2025年金陽縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
2025年金陽縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
2025年金陽縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
2025年金陽縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
2025年金陽縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025年金陽縣初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.二次函數(shù)y=ax2+bx+c的圖象在平面直角坐標(biāo)系中的位置如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標(biāo)系中的圖象可能是()A. B. C. D.2.如圖,△ABC中,AB=3,AC=4,BC=5,D、E分別是AC、AB的中點(diǎn),則以DE為直徑的圓與BC的位置關(guān)系是()A.相切 B.相交 C.相離 D.無法確定3.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時(shí)間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時(shí)走x千米,根據(jù)題意可列方程為()A. B. C. D.4.?dāng)?shù)軸上有A,B,C,D四個(gè)點(diǎn),其中絕對值大于2的點(diǎn)是()A.點(diǎn)A B.點(diǎn)B C.點(diǎn)C D.點(diǎn)D5.如圖,在數(shù)軸上有點(diǎn)O,A,B,C對應(yīng)的數(shù)分別是0,a,b,c,AO=2,OB=1,BC=2,則下列結(jié)論正確的是()A. B. C. D.6.如圖,圓弧形拱橋的跨徑米,拱高米,則拱橋的半徑為()米A. B. C. D.7.尺規(guī)作圖要求:Ⅰ、過直線外一點(diǎn)作這條直線的垂線;Ⅱ、作線段的垂直平分線;Ⅲ、過直線上一點(diǎn)作這條直線的垂線;Ⅳ、作角的平分線.如圖是按上述要求排亂順序的尺規(guī)作圖:則正確的配對是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ8.不等式組的解集在數(shù)軸上表示為()A. B. C. D.9.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠010.在數(shù)軸上表示不等式2(1﹣x)<4的解集,正確的是()A. B.C. D.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若一個(gè)多邊形的每一個(gè)外角都等于40°,則這個(gè)多邊形的邊數(shù)是.12.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.13.對于二次函數(shù)y=x2﹣4x+4,當(dāng)自變量x滿足a≤x≤3時(shí),函數(shù)值y的取值范圍為0≤y≤1,則a的取值范圍為__.14.2018年1月4日在萍鄉(xiāng)市第十五屆人民代表大會第三次會議報(bào)告指出,去年我市城鎮(zhèn)居民人均可支配收入33080元,33080用科學(xué)記數(shù)法可表示為__.15.如圖,△ABC中,點(diǎn)D、E分別在邊AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,則EC的長是_____.16.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CE與DA的延長線交于點(diǎn)E.連接AC,BE,DO,DO與AC交于點(diǎn)F,則下列結(jié)論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)三、解答題(共8題,共72分)17.(8分)如圖,點(diǎn)D是AB上一點(diǎn),E是AC的中點(diǎn),連接DE并延長到F,使得DE=EF,連接CF.求證:FC∥AB.18.(8分)如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).如果拋物線經(jīng)過圖中的三個(gè)格點(diǎn),那么以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為該拋物線的“內(nèi)接格點(diǎn)三角形”.設(shè)對稱軸平行于y軸的拋物線與網(wǎng)格對角線OM的兩個(gè)交點(diǎn)為A,B,其頂點(diǎn)為C,如果△ABC是該拋物線的內(nèi)接格點(diǎn)三角形,AB=3,且點(diǎn)A,B,C的橫坐標(biāo)xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數(shù)是()A.7 B.8 C.14 D.1619.(8分)一個(gè)不透明的口袋中裝有2個(gè)紅球、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.20.(8分)春節(jié)期間,小麗一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車自駕出游.租車公司:按日收取固定租金80元,另外再按租車時(shí)間計(jì)費(fèi).共享汽車:無固定租金,直接以租車時(shí)間(時(shí))計(jì)費(fèi).如圖是兩種租車方式所需費(fèi)用y1(元)、y2(元)與租車時(shí)間x(時(shí))之間的函數(shù)圖象,根據(jù)以上信息,回答下列問題:(1)分別求出y1、y2與x的函數(shù)表達(dá)式;(2)請你幫助小麗一家選擇合算的租車方案.21.(8分)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,2)(1)求拋物線的表達(dá)式;(2)拋物線的對稱軸與x軸交于點(diǎn)M,點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對稱,試問在該拋物線的對稱軸上是否存在點(diǎn)P,使△BMP與△ABD相似?若存在,請求出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請說明理由.22.(10分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BP與CD相交于點(diǎn)E.(1)如果BC=6,AC=8,且P為AC的中點(diǎn),求線段BE的長;(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長.23.(12分)解分式方程:.24.下表中給出了變量x,與y=ax2,y=ax2+bx+c之間的部分對應(yīng)值,(表格中的符號“…”表示該項(xiàng)數(shù)據(jù)已丟失)x﹣101ax2……1ax2+bx+c72…(1)求拋物線y=ax2+bx+c的表達(dá)式(2)拋物線y=ax2+bx+c的頂點(diǎn)為D,與y軸的交點(diǎn)為A,點(diǎn)M是拋物線對稱軸上一點(diǎn),直線AM交對稱軸右側(cè)的拋物線于點(diǎn)B,當(dāng)△ADM與△BDM的面積比為2:3時(shí),求B點(diǎn)坐標(biāo);(3)在(2)的條件下,設(shè)線段BD與x軸交于點(diǎn)C,試寫出∠BAD和∠DCO的數(shù)量關(guān)系,并說明理由.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:∵二次函數(shù)圖象開口方向向下,∴a<0,∵對稱軸為直線>0,∴b>0,∵與y軸的正半軸相交,∴c>0,∴的圖象經(jīng)過第一、二、四象限,反比例函數(shù)圖象在第一三象限,只有C選項(xiàng)圖象符合.故選C.考點(diǎn):1.二次函數(shù)的圖象;2.一次函數(shù)的圖象;3.反比例函數(shù)的圖象.2、B【解析】

首先過點(diǎn)A作AM⊥BC,根據(jù)三角形面積求出AM的長,得出直線BC與DE的距離,進(jìn)而得出直線與圓的位置關(guān)系.【詳解】解:過點(diǎn)A作AM⊥BC于點(diǎn)M,交DE于點(diǎn)N,∴AM×BC=AC×AB,∴AM===2.1.∵D、E分別是AC、AB的中點(diǎn),∴DE∥BC,DE=BC=2.5,∴AN=MN=AM,∴MN=1.2.∵以DE為直徑的圓半徑為1.25,∴r=1.25>1.2,∴以DE為直徑的圓與BC的位置關(guān)系是:相交.故選B.本題考查了直線和圓的位置關(guān)系,利用中位線定理得出BC到圓心的距離與半徑的大小關(guān)系是解題的關(guān)鍵.3、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時(shí)間少用了15分鐘,利用時(shí)間得出等式方程即可.詳解:設(shè)乘公交車平均每小時(shí)走x千米,根據(jù)題意可列方程為:.故選D.點(diǎn)睛:此題主要考查了由實(shí)際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個(gè)部分,列出方程即可.4、A【解析】

根據(jù)絕對值的含義和求法,判斷出絕對值等于2的數(shù)是﹣2和2,據(jù)此判斷出絕對值等于2的點(diǎn)是哪個(gè)點(diǎn)即可.【詳解】解:∵絕對值等于2的數(shù)是﹣2和2,∴絕對值等于2的點(diǎn)是點(diǎn)A.故選A.此題主要考查了絕對值的含義和求法,要熟練掌握,解答此題的關(guān)鍵要明確:①互為相反數(shù)的兩個(gè)數(shù)絕對值相等;②絕對值等于一個(gè)正數(shù)的數(shù)有兩個(gè),絕對值等于0的數(shù)有一個(gè),沒有絕對值等于負(fù)數(shù)的數(shù).③有理數(shù)的絕對值都是非負(fù)數(shù).5、C【解析】

根據(jù)AO=2,OB=1,BC=2,可得a=-2,b=1,c=3,進(jìn)行判斷即可解答.【詳解】解:∵AO=2,OB=1,BC=2,∴a=-2,b=1,c=3,∴|a|≠|(zhì)c|,ab<0,,,故選:C.此題考查有理數(shù)的大小比較以及絕對值,解題的關(guān)鍵結(jié)合數(shù)軸求解.6、A【解析】試題分析:根據(jù)垂徑定理的推論,知此圓的圓心在CD所在的直線上,設(shè)圓心是O.連接OA.根據(jù)垂徑定理和勾股定理求解.得AD=6設(shè)圓的半徑是r,根據(jù)勾股定理,得r2=36+(r﹣4)2,解得r=6.5考點(diǎn):垂徑定理的應(yīng)用.7、D【解析】【分析】分別利用過直線外一點(diǎn)作這條直線的垂線作法以及線段垂直平分線的作法和過直線上一點(diǎn)作這條直線的垂線、角平分線的作法分別得出符合題意的答案.【詳解】Ⅰ、過直線外一點(diǎn)作這條直線的垂線,觀察可知圖②符合;Ⅱ、作線段的垂直平分線,觀察可知圖③符合;Ⅲ、過直線上一點(diǎn)作這條直線的垂線,觀察可知圖④符合;Ⅳ、作角的平分線,觀察可知圖①符合,所以正確的配對是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故選D.【點(diǎn)睛】本題主要考查了基本作圖,正確掌握基本作圖方法是解題關(guān)鍵.8、A【解析】

根據(jù)不等式組的解集在數(shù)軸上表示的方法即可解答.【詳解】∵x≥﹣2,故以﹣2為實(shí)心端點(diǎn)向右畫,x<1,故以1為空心端點(diǎn)向左畫.故選A.本題考查了不等式組解集的在數(shù)軸上的表示方法,不等式的解集在數(shù)軸上表示方法為:>、≥向右畫,<、≤向左畫,“≤”、“≥”要用實(shí)心圓點(diǎn)表示;“<”、“>”要用空心圓點(diǎn)表示.9、D【解析】

根據(jù)二次根式由意義的條件是:被開方數(shù)大于或等于1,和分母不等于1,即可求解.【詳解】根據(jù)題意得:,解得:x≥-1且x≠1.故選:D.本題考查的知識點(diǎn)為:分式有意義,分母不為1;二次根式的被開方數(shù)是非負(fù)數(shù).10、A【解析】根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1可得不等式解集,然后得出在數(shù)軸上表示不等式的解集.2(1–x)<4去括號得:2﹣2x<4移項(xiàng)得:2x>﹣2,系數(shù)化為1得:x>﹣1,故選A.“點(diǎn)睛”本題主要考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù)不等號方向要改變.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、9【解析】解:360÷40=9,即這個(gè)多邊形的邊數(shù)是912、30【解析】

根據(jù)角平分線的定義可得∠PBC=20°,∠PCM=50°,根據(jù)三角形外角性質(zhì)即可求出∠P的度數(shù).【詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30本題考查及角平分線的定義及三角形外角性質(zhì),三角形的外角等于和它不相鄰的兩個(gè)內(nèi)角的和,熟練掌握三角形外角性質(zhì)是解題關(guān)鍵.13、1≤a≤1【解析】

根據(jù)y的取值范圍可以求得相應(yīng)的x的取值范圍.【詳解】解:∵二次函數(shù)y=x1﹣4x+4=(x﹣1)1,∴該函數(shù)的頂點(diǎn)坐標(biāo)為(1,0),對稱軸為:x=﹣,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函數(shù)值y的取值范圍為0≤y≤1時(shí),自變量x的范圍為1≤x≤3,故可得:1≤a≤1,故答案為:1≤a≤1.此題考查二次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)和數(shù)形結(jié)合的思想解答.14、3.308×1.【解析】

正確用科學(xué)計(jì)數(shù)法表示即可.【詳解】解:33080=3.308×1科學(xué)記數(shù)法的表示形式為的形式,其中1<|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值小于1時(shí),n是負(fù)數(shù).15、【解析】

由△ABC中,點(diǎn)D、E分別在邊AB、BC上,DE∥AC,根據(jù)平行線分線段成比例定理,可得DB:AB=BE:BC,又由DB=4,AB=6,BE=3,即可求得答案.【詳解】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=﹣3=.故答案為.考查了平行線分線段成比例定理,解題時(shí)注意:平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應(yīng)成比例.16、①②④.【解析】

根據(jù)菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質(zhì)一一判斷即可.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯(cuò)誤,設(shè)△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.此題考查平行四邊形的性質(zhì)、菱形的判定和性質(zhì)、平行線分線段成比例定理、等高模型等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,學(xué)會利用參數(shù)解決問題.三、解答題(共8題,共72分)17、答案見解析【解析】

利用已知條件容易證明△ADE≌△CFE,得出角相等,然后利用平行線的判定可以證明FC∥AB.【詳解】解:∵E是AC的中點(diǎn),∴AE=CE.在△ADE與△CFE中,∵AE=EC,∠AED=∠CEF,DE=EF,∴△ADE≌△CFE(SAS),∴∠EAD=∠ECF,∴FC∥AB.本題主要考查了全等三角形的性質(zhì)與判定,平行線的判定定理.通過全等得角相等,然后得到兩線平行時(shí)一種常用的方法,應(yīng)注意掌握運(yùn)用.18、C【解析】

根據(jù)在OB上的兩個(gè)交點(diǎn)之間的距離為3,可知兩交點(diǎn)的橫坐標(biāo)的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個(gè)單位,向上平移1個(gè)單位得到開口向下的拋物線的條數(shù),同理可得開口向上的拋物線的條數(shù),然后相加即可得解.【詳解】解:如圖,開口向下,經(jīng)過點(diǎn)(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個(gè)單位,向上平移1個(gè)單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開口向上的拋物線也有7條,所以,滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是:7+7=1.故選C.本題是二次函數(shù)綜合題.主要考查了網(wǎng)格結(jié)構(gòu)的知識與二次函數(shù)的性質(zhì),二次函數(shù)圖象與幾何變換,作出圖形更形象直觀.19、【解析】分析:列表得出所有等可能的情況數(shù),找出兩次都摸到紅球的情況數(shù),即可求出所求的概率.詳解:列表如下:紅紅白黑紅﹣﹣﹣(紅,紅)(白,紅)(黑,紅)紅(紅,紅)﹣﹣﹣(白,紅)(黑,紅)白(紅,白)(紅,白)﹣﹣﹣(黑,白)黑(紅,黑)(紅,黑)(白,黑)﹣﹣﹣所有等可能的情況有12種,其中兩次都摸到紅球有2種可能,則P(兩次摸到紅球)==.點(diǎn)睛:此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)y1=kx+80,y2=30x;(2)見解析.【解析】

(1)設(shè)y1=kx+80,將(2,110)代入求解即可;設(shè)y2=mx,將(5,150)代入求解即可;(2)分y1=y2,y1<y2,y1>y2三種情況分析即可.【詳解】解:(1)由題意,設(shè)y1=kx+80,將(2,110)代入,得110=2k+80,解得k=15,則y1與x的函數(shù)表達(dá)式為y1=15x+80;設(shè)y2=mx,將(5,150)代入,得150=5m,解得m=30,則y2與x的函數(shù)表達(dá)式為y2=30x;(2)由y1=y2得,15x+80=30x,解得x=;由y1<y2得,15x+80<30x,解得x>;由y1>y2得,15x+80>30x,解得x<.故當(dāng)租車時(shí)間為小時(shí)時(shí),兩種選擇一樣;當(dāng)租車時(shí)間大于小時(shí)時(shí),選擇租車公司合算;當(dāng)租車時(shí)間小于小時(shí)時(shí),選擇共享汽車合算.本題考查了一次函數(shù)的應(yīng)用及分類討論的數(shù)學(xué)思想,解答本題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式的方法.21、(1)y=﹣x2+x+2;(2)滿足條件的點(diǎn)P的坐標(biāo)為(,)或(,﹣)或(,5)或(,﹣5).【解析】

(1)利用待定系數(shù)法求拋物線的表達(dá)式;(2)使△BMP與△ABD相似的有三種情況,分別求出這三個(gè)點(diǎn)的坐標(biāo).【詳解】(1)∵拋物線與x軸交于點(diǎn)A(﹣1,0),B(4,0),∴設(shè)拋物線的解析式為y=a(x+1)(x﹣4),∵拋物線與y軸交于點(diǎn)C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴拋物線的解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如圖1,連接CD,∵拋物線的解析式為y=﹣x2+x+2,∴拋物線的對稱軸為直線x=,∴M(,0),∵點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對稱,且C(0,2),∴D(3,﹣2),∵M(jìn)A=MB,MC=MD,∴四邊形ACBD是平行四邊形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,設(shè)點(diǎn)P(,m),∴MP=|m|,∵M(jìn)(,0),B(4,0),∴BM=,∵△BMP與△ABD相似,∴①當(dāng)△BMP∽ADB時(shí),∴,∴,∴m=±,∴P(,)或(,﹣),②當(dāng)△BMP∽△BDA時(shí),,∴,∴m=±5,∴P(,5)或(,﹣5),即:滿足條件的點(diǎn)P的坐標(biāo)為P(,)或(,﹣)或(,5)或(,﹣5).本題考查了二次函數(shù)的應(yīng)用,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.22、(1)(2)(3).【解析】

(1)由勾股定理求出BP的長,D是邊AB的中點(diǎn),P為AC的中點(diǎn),所以點(diǎn)E是△ABC的重心,然后求得BE的長.(2)過點(diǎn)B作BF∥CA交CD的延長線于點(diǎn)F,所以,然后可求得EF=8,所以,所以,因?yàn)镻D⊥AB,D是邊AB的中點(diǎn),在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點(diǎn),AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點(diǎn),P為AC的中點(diǎn),∴點(diǎn)E是△ABC的重心,∴,(2)過點(diǎn)B作BF∥CA交CD的延長線于點(diǎn)F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點(diǎn),∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點(diǎn),∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.本題是一道三角形的綜合性題目,熟練掌握三角形的重心,三角形相似的判定和性質(zhì)以及三角函數(shù)是解題的關(guān)鍵.23、.【解析】試題分析:方程最簡公分母為,方程兩邊同乘將分式方程轉(zhuǎn)化為整式方程求解,要注意檢驗(yàn).試題解析:方程兩邊同乘,得:,整理解得:,經(jīng)檢驗(yàn):是原方程的解.考點(diǎn):解分式方程.24、(1)y=x2﹣4x+2;(2)點(diǎn)B的坐標(biāo)為(5,7);(1)∠BAD和∠DCO互補(bǔ),理由詳見解析.【解析】

(1)由(1,1)在拋物線y=ax2上可求出a值,再由(﹣1,7)、(0,2)在拋物線y=x2+bx+c上可求出b、c的值,此題得解;(2)由△ADM和△BDM同底可得出兩三角形的面積比等于高的比,結(jié)合點(diǎn)A的坐標(biāo)即可求出點(diǎn)B的橫坐標(biāo),再利用二次函數(shù)圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論