版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教版8年級(jí)數(shù)學(xué)下冊(cè)《平行四邊形》同步測(cè)評(píng)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿(mǎn)分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫(xiě)在試卷規(guī)定位置上3、答案必須寫(xiě)在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、平行四邊形中,,則的度數(shù)是()A. B. C. D.2、如圖,已知是平分線上的一點(diǎn),,,是的中點(diǎn),,如果是上一個(gè)動(dòng)點(diǎn),則的最小值為()A. B. C. D.3、如圖,菱形ABCD的邊長(zhǎng)為6cm,∠BAD=60°,將該菱形沿AC方向平移2cm得到四邊形A′B′C′D′,A′D′交CD于點(diǎn)E,則點(diǎn)E到AC的距離為()A.1 B. C..2 D.24、在△ABC中,AD是角平分線,點(diǎn)E、F分別是線段AC、CD的中點(diǎn),若△ABD、△EFC的面積分別為21、7,則的值為()A. B. C. D.5、如圖,在矩形ABCD中,AB=1,BC=2,將其折疊,使AB邊落在對(duì)角線AC上,得到折痕AE,則點(diǎn)E到點(diǎn)B的距離為()A. B. C. D.6、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點(diǎn)D,E是AD上的一個(gè)動(dòng)點(diǎn),連接EC,將線段EC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到FC,連接DF,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,DF的最小值是()A.1 B.1.5 C.2 D.47、平行四邊形OABC在平面直角坐標(biāo)系中的位置如圖所示,∠AOC=45°,OA=OC=,則點(diǎn)B的坐標(biāo)為()A.(,1) B.(1,) C.(+1,1) D.(1,+1)8、如圖所示,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,過(guò)點(diǎn)O的直線EF分別交AD于點(diǎn)E,BC于點(diǎn)F,,則ABCD的面積為(
)A.24 B.32 C.40 D.489、在平行四邊形ABCD中,∠A=30°,那么∠B與∠A的度數(shù)之比為()A.4:1 B.5:1 C.6:1 D.7:110、如圖菱形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,若BD=8,AC=6,則AB的長(zhǎng)是()A.5 B.6 C.8 D.10第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過(guò)點(diǎn)P作EF∥BC,分別交AB,CD于點(diǎn)E、F,連接PB、PD,若AE=2,PF=9,則圖中陰影面積為_(kāi)_____;2、如圖,平面直角坐標(biāo)系中,有,,三點(diǎn),以A,B,O三點(diǎn)為頂點(diǎn)的平行四邊形的另一個(gè)頂點(diǎn)D的坐標(biāo)為_(kāi)_____.3、在四邊形ABCD中,若AB//CD,BC_____AD,則四邊形ABCD為平行四邊形.4、如果一個(gè)矩形較短的邊長(zhǎng)為5cm,兩條對(duì)角線的夾角為60°,則這個(gè)矩形的對(duì)角線長(zhǎng)是_________cm.5、菱形的對(duì)角線之比為3:4,且面積為24,則它的對(duì)角線分別為_(kāi)_______.6、平面直角坐標(biāo)系中,四邊形ABCD的頂點(diǎn)坐標(biāo)分別是A(-3,0),B(0,2),C(3,0),D(0,-2),則四邊形ABCD是__________.7、已知Rt△ABC的周長(zhǎng)是24,斜邊上的中線長(zhǎng)是5,則S△ABC=_____.8、如圖,圓柱形容器高為0.8m,底面周長(zhǎng)為4.8m,在容器內(nèi)壁離底部0.1m的點(diǎn)處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)處,若容器壁厚忽略不計(jì),則壁虎捕捉蚊子的最短路程是______m.9、如圖,正方形ABCD中,BD為對(duì)角線,且BE為∠ABD的角平分線,并交CD延長(zhǎng)線于點(diǎn)E,則∠E=______°.10、如圖,在正方形ABCD中,點(diǎn)O在內(nèi),,則的度數(shù)為_(kāi)_____.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,已知正方形中,點(diǎn)是邊延長(zhǎng)線上一點(diǎn),連接,過(guò)點(diǎn)作,垂足為點(diǎn),與交于點(diǎn).(1)求證:;(2)若,,求BG的長(zhǎng).2、已知:如圖,在中,,,.求證:互相平分.如圖,將矩形紙片ABCD沿對(duì)角線AC折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,且已知AB=8,BC=4(1)判斷△ACF的形狀,并說(shuō)明理由;(2)求△ACF的面積;3、如圖,正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).試畫(huà)出一個(gè)頂點(diǎn)都在格點(diǎn)上,且面積為10的正方形.4、已知矩形ABCD,AB=6,BC=10,以BC所在直線為x軸,AB所在直線為y軸,建立如圖所示的平面直角坐標(biāo)系,在CD邊上取一點(diǎn)E,將△ADE沿AE翻折,點(diǎn)D恰好落在BC邊上的點(diǎn)F處.(1)求線段EF長(zhǎng);(2)在平面內(nèi)找一點(diǎn)G,①使得以A、B、F、G為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)G的坐標(biāo);②如圖2,將圖1翻折后的矩形沿y軸正半軸向上平移m(m>0)個(gè)單位,若以A、O、F、G為頂點(diǎn)的四邊形為菱形,請(qǐng)求出m的值并寫(xiě)出點(diǎn)G的坐標(biāo).5、如圖,在中,,D是邊上的一點(diǎn),過(guò)D作交于點(diǎn)E,,連接交于點(diǎn)F.(1)求證:是的垂直平分線;(2)若點(diǎn)D為的中點(diǎn),且,求的長(zhǎng).-參考答案-一、單選題1、B【解析】【分析】根據(jù)平行四邊形對(duì)角相等,即可求出的度數(shù).【詳解】解:如圖所示,∵四邊形是平行四邊形,∴,∴,∴.故:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),解題的關(guān)鍵是掌握平行四邊形的性質(zhì).2、C【解析】【分析】根據(jù)題意由角平分線先得到是含有角的直角三角形,結(jié)合直角三角形斜邊上中線的性質(zhì)進(jìn)而得到OP,DP的值,再根據(jù)角平分線的性質(zhì)以及垂線段最短等相關(guān)內(nèi)容即可得到PC的最小值.【詳解】解:∵點(diǎn)P是∠AOB平分線上的一點(diǎn),,∴,∵PD⊥OA,M是OP的中點(diǎn),∴,∴∵點(diǎn)C是OB上一個(gè)動(dòng)點(diǎn)∴當(dāng)時(shí),PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故選C.【點(diǎn)睛】本題主要考查了角平分線的性質(zhì)、含有角的直角三角形的選擇,直角三角形斜邊上中線的性質(zhì)、垂線段最短等相關(guān)內(nèi)容,熟練掌握相關(guān)性質(zhì)定理是解決本題的關(guān)鍵.3、C【解析】【分析】根據(jù)題意連接BD,過(guò)點(diǎn)E作EF⊥AC于點(diǎn)F,根據(jù)菱形的性質(zhì)可以證明三角形ABD是等邊三角形,根據(jù)平移的性質(zhì)可得AD∥A′E,可得,,進(jìn)而求出A′E,再利用30度角所對(duì)直角邊等于斜邊的一半即可得出結(jié)論.【詳解】解:如圖,連接BD,過(guò)點(diǎn)E作EF⊥AC于點(diǎn)F,∵四邊形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等邊三角形,∵菱形ABCD的邊長(zhǎng)為6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故選:C.【點(diǎn)睛】本題考查菱形的性質(zhì)以及等邊三角形的判定與性質(zhì)和平移的性質(zhì),解決本題的關(guān)鍵是掌握菱形的性質(zhì).4、B【解析】【分析】過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,可求出,,再由點(diǎn)E、F分別是線段AC、CD的中點(diǎn),可得出,進(jìn)而求出,再利用角平分線的性質(zhì)可得出的值為即可求解.【詳解】解:過(guò)點(diǎn)A作△ABC的高,設(shè)為x,過(guò)點(diǎn)E作△EFC的高為,∴,∴,,∵點(diǎn)E、F分別是線段AC、CD的中點(diǎn),∴,∴,∵,∴,∴,過(guò)點(diǎn)D作DM⊥AB,DN⊥AC,∵AD為平分線,∴DM=DN,∵,∴,即:∴,故選:B.【點(diǎn)睛】本題考查角平分線性質(zhì)定理及三角形中位線的性質(zhì),解題關(guān)鍵是求出.5、C【解析】【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解設(shè)BE=x,在Rt△EFC中利用勾股定理列出方程,通過(guò)解方程可得答案.【詳解】解:矩形ABCD,設(shè)BE=x,∵AE為折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,則點(diǎn)E到點(diǎn)B的距離為:.故選:C.【點(diǎn)睛】本題考查了勾股定理和矩形與折疊問(wèn)題;二次根式的乘法運(yùn)算,利用對(duì)折得到,再利用勾股定理列方程是解本題的關(guān)鍵.6、C【解析】【分析】取線段AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)以及角的計(jì)算即可得出CD=CG以及∠FCD=∠ECG,由旋轉(zhuǎn)的性質(zhì)可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進(jìn)而即可得出DF=GE,再根據(jù)點(diǎn)G為AC的中點(diǎn),即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點(diǎn)G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對(duì)稱(chēng)軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當(dāng)EG∥BC時(shí),EG最小,∵點(diǎn)G為AC的中點(diǎn),∴此時(shí)EG=DF=CD=BC=2.故選:C.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)以及全等三角形的判定與性質(zhì),三角形中位線的性質(zhì),解題的關(guān)鍵是通過(guò)全等三角形的性質(zhì)找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時(shí),根據(jù)全等三角形的性質(zhì)找出相等的邊是關(guān)鍵.7、C【解析】【分析】作,求得、的長(zhǎng)度,即可求解.【詳解】解:作,如下圖:則在平行四邊形中,,∴∴為等腰直角三角形則,解得∴故選:C【點(diǎn)睛】此題考查了平行四邊形的性質(zhì),等腰直角三角形的性質(zhì)以及勾股定理,解題的關(guān)鍵是靈活運(yùn)用相關(guān)性質(zhì)進(jìn)行求解.8、B【解析】【分析】先根據(jù)平行四邊形的性質(zhì)可得,再根據(jù)三角形全等的判定定理證出,根據(jù)全等三角形的性質(zhì)可得,從而可得,然后根據(jù)平行四邊形的性質(zhì)即可得.【詳解】解:∵四邊形是平行四邊形,,,在和中,∵,,,,則的面積為,故選:B.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、三角形全等的判定定理與性質(zhì)等知識(shí)點(diǎn),熟練掌握平行四邊形的性質(zhì)是解題關(guān)鍵.9、B【解析】【分析】根據(jù)平行四邊形的性質(zhì)先求出∠B的度數(shù),即可得到答案.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故選B.【點(diǎn)睛】本題主要考查了平行四邊形的性質(zhì),解題的關(guān)鍵在于能夠熟練掌握平行四邊形鄰角互補(bǔ).10、A【解析】【分析】由菱形的性質(zhì)可得OA=OC=3,OB=OD=4,AO⊥BO,由勾股定理求出AB.【詳解】解:∵四邊形ABCD是菱形,AC=6,BD=8,∴OA=OC=3,OB=OD=4,AO⊥BO,在Rt△AOB中,由勾股定理得:,故選:A.【點(diǎn)睛】本題考查了菱形的性質(zhì)、勾股定理等知識(shí);熟練掌握菱形對(duì)角線互相垂直且平分的性質(zhì)是解題的關(guān)鍵.二、填空題1、【解析】【分析】作PM⊥AD于M,交BC于N,根據(jù)矩形的性質(zhì)可得S△PEB=S△PFD即可求解.【詳解】解:作PM⊥AD于M,交BC于N.則有四邊形AEPM,四邊形DFPM,四邊形CFPN,四邊形BEPN都是矩形,,∴,,∴S陰=9+9=18,故答案為:18.【點(diǎn)睛】本題考查矩形的性質(zhì)、三角形的面積等知識(shí),解題的關(guān)鍵是證明.2、(9,4)、(-3,4)、(3,-4)【解析】【分析】根據(jù)平行四邊形的性質(zhì)得出AD=BO=6,AD∥BO,根據(jù)平行線得出A和D的縱坐標(biāo)相等,根據(jù)B的橫坐標(biāo)和BO的值即可求出D的橫坐標(biāo).【詳解】∵平行四邊形ABCD的頂點(diǎn)A、B、O的坐標(biāo)分別為(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的橫坐標(biāo)是3+6=9,縱坐標(biāo)是4,即D的坐標(biāo)是(9,4),同理可得出D的坐標(biāo)還有(-3,4)、(3,-4).故答案為:(9,4)、(-3,4)、(3,-4).【點(diǎn)睛】本題考查了坐標(biāo)與圖形性質(zhì)和平行四邊形的性質(zhì),注意:平行四邊形的對(duì)邊平行且相等.3、【解析】【分析】根據(jù)平行四邊形的判定:兩組對(duì)邊分別平行的四邊形是平行四邊形即可解決問(wèn)題.【詳解】解:根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形可知:∵AB//CD,BC//AD,∴四邊形ABCD為平行四邊形.故答案為://.【點(diǎn)睛】本題考查了平行四邊形的判定,熟練掌握平行四邊形的判定方法是解題的關(guān)鍵.4、10【解析】【分析】如圖,由題意得:四邊形為矩形,證明是等邊三角形,結(jié)合矩形的性質(zhì)可得答案.【詳解】解:如圖,由題意得:四邊形為矩形,是等邊三角形,故答案為:【點(diǎn)睛】本題考查的是等邊三角形的判定與性質(zhì),矩形的性質(zhì),掌握“矩形的對(duì)角線相等且互相平分”是解本題的關(guān)鍵.5、6和8##8和6【解析】【分析】根據(jù)比例設(shè)兩條對(duì)角線分別為3x、4x,再根據(jù)菱形的面積等于兩對(duì)角線乘積的一半列式求出x的值即可.【詳解】解:設(shè)兩條對(duì)角線分別為3x、4x,根據(jù)題意得,×3x?4x=24,解得x=2(負(fù)值舍去),∴菱形的兩對(duì)角線的長(zhǎng)分別為,.故答案為:6和8.【點(diǎn)睛】本題考查了菱形的面積,主要利用了菱形的對(duì)角線互相垂直平分的性質(zhì),菱形的面積的求法,需熟記.6、菱形【解析】【分析】先在坐標(biāo)系中畫(huà)出四邊形ABCD,由A、B、C、D的坐標(biāo)即可得到OA=OC=3,OB=OD=2,再由AC⊥BD,即可得到答案.【詳解】解:圖象如圖所示:∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),∴OA=OC=3,OB=OD=2,∴四邊形ABCD為平行四邊形,∵AC⊥BD,∴四邊形ABCD為菱形,故答案為:菱形.【點(diǎn)睛】本題主要考查了菱形的判定,坐標(biāo)與圖形,解題的關(guān)鍵在于能夠熟練掌握菱形的判定條件.7、24【解析】【分析】先根據(jù)直角三角形的性質(zhì)求解,再利用周長(zhǎng)求解,兩邊平方結(jié)合勾股定理可得,利用三角形面積公式求解即可.【詳解】解:如圖Rt△ABC,∠C=90°,點(diǎn)D為AB中點(diǎn),為RtABC斜邊上的中線,,,,,,,由,,∴S△ABC=.故答案為:24.【點(diǎn)睛】本題考查的是直角三角形斜邊上的中線的性質(zhì),勾股定理的應(yīng)用,完全平方公式,三角形面積公式,掌握以上知識(shí)是解題的關(guān)鍵.8、2.5.【解析】【分析】如圖所示,將容器側(cè)面展開(kāi),連接AB,則AB的長(zhǎng)即為最短距離,然后分別求出AC,BC的長(zhǎng)度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側(cè)面展開(kāi),連接AB,則AB的長(zhǎng)即為最短距離,∵圓柱形容器高為0.8m,底面周長(zhǎng)為4.8m在容器內(nèi)壁離底部0.1m的點(diǎn)B處有一只蚊子,此時(shí)一只壁虎正好在容器的頂部點(diǎn)A處,∴,,,過(guò)點(diǎn)B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點(diǎn)睛】本題主要考查了平面展開(kāi)—最短路徑,解題的關(guān)鍵在于能夠根據(jù)題意確定展開(kāi)圖中AB的長(zhǎng)即為所求.9、22.5【解析】【分析】由平行線的性質(zhì)可知,由角平分線的定義得,進(jìn)而可求∠E的度數(shù).【詳解】解:為正方形,,,,平分,,又,,故答案為:22.5.【點(diǎn)睛】本題考查了正方形的性質(zhì),平行線的性質(zhì),角平分線的定義,熟練掌握正方形的性質(zhì)是解答本題的關(guān)鍵.10、135°【解析】【分析】先根據(jù)正方形的性質(zhì)得到∠OAC+∠OAD=45°,再由∠OAC=∠ODA,推出∠ODA+∠OAD=45°,即可利用三角形內(nèi)角和定理求解.【詳解】解:∵四邊形ABCD是正方形,∴∠CAD=45°,∴∠OAC+∠OAD=45°,又∵∠OAC=∠ODA,∴∠ODA+∠OAD=45°,∴∠AOD=180°-∠ODA-∠OAD=135°,故答案為:135°.【點(diǎn)睛】本題主要考查了正方形的性質(zhì),三角形內(nèi)角和定理,解題的關(guān)鍵在于能夠熟練掌握正方形的性質(zhì).三、解答題1、(1)見(jiàn)解析;(2)【分析】(1)由正方形的性質(zhì)可得,,由的余角相等可得∠CBG=∠CDE,進(jìn)而證明△BCG≌△DCE,從而證明CG=CE;(2)證明正方形的性質(zhì)可得,結(jié)合已知條件即可求得,進(jìn)而勾股定理即可求得的長(zhǎng)【詳解】(1)∵BF⊥DE∴∠BFE=90°∵四邊形ABCD是正方形∴∠DCE=90°,∴∠CBG+∠E=∠CDE+∠E,∴∠CBG=∠CDE∴△BCG≌△DCE∴CG=CE(2)∵,且,,∴∵CG=CE∴,在中,【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,掌握三角形全等的性質(zhì)與判定與勾股定理是解題的關(guān)鍵.2、證明見(jiàn)解析【分析】連接,由三角形中位線定理可得,,可證四邊形ADEF是平行四邊形,由平行四邊形的性質(zhì)可得AE,DF互相平分;【詳解】
證明:連接,∵AD=DB,BE=EC,∴,∵BE=EC,AF=FC,∴,∴四邊形ADEF是平行四邊形,∴AE,DF互相平分.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)判定和性質(zhì)及三角形中位線定理,靈活運(yùn)用這些性質(zhì)是解題的關(guān)鍵.(1)△ACF是等腰三角形,理由見(jiàn)解析;(2)10;(3)3、見(jiàn)解析【分析】根據(jù)正方形的面積為10,可得其邊長(zhǎng)為,據(jù)此可得正方形DEFG.【詳解】解:由勾股定理可得:如圖所示,四邊形DEFG即為所求.
【點(diǎn)睛】本題主要考查了應(yīng)用與設(shè)計(jì)作圖以及勾股定理的運(yùn)用,首先要理解題意,弄清問(wèn)題中對(duì)所作圖形的要求,結(jié)合對(duì)應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.4、(1)103;(2)①點(diǎn)G的坐標(biāo)為(﹣8,6)或(8,6)或(8,﹣6);②m=4,G(8,?6)或m=6,G(?8,6).或m=【分析】(1)由矩形的性質(zhì)得AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得EF=DE,AF=AD=10,則CE=6﹣EF,由勾股定理求出BF=OF=8,則FC=OC﹣OF=2,在Rt△ECF中,由勾股定理得出方程,解方程即可;(2)①分三種情況,當(dāng)AB為平行四邊形的對(duì)角線時(shí);當(dāng)AF為平行四邊形的對(duì)角線時(shí);當(dāng)BF為平行四邊形的對(duì)角線時(shí),分別求解點(diǎn)G的坐標(biāo)即可;②分三種情況討論,當(dāng)OF為對(duì)角線時(shí),由菱形的性質(zhì)得OA=AF=10,則矩形ABCD平移距離m=OA﹣AB=4,即OB=4,設(shè)FG交x軸于H,證出四邊形OBFH是矩形,得FH=OB=4,OH=BF=8,則HG=6,如圖,當(dāng)AO為菱形的對(duì)角線時(shí),當(dāng)AF為菱形的對(duì)角線時(shí),結(jié)合矩形與菱形的性質(zhì)同理可得出答案.【詳解】解:(1)∵四邊形ABCD是矩形,∴AD=BC=OC=10,CD=AB=OA=6,∠AOC=∠ECF=90°,由折疊性質(zhì)得:EF=DE,AF=AD=10,∴CE=CD﹣DE=CD﹣EF=6﹣EF,由勾股定理得:BF=OF=A∴FC=OC﹣OF=10﹣8=2,在Rt△ECF中,由勾股定理得:EF2=CE2+FC2,即:EF2=(6﹣EF)2+22,解得:EF=103(2)①如圖所示:當(dāng)AB為平行四邊形的對(duì)角線時(shí),AG=BF=8,AG∥∴點(diǎn)G的坐標(biāo)為:(﹣8,6);當(dāng)AF為平行四邊形的對(duì)角線時(shí),AG'=BF=8,AG'∥∴點(diǎn)G'的坐標(biāo)為:(8,6);當(dāng)BF為平行四邊形的對(duì)角線時(shí),F(xiàn)G''=AB=6,F(xiàn)G''∥∴點(diǎn)G''的坐標(biāo)為:(8,﹣6);綜上所述,點(diǎn)G的坐標(biāo)為(﹣8,6)或(8,6)或(8,﹣6);②如圖,當(dāng)OF為菱形的對(duì)角線時(shí),∵四邊形AOGF為菱形,∴OA=AF=10,∴矩形ABCD平移距離m=OA﹣AB=10﹣6=4,即OB=4,設(shè)FG交x軸于H,如圖所示:∵OA∥
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)器人課件培訓(xùn)內(nèi)容
- 活動(dòng)培訓(xùn)標(biāo)題名稱(chēng)大全
- 洪水災(zāi)后疫情防控知識(shí)
- 2026年經(jīng)濟(jì)學(xué)專(zhuān)業(yè)考試宏觀經(jīng)濟(jì)與微觀經(jīng)濟(jì)分析試題集
- 2026年旅游管理專(zhuān)業(yè)模擬試題旅游目的地開(kāi)發(fā)與規(guī)劃
- 2026年體育教練員技能考核試題及答案
- 2026年會(huì)計(jì)職稱(chēng)中級(jí)會(huì)計(jì)報(bào)表重點(diǎn)題
- 2026年汽車(chē)維修技師發(fā)動(dòng)機(jī)維修方向技能測(cè)試題
- 2026年市場(chǎng)營(yíng)銷(xiāo)策略應(yīng)用實(shí)操題集與評(píng)分標(biāo)準(zhǔn)
- 2026年環(huán)境工程師中級(jí)職稱(chēng)考試環(huán)境監(jiān)測(cè)與治理方案設(shè)計(jì)案例題
- 武漢市江岸區(qū)2022-2023學(xué)年七年級(jí)上學(xué)期期末地理試題【帶答案】
- 自動(dòng)駕駛系統(tǒng)關(guān)鍵技術(shù)
- 完整工資表模板(帶公式)
- 奇瑞汽車(chē)QC小組成果匯報(bào)材料
- 英語(yǔ)四級(jí)詞匯表
- 藥用高分子材料-高分子材料概述
- 社區(qū)春節(jié)活動(dòng)方案
- CTT2000LM用戶(hù)手冊(cè)(維護(hù)分冊(cè))
- 川2020J146-TJ 建筑用輕質(zhì)隔墻條板構(gòu)造圖集
- 新員工入職申請(qǐng)表模板
- 貝多芬鋼琴奏鳴曲2告別-降E大調(diào)-Op81a-E-flat-major鋼琴譜樂(lè)譜
評(píng)論
0/150
提交評(píng)論