2024四川省都江堰市中考數(shù)學(xué)試題及參考答案詳解【研優(yōu)卷】_第1頁
2024四川省都江堰市中考數(shù)學(xué)試題及參考答案詳解【研優(yōu)卷】_第2頁
2024四川省都江堰市中考數(shù)學(xué)試題及參考答案詳解【研優(yōu)卷】_第3頁
2024四川省都江堰市中考數(shù)學(xué)試題及參考答案詳解【研優(yōu)卷】_第4頁
2024四川省都江堰市中考數(shù)學(xué)試題及參考答案詳解【研優(yōu)卷】_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

四川省都江堰市中考數(shù)學(xué)試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,在中,,,,以點為圓心,為半徑的圓與所在直線的位置關(guān)系是(

)A.相交 B.相離 C.相切 D.無法判斷2、同時拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣全部正面向上的概率是()A. B. C. D.3、下表中列出的是一個二次函數(shù)的自變量x與函數(shù)y的幾組對應(yīng)值:…-2013……6-4-6-4…下列各選項中,正確的是A.這個函數(shù)的圖象開口向下B.這個函數(shù)的圖象與x軸無交點C.這個函數(shù)的最小值小于-6D.當(dāng)時,y的值隨x值的增大而增大4、若m,n是方程x2-x-2022=0的兩個根,則代數(shù)式(m2-2m-2022)(-n2+2n+2022)的值為(

)A.2023 B.2022 C.2021 D.20205、已知關(guān)于x的方程有一個根為1,則方程的另一個根為(

)A.-1 B.1 C.2 D.-2二、多選題(5小題,每小題3分,共計15分)1、如圖,是半圓的直徑,半徑于點,為半圓上一點,,與交于點,連接,,給出以下四個結(jié)論,其中正確的是(

)A.平分 B. C. D.2、下列四個命題中正確的是(

)A.與圓有公共點的直線是該圓的切線B.垂直于圓的半徑的直線是該圓的切線C.到圓心的距離等于半徑的直線是該圓的切線D.過圓直徑的端點,垂直于此直徑的直線是該圓的切線3、如圖,PA、PB是的切線,切點分別為A、B,BC是的直徑,PO交于E點,連接AB交PO于F,連接CE交AB于D點.下列結(jié)論正確的是(

)A.CE平分∠ACB B. C.E是△PAB的內(nèi)心 D.4、在圖所示的4個圖案中不包含圖形的旋轉(zhuǎn)的是(

)A. B. C. D.5、下列命題中,不正確的是(

)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內(nèi)部或外部第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、如圖,在⊙O中,=,AB=10,BC=12,D是上一點,CD=5,則AD的長為______.2、圓錐形冰淇淋的母線長是12cm,側(cè)面積是60πcm2,則底面圓的半徑長等于_____.3、平面直角坐標(biāo)系中,,,A為x軸上一動點,連接AC,將AC繞A點順時針旋轉(zhuǎn)90°得到AB,當(dāng)BK取最小值時,點B的坐標(biāo)為_________.4、已知二次函數(shù)與x軸有兩個交點,把當(dāng)k取最小整數(shù)時的二次函數(shù)的圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,若新圖象與直線有三個不同的公共點,則m的值為______.5、如果一條拋物線與軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值為_________.四、簡答題(2小題,每小題10分,共計20分)1、定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.(1)如圖1,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;(2)如圖2,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.2、根據(jù)下列條件,求二次函數(shù)的解析式.(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;(2)圖象的頂點(2,3),且經(jīng)過點(3,1);五、解答題(4小題,每小題10分,共計40分)1、如圖,四邊形ABCD是正方形.△ABE是等邊三角形,M為對角線BD(不含B,D點)上任意一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN,AM、CM.請判斷線段AM和線段EN的數(shù)量關(guān)系,并說明理由.2、如圖1,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0).(1)求該拋物線所對應(yīng)的函數(shù)解析式;(2)如圖2,該拋物線與y軸交于點C,頂點為F,點D(2,3)在該拋物線上.①求四邊形ACFD的面積;②點P是線段AB上的動點(點P不與點A、B重合),過點P作PQ⊥x軸交該拋物線于點Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時,求出所有滿足條件的點Q的坐標(biāo).3、4張相同的卡片上分別寫有數(shù)字0、1、、3,將卡片的背面朝上,洗后從中任意抽取1張,將卡片上的數(shù)字記錄下來;再從余下的3張卡片中任意抽取1張,同樣將卡片上的數(shù)字記錄下來.(1)第一次抽取的卡片上數(shù)字是非負(fù)數(shù)的概率為______;(2)小敏設(shè)計了如下游戲規(guī)則:當(dāng)?shù)谝淮斡涗浵聛淼臄?shù)字減去第二次記錄下來的數(shù)字所得結(jié)果為非負(fù)數(shù)時,甲獲勝;否則,乙獲勝.小敏設(shè)計的游戲規(guī)則公平嗎?為什么?(請用樹狀圖或列表等方法說明理由)4、安順市某商貿(mào)公司以每千克40元的價格購進(jìn)一種干果,計劃以每千克60元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示:(1)求與之間的函數(shù)關(guān)系式;(2)商貿(mào)公司要想獲利2090元,則這種干果每千克應(yīng)降價多少元?-參考答案-一、單選題1、A【解析】【分析】過點C作CD⊥AB于點D,由題意易得AB=5,然后可得,進(jìn)而根據(jù)直線與圓的位置關(guān)系可求解.【詳解】解:過點C作CD⊥AB于點D,如圖所示:∵,,,∴,根據(jù)等積法可得,∴,∵以點為圓心,為半徑的圓,∴該圓的半徑為,∵,∴圓與AB所在的直線的位置關(guān)系為相交,故選A.【考點】本題主要考查直線與圓的位置關(guān)系,熟練掌握直線與圓的位置關(guān)系是解題的關(guān)鍵.2、A【分析】首先利用列舉法可得所有等可能的結(jié)果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案.【詳解】解:∵拋擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣落地后的所有等可能的結(jié)果有:正正,正反,反正,反反,∴正面都朝上的概率是:

.故選A.【點睛】本題考查了列舉法求概率的知識.此題比較簡單,注意在利用列舉法求解時,要做到不重不漏,注意概率=所求情況數(shù)與總情況數(shù)之比.3、C【解析】【分析】利用表中的數(shù)據(jù),求得二次函數(shù)的解析式,再配成頂點式,根據(jù)二次函數(shù)的性質(zhì)逐一分析即可判斷.【詳解】解:設(shè)二次函數(shù)的解析式為,依題意得:,解得:,∴二次函數(shù)的解析式為=,∵,∴這個函數(shù)的圖象開口向上,故A選項不符合題意;∵,∴這個函數(shù)的圖象與x軸有兩個不同的交點,故B選項不符合題意;∵,∴當(dāng)時,這個函數(shù)有最小值,故C選項符合題意;∵這個函數(shù)的圖象的頂點坐標(biāo)為(,),∴當(dāng)時,y的值隨x值的增大而增大,故D選項不符合題意;故選:C.【考點】本題主要考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的性質(zhì),利用二次函數(shù)的性質(zhì)解答是解題關(guān)鍵.4、B【解析】【詳解】解:∵m、n是方程x2-x-2022=0的兩個根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故選:B.【考點】本題考查了一元二次方程的解的定義和一元二次方程根與系數(shù)的關(guān)系,能根據(jù)已知條件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此題的關(guān)鍵.5、C【解析】【分析】根據(jù)根與系數(shù)的關(guān)系列出關(guān)于另一根t的方程,解方程即可.【詳解】解:設(shè)關(guān)于x的方程的另一個根為x=t,∴1+t=3,解得,t=2故選:C.【考點】本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時,x1+x2=?,x1x2=.二、多選題1、ABCD【解析】【分析】根據(jù)圓周角定理即可得出平分,證明全等即可得到,根據(jù)即可得到,即可得到;【詳解】∵是半圓的直徑,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正確;又∵,,∴,∴,故B正確;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正確;∴,∴,故D正確;故選ABCD.【考點】本題主要考查了圓周角定理、直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì),準(zhǔn)確計算是解題的關(guān)鍵.2、CD【解析】【分析】要正確理解切線的定義:和圓有唯一公共點的直線是圓的切線.掌握切線的判定:①經(jīng)過半徑的外端,且垂直于這條半徑的直線,是圓的切線;②到圓心的距離等于半徑的直線是該圓的切線.【詳解】解:A中,與圓有兩個公共點的直線,是圓的割線,故該選項不符合題意;B中,應(yīng)經(jīng)過此半徑的外端,故該選項不符合題意;C中,根據(jù)切線的判定方法,故該選項符合題意;D中,根據(jù)切線的判定方法,故該選項符合題意.故選:CD.【考點】本題考查了切線的判定.注意掌握切線的判定定理與切線的定義是解此題的關(guān)鍵.3、ACD【解析】【分析】連接OA,BE,根據(jù)PA、PB是⊙O的切線,可得PA=PB,OA=OB,可得OP是AB的垂直平分線,根據(jù)垂徑定理,進(jìn)而可以判斷A;根據(jù)OB=OC,AF=BF,可得OF是三角形BAC的中位線,進(jìn)而即可判斷D;證明∠PBE=∠EBA,∠APE=∠BPE,即可判斷C;根據(jù)AC∥OE,可得△CDA∽△EDF,進(jìn)而可以判斷B.【詳解】如圖,連接OA,BE,∵PA、PB是⊙O的切線,∴PA=PB,∵OA=OB,∴OP是AB的垂直平分線,∴OP⊥AB,∴,∴∠ACE=∠BCE,∴CE平分∠ACB;故A正確;∵BC是⊙O的直徑,∴∠BAC=90°,∵∠BFO=90°,∴OF∥AC,∵OB=OC,AF=BF,∴OF=AC;故D正確;∵PB是⊙O的切線,∴∠PBE+∠EBC=90°,∵BC是⊙O的直徑,∴∠EBC+∠ECB=90°,∴∠PBE=∠ECB,∵∠ECB=∠EBA,∴∠PBE=∠EBA,∵∠APE=∠BPE,∴E是△PAB的內(nèi)心;故C正確;∵AC∥OE,∴△CDA∽△EDF.故B錯誤;∴結(jié)論正確的是A,C,D.故選:ACD.【考點】此題考查了圓周角定理、切線的性質(zhì)、三角形中位線定理、及勾股定理的知識,解答本題的關(guān)鍵是熟練掌握切線的性質(zhì)及圓周角定理,注意各個知識點之間的融會貫通.4、AC【解析】【分析】根據(jù)中心對稱與軸對稱的概念,即可求解.【詳解】解:A、是軸對稱圖形,故本選項符合題意;B、是中心對稱圖形,屬于圖形的旋轉(zhuǎn),故本選項不符合題意;C、是軸對稱圖形,故本選項符合題意;D、既是軸對稱圖形,也是中心對稱圖形,包含圖形的旋轉(zhuǎn),故本選項不符合題意;故選:AC.【考點】本題主要考查了中心對稱與軸對稱的概念,熟練掌握軸對稱圖形的關(guān)鍵是尋找對稱軸,圖象沿對稱軸折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合是解題的關(guān)鍵.5、ABD【解析】【分析】根據(jù)圓的性質(zhì)定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關(guān)鍵.三、填空題1、3【分析】過A作AE⊥BC于E,過C作CF⊥AD于F,根據(jù)圓周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性質(zhì)可知BE=CE=6,根據(jù)相似三角形的判定證明△ABE∽△CDF,由相似三角形的性質(zhì)和勾股定理分別求得AE、DF、CF,AF即可求解.【詳解】解:過A作AE⊥BC于E,過C作CF⊥AD于F,則∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,則,∴AD=DF+AF=3+2,故答案為:3+2.【點睛】本題考查圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,熟練掌握圓周角定理和相似三角形的判定與性質(zhì)是解答的關(guān)鍵.2、5cm.【解析】【分析】設(shè)圓錐的底面圓的半徑長為rcm,根據(jù)圓錐的側(cè)面積公式計算即可.【詳解】解:設(shè)圓錐的底面圓的半徑長為rcm.則×2π?r×12=60π,解得:r=5(cm),故答案為5cm.【考點】圓錐的側(cè)面積公式是本題的考點,牢記其公式是解題的關(guān)鍵.3、【分析】如圖,作BH⊥x軸于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出點B在直線y=x﹣4上運(yùn)動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,作KM⊥EF于M,根據(jù)垂線段最短可知,當(dāng)點B與點M重合時,BK的值最小,利用等腰直角三角形的性質(zhì)可得M的坐標(biāo),從而可得答案.【詳解】解:如圖,作BH⊥x軸于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴點B在直線y=x﹣4上運(yùn)動,設(shè)直線y=x﹣4交x軸于E,交y軸于F,則作KM⊥EF于M,過作于則根據(jù)垂線段最短可知,當(dāng)點B與點M重合時,BK的值最小,此時B(3,﹣1),故答案為:(3,﹣1)【點睛】本題考查坐標(biāo)與圖形的變化﹣旋轉(zhuǎn),全等三角形的判定和性質(zhì),一次函數(shù)的應(yīng)用,垂線段最短等知識,解題的關(guān)鍵是正確尋找點B的運(yùn)動軌跡,學(xué)會利用垂線段最短解決最短問題.4、1或【解析】【分析】先運(yùn)用根的判別式求得k的取值范圍,進(jìn)而確定k的值,得到拋物線的解析式,再根據(jù)折疊得到新圖像的解析式,可求出函數(shù)圖象與x軸的交點坐標(biāo),畫出函數(shù)圖象,可發(fā)現(xiàn),若直線與新函數(shù)有3個交點,可以有兩種情況:①過交點(-1,0),根據(jù)待定系數(shù)法可得m的值;②不過點(一1,0),與相切時,根據(jù)判別式解答即可.【詳解】解:∵函數(shù)與x軸有兩個交點,∴,解得,當(dāng)k取最小整數(shù)時,,∴拋物線為,將該二次函數(shù)圖象在x軸下方的部分沿x軸翻折到x軸上方,圖象的其余部分不變,得到一個新圖象,所以新圖象的解析式為(或)

:①因為為的,所以它的圖象從左到右是上升的,當(dāng)它與新圖象有3個交點時它一定過,把代入得所以,②與相切時,圖象有三個交點,,,解得.故答案為:1或.【考點】本題主要考查了二次函數(shù)圖象與幾何變換、待定系數(shù)法求函數(shù)解析式等知識點,掌握分類討論和直線與拋物線相切時判別式等于零是解答本題的關(guān)鍵.5、2【解析】【分析】首先求出的頂點坐標(biāo)和與x軸兩個交點坐標(biāo),然后根據(jù)“特征三角形”是等腰直角三角形列方程求解即可.【詳解】解:∵∴,代入得:∴拋物線的頂點坐標(biāo)為∵當(dāng)時,即,解得:,∴拋物線與x軸兩個交點坐標(biāo)為和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案為:2.【考點】此題考查了二次函數(shù)與x軸的交點問題,等腰直角三角形的性質(zhì),解題的關(guān)鍵是求出的頂點坐標(biāo)和與x軸兩個交點坐標(biāo).四、簡答題1、(1)見解析;(2)【解析】【分析】(1)根據(jù)所給的相似對角線的證明方法證明即可;(2)由題可證的,得到,過點E作,可得出EQ,根據(jù)即可求解;【詳解】(1)證明:∵,平分,∴,∴.∵,∴.,∴∴是四邊形ABCD的“相似對角線”.(2)∵是四邊形EFGH的“相似對角線”,∴三角形EFH與三角形HFG相似.又,∴,∴,∴.過點E作,垂足為.則.∵,∴,∴,∴,∴.【考點】本題主要考查了四邊形綜合知識點,涉及了相似三角形,解直角三角形等知識,準(zhǔn)確分析并能靈活運(yùn)用相關(guān)知識是解題的關(guān)鍵.2、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)先設(shè)出拋物線的解析式為y=ax2+bx+c,再將點(0,1),(1,?2),(2,3)代入解析式中,即可求得拋物線的解析式;(2)由于已知拋物線的頂點坐標(biāo),則可設(shè)頂點式y(tǒng)=a(x?2)2+3,然后把(3,1)代入求出a的值即可.【詳解】解:(1)設(shè)出拋物線的解析式為y=ax2+bx+c,將(0,1),(1,﹣2),(2,3)代入解析式,得:,解得:,∴拋物線解析式為:y=4x2﹣7x+1;(2)設(shè)拋物線解析式為y=a(x﹣2)2+3,把(3,1)代入得:a(3﹣2)2+3=1,解得a=﹣2,所以拋物線解析式為y=﹣2(x﹣2)2+3.【考點】本題考查了待定系數(shù)法求二次函數(shù)的解析式:一般地,當(dāng)已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當(dāng)已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.五、解答題1、AM=EN,理由見解析【分析】根據(jù)旋轉(zhuǎn)性質(zhì)和等邊三角形的性質(zhì)可證得∠ABM=∠EBN,BM=BN,AB=BE,根據(jù)全等三角形的判定證明△ABM≌△EBN即可得出結(jié)論.【詳解】解:AM=EN,理由為:∵△ABE是等邊三角形,∴AB=BE,∠ABE=60°,即∠EBN=∠ABN=60°,∵線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,∴BM=BN,∠MBN=60°,即∠ABM+∠ABN=60°,∴∠ABM=∠EBN,在△ABM和△EBN中,,∴△ABM≌△EBN(SAS),∴AM=EN.【點睛】本題考查等邊三角形的性質(zhì)、旋轉(zhuǎn)性質(zhì)、全等三角形的判定與性質(zhì),熟練掌握用全等三角形證明線段相等是解答的關(guān)鍵.2、(1)y=﹣x2+2x+3;(2)①S四邊形ACFD=4;②Q點坐標(biāo)為(1,4)或(,)或(,).【解析】【分析】此題涉及的知識點是拋物線的綜合應(yīng)用,難度較大,需要有很好的邏輯思維,解題時先根據(jù)已知點的坐標(biāo)列方程求出函數(shù)解析式,然后再根據(jù)解析式和已知條件求出四邊形的面積和點的坐標(biāo).【詳解】(1)由題意可得,解得,∴拋物線解析式為y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x軸,∵A(﹣1,0),∴S四邊形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵點P在線段AB上,∴∠DAQ不可能為直角,∴當(dāng)△AQD為直角三角形時,有∠ADQ=90°或∠AQD=90°,i.當(dāng)∠ADQ=90°時,則DQ⊥AD,∵A(﹣1,0),D(2,3),∴直線AD解析式為y=x+1,∴可設(shè)直線DQ解析式為y=﹣x+b′,把D(2,3)代入可求得b′

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論