公式可求解.【詳解】設AC與BD的交點為O,∵點P是BC邊上的一動點,∴AP⊥BC時,AP有最小值,∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO=AC=3,BO=DO=BD=4,∴,∵,∴,故答案為:4.8.【點睛】本題考查了菱形的性質,勾股定理,確定當AP⊥BC時,AP有最小值是本題關鍵.4、【解析】【分析】由△ADM與△DCN全等,得出∠CDN=∠DAM,從而得到∠DPM=90°,由此∠APN=90°,再由直角三角形斜邊的中線的性質求出PQ.【詳解】解:在正方形ABCD中,AD=CD,∠ADC=∠DCN=90°,在△ADM與△DCN中,∵AD=CD,DM=CN,∠ADC=∠DCN,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∴∠DMA=∠CND,在△DPM中,∠PDM+∠PMD=90°,∴∠DPM=90°,∵∠DPM=∠APN,∴△ANP為直角三角形,AN為直角三角形的斜邊,由直角三角形的性質得PQ=AN,在△ANB中,AN==2,∴PQ=,故答案為:.【點睛】本題考查正方形的性質,全等三角形的判定和性質,直角三角形斜邊上的中線,勾股定理等知識,解題的關鍵是熟練掌握正方形的性質.5、【解析】【分析】設BF=x,則FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,從而得到關于x的方程,求解x即可.【詳解】解:設BF=x,則FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根據(jù)折疊的性質可知AG=AB=4,所以GE=2﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(2﹣4)2+x2=(4﹣x)2+22,解得x=﹣2,∴CF=4-(﹣2),故答案為:6-2.【點睛】本題主要考查了正方形的性質及翻轉折疊的性質,勾股定理,拓展一元一次方程,準確運用題目中的條件表示出EF列出方程式解題的關鍵.6、8【解析】【分析】運用三角形的中位線的知識解答即可.【詳解】解:∵△ABC中,D、E分別是AB、AC的中點∴DE是△ABC的中位線,∴BC=2DE=8cm.故答案是8.【點睛】本題主要考查了三角形的中位線,掌握三角形的中位線等于底邊的一半成為解答本題的關鍵.7、10【解析】【分析】利用矩形性質,求證,將陰影部分的面積轉為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點睛】本題主要是考查了矩形的性質以全等三角形的判定與性質以及中線平分三角形面積,熟練利用矩形性質,證明三角形全等,將陰影部分面積轉化為其他圖形的面積,這是解決本題的關鍵.8、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質,找到點的位置是四個一循環(huán),每旋轉一次半徑增加2的規(guī)律是解題的關鍵.9、24【解析】【分析】根據(jù)題意作圖,得出四邊形為菱形,再根據(jù)菱形的性質進行求解面積即可.【詳解】解:根據(jù)題意作圖如下:由題意得四邊形為菱形,,且平分,,,由勾股定理:,,,故答案為:24.【點睛】本題考查了菱形的判定及形,勾股定理,解題的關鍵是判斷四邊形是菱形.10、【解析】【分析】利用正方形ABCD的及勾股定理,求出的長,再根據(jù)勾股定理求出和的長,找出規(guī)律,即可得出正方形的邊長.【詳解】解:∵A,B,C,D是正方形各邊的中點∴,∵正方形ABCD的邊長為,即AB=,∴,解得:,∴==2,同理==2,==4…,∴,∴=,∴的邊長為故答案為:.【點睛】本題考查了正方形性質、勾股定理的應用,解此題的關鍵是能根據(jù)計算結果得出規(guī)律,本題具有一定的代表性,是一道比較好的題目.三、解答題1、見解析【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半和等腰三角形的性質即可證明.【詳解】解:∵∠ABC=∠ADC=90°,∴△ABC和△ADC是直角三角形,∵點E是AC的中點,∴EB=AC,ED=AC,∴EB=ED,∴∠1=∠2.【點睛】本題考查了直角三角形斜邊上的中線、等腰三角形的判定與性質,解決本題的關鍵是掌握直角三角形斜邊上的中線等于斜邊的一半.2、(1)見解析;(2)【分析】(1)延長,在射線上截取兩點,使得,作的垂線,交于點,在上截取,作的中垂線,交于點,則即為所求;(2)根據(jù)三角形的外角性質以及平行線的性質即可求得的度數(shù)【詳解】(1)如圖所示,

根據(jù)作圖可知,四邊形是平行四邊形,四邊形是平行四邊形則即為所求;(2),,由(1)可知【點睛】本題考查了尺規(guī)作圖-作垂線,平行四邊形的性質,三角形的外角性質,平行線的性質,掌握基本作圖是解題的關鍵.3、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當t=4或

或時,為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對邊相等AQ=BP建立方程求解即可;

(2)先構造直角三角形,求出AE,再用梯形的面積公式即可得出結論;

(3)利用面積關系求出t,即可求出DQ,進而判斷出DQ=PQ,即可得出結論;

(4)分三種情況,利用等腰三角形的性質,兩腰相等建立方程求解即可得出結論.【詳解】解:(1)∵在平行四邊形中,,,由運動知,AQ=16?t,BP=2t,

∵四邊形ABPQ為平行四邊形,

∴AQ=BP,

∴16?t=2t

∴t=,

即:t=s時,四邊形ABPQ是平行四邊形;(2)過點A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,

∴AE=4,

由運動知,BP=2t,DQ=t,

∵四邊形ABCD是平行四邊形,

∴AD=BC=16,

∴AQ=16?t,

∴y=S四邊形ABPQ=(BP+AQ)?AE=(2t+16?t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,

∵BC=16,

∴S四邊形ABCD=16×4=64,

由(2)知,y=S四邊形ABPQ=2t+32(0<t≤8),

∵四邊形ABPQ的面積是四邊形ABCD的面積的四分之三

∴2t+32=×64,

∴t=8;

如圖,當t=8時,點P和點C重合,DQ=8,

∵CD=AB=8,

∴DP=DQ,

∴∠DQC=∠DPQ,

∴∠D=∠B=30°,

∴∠D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論