版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
人教版8年級數(shù)學(xué)下冊《平行四邊形》定向練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,把一張長方形紙片ABCD沿AF折疊,使B點(diǎn)落在處,若,要使,則的度數(shù)應(yīng)為()A.20° B.55° C.45° D.60°2、如圖,把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,再過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.13、在Rt△ABC中,∠C=90°,若D為斜邊AB上的中點(diǎn),AB的長為10,則DC的長為()A.5 B.4 C.3 D.24、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:15、直角三角形的兩條直角邊分別為5和12,那么這個三角形的斜邊上的中線長為()A.6 B.6.5 C.10 D.136、已知直線,點(diǎn)P在直線l上,點(diǎn),點(diǎn),若是直角三角形,則點(diǎn)P的個數(shù)有()A.1個 B.2個 C.3個 D.4個7、如圖,在四邊形中,,,面積為21,的垂直平分線分別交于點(diǎn),若點(diǎn)和點(diǎn)分別是線段和邊上的動點(diǎn),則的最小值為()A.5 B.6 C.7 D.88、如圖,四邊形ABCD為平行四邊形,延長AD到E,使DE=AD,連接EB,EC,DB,添加一個條件,不能使四邊形DBCE成為矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE9、已知,四邊形ABCD的對角線AC和BD相交于點(diǎn)O.設(shè)有以下條件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四邊形ABCD是矩形;⑤四邊形ABCD是菱形;⑥四邊形ABCD是正方形.那么,下列推理不成立的是()A.①④?⑥ B.①③?⑤ C.①②?⑥ D.②③?④10、下列說法中,不正確的是()A.四個角都相等的四邊形是矩形B.對角線互相平分且平分每一組對角的四邊形是菱形C.正方形的對角線所在的直線是它的對稱軸D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在矩形ABCD中,BC=2,AB=x,點(diǎn)E在邊CD上,且CEx,將BCE沿BE折疊,若點(diǎn)C的對應(yīng)點(diǎn)落在矩形ABCD的邊上,則x的值為_______.2、如圖,矩形ABCD中,AB=9,AD=12,點(diǎn)M在對角線BD上,點(diǎn)N為射線BC上一動點(diǎn),連接MN,DN,且∠DNM=∠DBC,當(dāng)DMN是等腰三角形時,線段BN的長為___.3、點(diǎn)D、E、F分別是△ABC三邊的中點(diǎn),△ABC的周長為24,則△DEF的周長為______.4、如圖,在矩形ABCD中,AD=3AB,點(diǎn)G,H分別在AD,BC上,連BG,DH,且,當(dāng)=_______時,四邊形BHDG為菱形.5、如圖,在平行四邊形ABCD中,,E、F分別在CD和BC的延長線上,,,則______.6、如圖,在△ABC中,D,E分別是邊AB,AC的中點(diǎn),∠B=50°.現(xiàn)將△ADE沿DE折疊點(diǎn)A落在三角形所在平面內(nèi)的點(diǎn)為A1,則∠BDA1的度數(shù)為_____.7、判斷:(1)菱形的對角線互相垂直且相等____()____(2)菱形的對角線把菱形分成四個全等的直角三角形____()____8、如圖,菱形ABCD的對角線AC,BD相交于點(diǎn)O,E為DC的中點(diǎn),若,則菱形的周長為__________.9、如圖,在矩形ABCD中,對角線AC,BD相交于點(diǎn)O,AB=6,∠DAC=60°,點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動,連接DF,以DF為邊作等邊三角形DFE,點(diǎn)E和點(diǎn)A分別位于DF兩側(cè),下列結(jié)論:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④點(diǎn)E運(yùn)動的路程是2,其中正確結(jié)論的序號為_____.10、如圖,平行四邊形ABCD中,AB=2,AD=1,∠ADC=60°,將平行四邊形ABCD沿過點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)處,折痕交CD邊于點(diǎn)E.若點(diǎn)P是直線l上的一個動點(diǎn),則+PB的最小值_______.三、解答題(5小題,每小題6分,共計30分)1、如圖所示,在邊長為1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D兩點(diǎn)的一動點(diǎn),N是CD上一動點(diǎn),且AM+CN=1.(1)證明:無論M,N怎樣移動,△BMN總是等邊三角形;(2)求△BMN面積的最小值.2、如圖,在長方形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上一點(diǎn),連接AE,將∠B沿直線AE折疊,使點(diǎn)B落在點(diǎn)處.
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)C重合時,與AD交于點(diǎn)F,求證:FA=FC;(2)如圖2,當(dāng)點(diǎn)E不與點(diǎn)C重合,且點(diǎn)在對角線AC上時,求CE的長.3、在平面直角坐標(biāo)系中,過A(0,4)的直線a垂直于y軸,點(diǎn)M(9,4)為直線a上一點(diǎn),若點(diǎn)P從點(diǎn)M出發(fā),以每秒2cm的速度沿直線a向左移動,點(diǎn)Q從原點(diǎn)同時出發(fā),以每秒1cm的速度沿x軸向右移動,(1)幾秒后PQ平行于y軸?(2)在點(diǎn)P、Q運(yùn)動的過程中,若線段OQ=2AP,求點(diǎn)P的坐標(biāo).4、如圖,在平行四邊形中,,..點(diǎn)在上由點(diǎn)向點(diǎn)出發(fā),速度為每秒;點(diǎn)在邊上,同時由點(diǎn)向點(diǎn)運(yùn)動,速度為每秒.當(dāng)點(diǎn)運(yùn)動到點(diǎn)時,點(diǎn),同時停止運(yùn)動.連接,設(shè)運(yùn)動時間為秒.(1)當(dāng)為何值時,四邊形為平行四邊形?(2)設(shè)四邊形的面積為,求與之間的函數(shù)關(guān)系式.(3)當(dāng)為何值時,四邊形的面積是四邊形的面積的四分之三?求出此時的度數(shù).(4)連接,是否存在某一時刻,使為等腰三角形?若存在,請求出此刻的值;若不存在,請說明理由.5、如圖,在△ABC中,點(diǎn)D,E分別是AC,AB的中點(diǎn),點(diǎn)F是CB延長線上的一點(diǎn),且CF=3BF,連接DB,EF.(1)求證:四邊形DEFB是平行四邊形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四邊形DEFB的周長.-參考答案-一、單選題1、B【解析】【分析】設(shè)直線AF與BD的交點(diǎn)為G,由題意易得,則有,由折疊的性質(zhì)可知,由平行線的性質(zhì)可得,然后可得,進(jìn)而問題可求解.【詳解】解:設(shè)直線AF與BD的交點(diǎn)為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質(zhì)可知,∵,∴,∴,∴;故選B.【點(diǎn)睛】本題主要考查折疊的性質(zhì)及矩形的性質(zhì),熟練掌握折疊的性質(zhì)及矩形的性質(zhì)是解題的關(guān)鍵.2、B【解析】【分析】由折疊的性質(zhì)可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點(diǎn)所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點(diǎn)B折疊紙片,使點(diǎn)A落在MN上的點(diǎn)F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點(diǎn)睛】本題主要考查了正方形與折疊,勾股定理,解題的關(guān)鍵在于能夠熟練掌握折疊的性質(zhì).3、A【解析】【分析】利用直角三角形斜邊的中線的性質(zhì)可得答案.【詳解】解:∵∠C=90°,若D為斜邊AB上的中點(diǎn),∴CD=AB,∵AB的長為10,∴DC=5,故選:A.【點(diǎn)睛】此題主要考查了直角三角形斜邊的中線,關(guān)鍵是掌握在直角三角形中,斜邊上的中線等于斜邊的一半.4、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補(bǔ).5、B【解析】【分析】根據(jù)勾股定理可求得直角三角形斜邊的長,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半即可求解.【詳解】解:∵直角三角形兩直角邊長為5和12,∴斜邊=,∴此直角三角形斜邊上的中線的長==6.5.故選:B.【點(diǎn)睛】本題主要考查勾股定理及直角三角形斜邊中線定理,熟練掌握勾股定理及直角三角形斜邊中線定理是解題的關(guān)鍵.6、C【解析】【分析】分別討論,,三種情況,求出點(diǎn)坐標(biāo)即可得出答案.【詳解】如圖,當(dāng)時,點(diǎn)與點(diǎn)橫坐標(biāo)相同,代入中得:,,當(dāng)時,點(diǎn)與點(diǎn)橫坐標(biāo)相同,,代入中得:,,當(dāng)時,取中點(diǎn)為點(diǎn),過點(diǎn)作交于點(diǎn),設(shè),,,,,,,,,在中,,解得:,,點(diǎn)有3個.故選:C.【點(diǎn)睛】本題考查直角三角形的性質(zhì)與平面直角坐標(biāo)系,掌握分類討論的思想是解題的關(guān)鍵.7、C【解析】【分析】連接AQ,過點(diǎn)D作,根據(jù)垂直平分線的性質(zhì)得到,再根據(jù)計算即可;【詳解】連接AQ,過點(diǎn)D作,∵,面積為21,∴,∴,∵M(jìn)N垂直平分AB,∴,∴,∴當(dāng)AQ的值最小時,的值最小,根據(jù)垂線段最短可知,當(dāng)時,AQ的值最小,∵,∴,∴的值最小值為7;故選C.【點(diǎn)睛】本題主要考查了四邊形綜合,垂直平分線的性質(zhì),準(zhǔn)確分析計算是解題的關(guān)鍵.8、B【解析】【分析】先證明四邊形BCED為平行四邊形,再根據(jù)矩形的判定進(jìn)行解答.【詳解】解:∵四邊形ABCD為平行四邊形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四邊形BCED為平行四邊形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE為矩形,故本選項(xiàng)不符合題意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四邊形DBCE不能為矩形,故本選項(xiàng)符合題意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE為矩形,故本選項(xiàng)不符合題意.故選:B.【點(diǎn)睛】本題考查了平行四邊形的判定和性質(zhì)、矩形的判定等知識,判定四邊形BCED為平行四邊形是解題的關(guān)鍵.9、C【解析】【分析】根據(jù)已知條件以及正方形、菱形、矩形、平行四邊形的判定條件,對選項(xiàng)進(jìn)行分析判斷即可.【詳解】解:A、①④可以說明,一組鄰邊相等的矩形是正方形,故A正確.B、③可以說明四邊形是平行四邊形,再由①,一組臨邊相等的平行四邊形是菱形,故B正確.C、①②,只能說明兩組鄰邊分別相等,可能是菱形,但菱形不一定是正方形,故C錯誤.D、③可以說明四邊形是平行四邊形,再由②可得:對角線相等的平行四邊形為矩形,故D正確.故選:C.【點(diǎn)睛】本題主要是考查了特殊四邊形的判定,熟練掌握各類四邊形的判定條件,是解決本題的關(guān)鍵.10、D【解析】【分析】根據(jù)矩形的判定,正方形的性質(zhì),菱形和平行四邊形的判定對各選項(xiàng)分析判斷后利用排除法求解.【詳解】解:A、四個角都相等的四邊形是矩形,說法正確;B、正方形的對角線所在的直線是它的對稱軸,說法正確;C、對角線互相平分且平分每一組對角的四邊形是菱形,說法正確;D、一組對邊相等且平行的四邊形是平行四邊形,原說法錯誤;故選:D.【點(diǎn)睛】本題主要考查特殊平行四邊形的判定與性質(zhì),熟練掌握特殊平行四邊形相關(guān)的判定與性質(zhì)是解答本題的關(guān)鍵.二、填空題1、或【解析】【分析】分兩種情況進(jìn)行解答,即當(dāng)點(diǎn)落在邊上和點(diǎn)落在邊上,分別畫出相應(yīng)的圖形,利用翻折變換的性質(zhì),勾股定理進(jìn)行計算即可.【詳解】解:如圖1,當(dāng)點(diǎn)落在邊上,由翻折變換可知,,,在△中,由勾股定理得,,,在中,由勾股定理得,,即,解得,或(舍去),如圖2,當(dāng)點(diǎn)落在邊上,由翻折變換可知,四邊形是正方形,,,故答案為:或.【點(diǎn)睛】本題考查翻折變換,解題的關(guān)鍵是掌握翻折變換的性質(zhì)以及勾股定理是解決問題的前提.2、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當(dāng)NM=ND時,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當(dāng)DM=DN時,此時M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當(dāng)MN=MD時,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設(shè)BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當(dāng)DMN是等腰三角形時,線段BN的長為15或24或.故答案為:15或24或.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰三角形的判定和性質(zhì)、勾股定理等知識,解題的關(guān)鍵是學(xué)會用分類討論的思想思考問題,注意不能漏解.3、12【解析】【分析】據(jù)D、E、F分別是AB、AC、BC的中點(diǎn),可以判斷DF、FE、DE為三角形中位線,利用中位線定理求出DF、FE、DE與AB、BC、CA的長度關(guān)系即可解答.【詳解】解:∵如圖所示,D、E、F分別是AB、BC、AC的中點(diǎn),∴ED、FE、DF為△ABC中位線,∴DFBC,F(xiàn)EAB,DEAC,∴△DEF的周長=DF+FE+DEBCABAC(AB+BC+CA)24=12.故答案為:12.【點(diǎn)睛】本題考查了三角形的中位線定理,根據(jù)中點(diǎn)判斷出中位線,再利用中位線定理是解題的基本思路.4、【解析】【分析】設(shè)則再利用矩形的性質(zhì)建立方程求解從而可得答案.【詳解】解:四邊形BHDG為菱形,設(shè)AD=3AB,設(shè)則矩形ABCD,解得:故答案為:【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,矩形的性質(zhì),菱形的性質(zhì),利用圖形的性質(zhì)建立方程確定之間的關(guān)系是解本題的關(guān)鍵.5、8【解析】【分析】證明四邊形ABDE是平行四邊形,得到DE=CD=,,過點(diǎn)E作EH⊥BF于H,證得CH=EH,利用勾股定理求出EH,再根據(jù)30度角的性質(zhì)求出EF.【詳解】解:∵四邊形ABCD是平行四邊形,∴,AB=CD,∵,∴四邊形ABDE是平行四邊形,∴DE=CD=,,過點(diǎn)E作EH⊥BF于H,∵,∴∠ECH=,∴CH=EH,∵,,∴CH=EH=4,∵∠EHF=90°,,∴EF=2EH=8,故答案為:8.【點(diǎn)睛】此題考查了平行四邊形的判定及性質(zhì),勾股定理,直角三角形30度角的性質(zhì),熟記各知識點(diǎn)并應(yīng)用解決問題是解題的關(guān)鍵.6、80°【解析】【分析】由翻折的性質(zhì)得∠ADE=∠A1DE,由中位線的性質(zhì)得DE//BC,由平行線的性質(zhì)得∠ADE=∠B=50°,即可解決問題.【詳解】解:由題意得:∠ADE=∠A1DE;∵D、E分別是邊AB、AC的中點(diǎn),∴DE//BC,∴∠ADE=∠B=∠A1DE=50°,∴∠A1DA=100°,∴∠BDA1=180°?100°=80°.故答案為:80°.【點(diǎn)睛】本題主要考查了翻折變換及其應(yīng)用問題;同時還考查了三角形的中位線定理等幾何知識點(diǎn).熟練掌握各性質(zhì)是解題的關(guān)鍵.7、×√【解析】【分析】根據(jù)菱形的性質(zhì),即可求解.【詳解】解:(1)菱形的對角線互相垂直且平分;(2)菱形的對角線把菱形分成四個全等的直角三角形.故答案為:(1)×;(2)√【點(diǎn)睛】本題主要考查了菱形的性質(zhì),熟練掌握菱形的對角線互相垂直且平分是解題的關(guān)鍵.8、16【解析】【分析】由菱形的性質(zhì)和三角形中位線定理即可得菱形的邊長,從而可求得菱形的周長.【詳解】∵四邊形ABCD是菱形,且對角線相交于點(diǎn)O∴點(diǎn)O是AC的中點(diǎn)∵E為DC的中點(diǎn)∴OE為△CAD的中位線∴AD=2OE=2×2=4∴菱形的周長為:4×4=16故答案為:16【點(diǎn)睛】本題考查了菱形的性質(zhì)及三角形中位線定理、菱形周長等知識,掌握這些知識是解答本題的關(guān)鍵.9、①②③④【解析】【分析】①根據(jù)∠DAC=60°,OD=OA,得出△OAD為等邊三角形,再由△DFE為等邊三角形,得∠DOA=∠DEF=60°,再利用角的等量代換,即可得出結(jié)論①正確;②連接OE,利用SAS證明△DAF≌△DOE,再證明△ODE≌△OCE,即可得出結(jié)論②正確;③通過等量代換即可得出結(jié)論③正確;④延長OE至,使=OD,連接,通過△DAF≌△DOE,∠DOE=60°,可分析得出點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動時,點(diǎn)E從點(diǎn)O沿線段運(yùn)動到,從而得出結(jié)論④正確;【詳解】解:①設(shè)與的交點(diǎn)為如圖所示:∵∠DAC=60°,OD=OA,∴△OAD為等邊三角形,∴∠DOA=∠DAO=∠ADO=60°,∵△DFE為等邊三角形,∴∠DEF=60°,∴∠DOA=∠DEF=60°,∴,∴故結(jié)論①正確;②如圖,連接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故結(jié)論②正確;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故結(jié)論③正確;④如圖,延長OE至,使=OD,連接,∵△DAF≌△DOE,∠DOE=60°,∴點(diǎn)F在線段AO上從點(diǎn)A至點(diǎn)O運(yùn)動時,點(diǎn)E從點(diǎn)O沿線段運(yùn)動到,∵∴設(shè),則∴在中,即解得:∴=OD=AD=,∴點(diǎn)E運(yùn)動的路程是,故結(jié)論④正確;故答案為:①②③④.【點(diǎn)睛】本題主要考查了幾何綜合,其中涉及到了等邊三角形判定及性質(zhì),相似三角形的判定及性質(zhì),全等三角形的性質(zhì)及判定,三角函數(shù)的比值關(guān)系,矩形的性質(zhì)等知識點(diǎn),熟悉掌握幾何圖形的性質(zhì)合理做出輔助線是解題的關(guān)鍵.10、【解析】【分析】不管P點(diǎn)在l上哪個位置,PD始終等于PD',故求PD'+PB可以轉(zhuǎn)化成求PD+PB,顯然當(dāng)D、P、D'共線時PD+PB最短.【詳解】過點(diǎn)D作DM⊥AB交BA的延長線于點(diǎn)M,∵四邊形ABCD是平行四邊形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折變換可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四邊形ADED′是菱形,∴點(diǎn)D與點(diǎn)D′關(guān)于直線l對稱,連接BD交直線l于點(diǎn)P,此時PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值為,故答案為:.【點(diǎn)睛】本題考查平行四邊形性質(zhì)和菱形性質(zhì),掌握這些是本題解題關(guān)鍵.三、解答題1、(1)見解析;(2)△BMN面積的最小值為【分析】(1)連接BD,證明△AMB≌△DNB,則可得BM=BN,∠MBA=∠NBD,由菱形的性質(zhì)易得∠MBN=60゜,從而可證得結(jié)論成立;(2)過點(diǎn)B作BE⊥MN于點(diǎn)E.【詳解】(1)證明:如圖所示,連接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等邊三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等邊三角形;(2)過點(diǎn)B作BE⊥MN于點(diǎn)E.設(shè)BM=BN=MN=x,則,故,∴當(dāng)BM⊥AD時,x最小,此時,,.∴△BMN面積的最小值為.【點(diǎn)睛】本題考查了菱形的性質(zhì),等邊三角形的判定與性質(zhì),垂線段最短,全等三角形的判定與性質(zhì)等知識,關(guān)鍵是作輔助線證三角形全等.2、(1)見解析;(2)CE=.【分析】(1)根據(jù)平行線的性質(zhì)及折疊性質(zhì)證明∠FAC=∠FCA即可.(2)由題意可得,根據(jù)勾股定理求出AC=5,進(jìn)而求出B'C=2,設(shè)CE=x.然后在Rt△中,根據(jù)勾股定理EC2=2+2列方程求解即可;【詳解】解:(1)如圖1,
∵四邊形ABCD是矩形,∴ADBC,∴∠FAC=∠ACB,∵∠ACB=∠ACF,∴∠FAC=∠FCA,∴FA=FC.(2)∵,如圖2,設(shè)CE=x,
∵四邊形ABCD是矩形,∴∠B=90°,∴AC2=AB2+BC2=32+42=25,∴AC=5,由折疊可知:,,,∴=5-3=2,在Rt△中,EC2=2+2∴x2=(4-x)2+22,∴x=,∴CE=.【點(diǎn)睛】本題屬于矩形折疊問題,考查了矩形的性質(zhì),勾股定理,直角三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)構(gòu)建方程解決問題,屬于中考??碱}型.3、(1)3秒后平行于軸;(2)或.【分析】(1)設(shè)秒后平行于軸,先求出的長,再根據(jù)矩形的判定與性質(zhì)可得,由此建立方程,解方程即可得;(2)分①點(diǎn)在點(diǎn)右側(cè),②點(diǎn)在點(diǎn)左側(cè)兩種情況,分別根據(jù)建立方程,解方程即可得.【詳解】解:(1),,設(shè)秒后平行于軸,,垂直于軸,垂直于軸,平行于軸,四邊形是矩形,,即,解得,即3秒后平行于軸;(2)由題意得:經(jīng)過秒后,,垂直于軸,點(diǎn)在直線上,且點(diǎn)的坐標(biāo)為,點(diǎn)的縱坐標(biāo)為4,①當(dāng)點(diǎn)在點(diǎn)右側(cè)時,,由得:,解得,,此時點(diǎn)的坐標(biāo)為;②當(dāng)點(diǎn)在點(diǎn)左側(cè)時,,由得:,解得,,此時點(diǎn)的坐標(biāo)為;綜上,點(diǎn)的坐標(biāo)為或.【點(diǎn)睛】本題考查了坐標(biāo)與圖形、矩形的判定與性質(zhì)等知識點(diǎn),較難的是題(2),正確分兩種情況討論是解題關(guān)鍵.4、(1);(2)y=S四邊形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)當(dāng)t=4或
或時,為等腰三角形,理由見解析.【分析】(1)利用平行四邊形的對邊相等AQ=BP建立方程求解即可;
(2)先構(gòu)造直角三角形,求出AE,再用梯形的面積公式即可得出結(jié)論;
(3)利用面積關(guān)系求出t,即可求出DQ,進(jìn)而判斷出DQ=PQ,即可得出結(jié)論;
(4)分三種情況,利用等腰三角形的性質(zhì),兩腰相等建立方程求解即可得出結(jié)論.【詳解】解:(1)∵在平行四邊形中,,,由運(yùn)動知,AQ=16?t,BP=2t,
∵四邊形ABPQ為平行四邊形,
∴AQ=BP,
∴16?t=2t
∴t=,
即:t=s時,四邊形ABPQ是平行四邊形;(2)過點(diǎn)A作AE⊥BC于E,如圖,在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由運(yùn)動知,BP=2t,DQ=t,
∵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院老人活動參與制度
- 2025-2030農(nóng)業(yè)育種技術(shù)研發(fā)行業(yè)市場基因編輯技術(shù)應(yīng)用現(xiàn)狀分析及專利保護(hù)戰(zhàn)略方案
- 2025-2030農(nóng)業(yè)科技行業(yè)生態(tài)保護(hù)方案設(shè)計與產(chǎn)業(yè)化推廣及投資回報分析報告
- 2025-2030農(nóng)業(yè)生產(chǎn)領(lǐng)域發(fā)展現(xiàn)狀研究及投資潛力評估報告
- 2025-2030農(nóng)業(yè)技術(shù)推廣行業(yè)市場需求供應(yīng)現(xiàn)狀分析及投資評估規(guī)劃探討報告
- 2025-2030農(nóng)業(yè)化肥市場現(xiàn)狀分析持續(xù)發(fā)展投資評估方案
- 2025-2030全球納米材料應(yīng)用行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2026年財務(wù)管理刷題題庫及答案
- 高中語文第3單元單元序列寫作三錘煉思想學(xué)習(xí)寫得有文采講義新人教版必修
- 幼兒中班語言教案(2025-2026學(xué)年)
- 山東省濰坊市2023-2024學(xué)年高一上學(xué)期1月期末考試英語試題 含解析
- 農(nóng)村個人土地承包合同模板
- 2025屆北京市海淀區(qū)一零一中學(xué)數(shù)學(xué)七年級第一學(xué)期期末綜合測試模擬試題含解析
- 初中道德與法治課中提升學(xué)生政治認(rèn)同素養(yǎng)的策略研究
- 糖尿病的急救和護(hù)理
- 中醫(yī)養(yǎng)生的吃野山參粉養(yǎng)生法
- 小學(xué)道德與法治-認(rèn)識居民身份證教學(xué)課件設(shè)計
- 采購滅火器施工方案
- 小學(xué)生古詩詞大賽備考題庫(300題)
- GB/T 25085.3-2020道路車輛汽車電纜第3部分:交流30 V或直流60 V單芯銅導(dǎo)體電纜的尺寸和要求
- GB/T 242-2007金屬管擴(kuò)口試驗(yàn)方法
評論
0/150
提交評論