版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆山東省臨沂市臨沂經(jīng)濟開發(fā)區(qū)九級九年級數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.在反比例函數(shù)圖像的每一條曲線上,y都隨x的增大而增大,則b的取值范圍是()A.b=3 B. C. D.2.截止到2018年底,過去五年我國農(nóng)村貧困人口脫貧人數(shù)約為7000萬,脫貧攻堅取得階段性勝利,這里“7000萬”用科學(xué)記數(shù)法表示為()A.7×103 B.7×108 C.7×107 D.0.7×1083.如圖,在中,是邊上的點,以為圓心,為半徑的與相切于點,平分,,,的長是()A. B.2 C. D.4.一個不透明的口袋中裝有4個完全相同的小球,把它們分別標號為1,2,3,4,隨機摸出一個小球后不放回,再隨機摸出一個小球,則兩次摸出的小球標號之和等于6的概率為()A. B. C. D.5.如圖,AB是半圓的直徑,點D是的中點,∠ABC=50°,則∠DAB等于()A.65° B.60° C.55° D.50°6.對于題目“拋物線l1:(﹣1<x≤2)與直線l2:y=m(m為整數(shù))只有一個交點,確定m的值”;甲的結(jié)果是m=1或m=2;乙的結(jié)果是m=4,則()A.只有甲的結(jié)果正確B.只有乙的結(jié)果正確C.甲、乙的結(jié)果合起來才正確D.甲、乙的結(jié)果合起來也不正確7.如果關(guān)于的方程沒有實數(shù)根,那么的最大整數(shù)值是()A.-3 B.-2 C.-1 D.08.下列說法:四邊相等的四邊形一定是菱形順次連接矩形各邊中點形成的四邊形一定是正方形對角線相等的四邊形一定是矩形經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分其中正確的有個.A.4 B.3 C.2 D.19.如圖,小明將一個含有角的直角三角板繞著它的一條直角邊所在的直線旋轉(zhuǎn)一周,形成一個幾何體,將這個幾何體的側(cè)面展開,得到的大致圖形是()A. B.C. D.10.如果兩個相似三角形的相似比為2:3,那么這兩個三角形的面積比為()A.2:3 B.: C.4:9 D.9:411.“2020年的6月21日是晴天”這個事件是()A.確定事件 B.不可能事件 C.必然事件 D.不確定事件12.已知三角形的面積一定,則它底邊a上的高h與底邊a之間的函數(shù)關(guān)系的圖象大致是()A. B. C. D.二、填空題(每題4分,共24分)13.在Rt△ABC中,斜邊AB=4,∠B=60°,將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是(結(jié)果保留π).14.在△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,tan∠BPC=_______________.15.一枚質(zhì)地均勻的正方體骰子,其六個面上分別刻有1、2、3、4、5、6六個數(shù)字,投擲這個骰子一次,則向上一面的數(shù)字小于3的概率是__________.16.如圖,若被擊打的小球飛行高度(單位:)與飛行時間(單位:)之間具有的關(guān)系為,則小球從飛出到落地所用的時間為_____.17.將拋物線向左平移5個單位,再向上平移2個單位后得到的拋物線的解析式為_______________________.18.如圖,已知梯形ABCO的底邊AO在軸上,,AB⊥AO,過點C的雙曲線交OB于D,且,若△OBC的面積等于3,則k的值為__________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,正六邊形ABCDEF的對稱中心P在反比例函數(shù)的圖象上,邊CD在x軸上,點B在y軸上.已知.(1)點A是否在該反比例函數(shù)的圖象上?請說明理由.(2)若該反比例函數(shù)圖象與DE交于點Q,求點Q的橫坐標.(3)平移正六邊形ABCDEF,使其一邊的兩個端點恰好都落在該反比例函數(shù)的圖象上,試描述平移過程.20.(8分)如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.(1)求∠DAF的度數(shù);(2)求證:AE2=EF?ED;(3)求證:AD是⊙O的切線.21.(8分)如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、AB、AC上(點E與點A、點B均不重合).(1)當AE=8時,求EF的長;(2)設(shè)AE=x,矩形EFPQ的面積為y.①求y與x的函數(shù)關(guān)系式;②當x為何值時,y有最大值,最大值是多少?(3)當矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當點P到達點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.22.(10分)如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(-2,3),B(-4,1),C(-1,2).(1)畫出以點O為旋轉(zhuǎn)中心,將△ABC順時針旋轉(zhuǎn)90°得到△A'B'C'(2)求點C在旋轉(zhuǎn)過程中所經(jīng)過的路徑的長.23.(10分)解方程:3x(1x+1)=4x+1.24.(10分)如圖,在Rt△ABC中,∠ACB=90°.(1)利用尺規(guī)作圖,在BC邊上求作一點P,使得點P到邊AB的距離等于PC的長;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)(2)在(1)的條件下,以點P為圓心,PC長為半徑的⊙P中,⊙P與邊BC相交于點D,若AC=6,PC=3,求BD的長.25.(12分)解方程:x2﹣6x﹣40=026.已知關(guān)于的一元二次方程.(1)請判斷是否可為此方程的根,說明理由.(2)是否存在實數(shù),使得成立?若存在,請求出的值;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】由反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而增大,可得3-b<0,進而求出答案,作出選擇.【詳解】解:∵反比例函數(shù)的圖象的每一條曲線上,y都隨x的增大而增大,∴3-b<0,∴b>3,故選C.考查反比例函數(shù)的性質(zhì)和一元一次不等式的解法,掌握反比例函數(shù)的性質(zhì)是解決問題的關(guān)鍵.2、C【分析】科學(xué)記數(shù)法的表示形式為的形式,其中,為整數(shù).確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同.【詳解】將數(shù)據(jù)7000萬用科學(xué)記數(shù)法表示為.
故選:C.本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為的形式,其中,為整數(shù),表示時關(guān)鍵要正確確定的值以及的值.3、A【分析】由切線的性質(zhì)得出求出,證出,得出,得出,由直角三角形的性質(zhì)得出,得出,再由直角三角形的性質(zhì)即可得出結(jié)果.【詳解】解:∵與AC相切于點D,故選A.本題考查的是切線的性質(zhì)、直角三角形的性質(zhì)、等腰三角形的性質(zhì)、平行線的判定與性質(zhì)、銳角三角函數(shù)的定義等知識,熟練掌握圓的切線和直角三角形的性質(zhì),證出是解題的關(guān)鍵.4、A【解析】畫樹狀圖得出所有的情況,根據(jù)概率的求法計算概率即可.【詳解】畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次摸出的小球標號之和等于6的有2種情況,∴兩次摸出的小球標號之和等于6的概率故選A.考查概率的計算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.5、A【分析】連結(jié)BD,由于點D是的中點,即,根據(jù)圓周角定理得∠ABD=∠CBD,則∠ABD=25°,再根據(jù)直徑所對的圓周角為直角得到∠ADB=90°,然后利用三角形內(nèi)角和定理可計算出∠DAB的度數(shù).【詳解】解:連結(jié)BD,如圖,∵點D是的中點,即,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圓的直徑,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故選:A.本題考查了圓周角定理及其推論:在同圓或等圓中,同弧或等弧所對的圓周角相等;直徑所對的圓周角為直角.6、C【分析】畫出拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)的圖象,根據(jù)圖象即可判斷.【詳解】解:由拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)可知拋物線開口向下,對稱軸為直線x=1,頂點為(1,4),如圖所示:∵m為整數(shù),由圖象可知,當m=1或m=2或m=4時,拋物線l1:y=﹣(x﹣1)2+4(﹣1<x≤2)與直線l2:y=m(m為整數(shù))只有一個交點,∴甲、乙的結(jié)果合在一起正確,故選:C.本題考查了二次函數(shù)圖象與一次函數(shù)圖象的交點問題,作出函數(shù)的圖象是解題的關(guān)鍵.7、B【分析】先根據(jù)根的判別式求出k的取值范圍,再從中找到最大整數(shù)即可.【詳解】解得∴k的最大整數(shù)值是-2故選:B.本題主要考查根的判別式,掌握根的判別式與根的個數(shù)的關(guān)系是解題的關(guān)鍵.8、C【詳解】∵四邊相等的四邊形一定是菱形,∴①正確;∵順次連接矩形各邊中點形成的四邊形一定是菱形,∴②錯誤;∵對角線相等的平行四邊形才是矩形,∴③錯誤;∵經(jīng)過平行四邊形對角線交點的直線,一定能把平行四邊形分成面積相等的兩部分,∴④正確;其中正確的有2個,故選C.考點:中點四邊形;平行四邊形的性質(zhì);菱形的判定;矩形的判定與性質(zhì);正方形的判定.9、C【分析】先根據(jù)面動成體得到圓錐,進而可知其側(cè)面展開圖是扇形,根據(jù)扇形的弧長公式求得扇形的圓心角,即可判別.【詳解】設(shè)含有角的直角三角板的直角邊長為1,則斜邊長為,將一個含有角的直角三角板繞著它的一條直角邊所在的直線旋轉(zhuǎn)一周,形成一個幾何體是圓錐,此圓錐的底面周長為:,圓錐的側(cè)面展開圖是扇形,,即,∴,∵,∴圖C符合題意,故選:C.本題考查了點、線、面、體中的面動成體,解題關(guān)鍵是根據(jù)扇形的弧長公式求得扇形的圓心角.10、C【分析】根據(jù)相似三角形的面積的比等于相似比的平方解答.【詳解】∵兩個相似三角形的相似比為2:3,∴這兩個三角形的面積比為4:9,故選:C.本題考查的是相似三角形的性質(zhì),掌握相似三角形的面積的比等于相似比的平方是解題的關(guān)鍵.11、D【分析】在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件.【詳解】“2020年的6月21日是晴天”這個事件是隨機事件,屬于不確定事件,故選:D.本題主要考查了必然事件、不可能事件、隨機事件的概念.事先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.12、D【解析】先寫出三角形底邊a上的高h與底邊a之間的函數(shù)關(guān)系,再根據(jù)反比例函數(shù)的圖象特點得出.【詳解】解:已知三角形的面積s一定,
則它底邊a上的高h與底邊a之間的函數(shù)關(guān)系為S=ah,即;
該函數(shù)是反比例函數(shù),且2s>0,h>0;
故其圖象只在第一象限.
故選:D.本題考查反比例函數(shù)的圖象特點:反比例函數(shù)的圖象是雙曲線,與坐標軸無交點,當k>0時,它的兩個分支分別位于第一、三象限;當k<0時,它的兩個分支分別位于第二、四象限.二、填空題(每題4分,共24分)13、.【解析】試題分析:將△ABC繞點B旋轉(zhuǎn)60°,頂點C運動的路線長是就是以點B為圓心,BC為半徑所旋轉(zhuǎn)的弧,根據(jù)弧長公式即可求得.試題解析:∵AB=4,∴BC=2,所以弧長=.考點:1.弧長的計算;2.旋轉(zhuǎn)的性質(zhì).14、【詳解】試題分析:如圖,過點A作AH⊥BC于點H,∵AB=AC,∴AH平分∠BAC,且BH=BC=4.又∵∠BPC=∠BAC,∴∠BAH=∠BPC.∴tan∠BPC=tan∠BAH.在Rt△ABH中,AB=5,BH=4,∴AH=1.∴tan∠BAH=.∴tan∠BPC=.考點:1.等腰三角形的性質(zhì);2.銳角三角函數(shù)定義;1.轉(zhuǎn)化思想的應(yīng)用.15、【分析】利用公式直接計算.【詳解】解:這六個數(shù)字中小于3的有1和2兩種情況,則P(向上一面的數(shù)字小于3)=.故答案為:本題考查概率的計算.16、1.【分析】根據(jù)關(guān)系式,令h=0即可求得t的值為飛行的時間.【詳解】解:依題意,令得:∴得:解得:(舍去)或∴即小球從飛出到落地所用的時間為故答案為1.本題考查了二次函數(shù)的性質(zhì)在實際生活中的應(yīng)用.此題為數(shù)學(xué)建模題,關(guān)鍵在于讀懂小球從飛出到落地即飛行的高度為0時的情形,借助二次函數(shù)解決實際問題.此題較為簡單.17、y=-x2+5【分析】根據(jù)二次函數(shù)的圖像平移方法“左加右減,上加下減”可直接進行求解.【詳解】由將拋物線向左平移5個單位,再向上平移2個單位后得到的拋物線的解析式為;故答案為.本題主要考查二次函數(shù)的圖像平移,熟練掌握二次函數(shù)的圖像平移方法是解題的關(guān)鍵.18、【分析】設(shè)C(x,y),BC=a.過D點作DE⊥OA于E點.根據(jù)DE∥AB得比例線段表示點D坐標;根據(jù)△OBC的面積等于3得關(guān)系式,列方程組求解.【詳解】設(shè)C(x,y),BC=a.則AB=y,OA=x+a.過D點作DE⊥OA于E點.∵OD:DB=1:2,DE∥AB,∴△ODE∽△OBA,相似比為OD:OB=1:3,∴DE=AB=y,OE=OA=(x+a).∵D點在反比例函數(shù)的圖象上,且D((x+a),y),∴y?(x+a)=k,即xy+ya=9k,∵C點在反比例函數(shù)的圖象上,則xy=k,∴ya=8k.∵△OBC的面積等于3,∴ya=3,即ya=1.∴8k=1,k=.故答案為:.三、解答題(共78分)19、(1)點A在該反比例函數(shù)的圖像上,見解析;(2)Q的橫坐標是;(3)見解析.【分析】(1)連接PC,過點P作軸于點H,由此可求得點P的坐標為(2,);即可求得反比例函數(shù)的解析式為,連接AC,過點B作于點C,求得點A的坐標,由此即可判定點A是否在該反比例函數(shù)的圖象上;(2)過點Q作軸于點M,設(shè),則,由此可得點Q的坐標為,根據(jù)反比例函數(shù)圖象上點的性質(zhì)可得,解方程球隊的b值,即可求得點Q的橫坐標;(3)連接AP,,,結(jié)合(1)中的條件,將正六邊形ABCDEF先向右平移1個單位,再向上平移個單位(平移后的點B、C在反比例函數(shù)的圖象上)或?qū)⒄呅蜛BCDEF向左平移2個單位(平移后的點E、F在反比例函數(shù)的圖象上).【詳解】解:(1)連接PC,過點P作軸于點H,在正六邊形ABCDEF中,點B在y軸上和都是含有角的直角三角形,,點P的坐標為反比例函數(shù)的表達式為連接AC,過點B作于點C,,點A的坐標為當時,所以點A在該反比例函數(shù)的圖像上(2)過點Q作軸于點M六邊形ABCDEF是正六邊形,設(shè),則點Q的坐標為解得,點Q的橫坐標是(3)連接AP,,平移過程:將正六邊形ABCDEF先向右平移1個單位,再向上平移個單位,或?qū)⒄呅蜛BCDEF向左平移2個單位本題考查反比例函數(shù)的圖象及性質(zhì),正六邊形的性質(zhì);將正六邊形的邊角關(guān)系與反比例函數(shù)上點的坐標相結(jié)合是解決問題的關(guān)系.20、(1)∠DAF=36°;(2)證明見解析;(3)證明見解析.【解析】(1)求出∠ABC、∠ABD、∠CBD的度數(shù),求出∠D度數(shù),根據(jù)三角形內(nèi)角和定理求出∠BAF和∠BAD度數(shù),即可求出答案;(2)求出△AEF∽△DEA,根據(jù)相似三角形的性質(zhì)得出即可;(3)連接AO,求出∠OAD=90°即可.【詳解】(1)∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)證明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴,∴AE2=EF×ED;(3)證明:連接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA為半徑,∴AD是⊙O的切線.本題考查了切線的判定,圓周角定理,三角形內(nèi)角和定理,等腰三角形的性質(zhì)等知識點,能綜合運用定理進行推理是解此題的關(guān)鍵.21、(1)1;(2)①y=﹣x2+3x(0<x<12);②x=6時,y有最大值為9;(3)S=【分析】(1)由EF∥BC,可得,由此即可解決問題;(2)①先根據(jù)點E為AB上一點得出自變量x的取值范圍,根據(jù)30度的直角三角形的性質(zhì)求出EF和AF的長,在在Rt△ACB中,根據(jù)三角函數(shù)求出AC的長,計算FC的長,利用矩形的面積公式可求得S的函數(shù)關(guān)系式;②把二次函數(shù)的關(guān)系式配方可以得結(jié)論;(3)分兩種情形分別求解即可解決問題.【詳解】解:(1)在Rt△ABC中,∵AB=12,∠A=30°,∴BC=AB=6,AC=BC=6,∵四邊形EFPQ是矩形,∴EF∥BC,∴=,∴=,∴EF=1.(2)①∵AB=12,AE=x,點E與點A、點B均不重合,∴0<x<12,∵四邊形CDEF是矩形,∴EF∥BC,∠CFE=90°,∴∠AFE=90°,在Rt△AFE中,∠A=30°,∴EF=x,AF=cos30°?AE=x,在Rt△ACB中,AB=12,∴cos30°=,∴AC=12×=6,∴FC=AC﹣AF=6﹣x,∴y=FC?EF=x(6﹣x)=﹣x2+3x(0<x<12);②y=x(12﹣x)=﹣(x﹣6)2+9,當x=6時,S有最大值為9;(3)①當0≤t<3時,如圖1中,重疊部分是五邊形MFPQN,S=S矩形EFPQ﹣S△EMN=9﹣t2=﹣t2+9.②當3≤t≤6時,重疊部分是△PBN,S=(6﹣t)2,綜上所述,S=本題考查二次函數(shù)與三角形綜合的知識,難度較大,需綜合運用所學(xué)知識求解.22、(1)見解析;(2)【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞點O順時針旋轉(zhuǎn)90°后的對應(yīng)點的位置,然后順次連接即可.(2)在旋轉(zhuǎn)過程中,C所經(jīng)過的路程為下圖中扇形的弧長,即利用扇形弧長公式計算即可.【詳解】(1)如圖,連接OA、OB、OC并點O為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到A'、B'、C',連接A'B'、B'C'、A'C',△A'B'C'就是所求的三角形.(2)C在旋轉(zhuǎn)過程中所經(jīng)過的路程為扇形的弧長;所以本題考查了旋轉(zhuǎn)作圖以及扇形的弧長公式的計算,作出正確的圖形是解本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北省襄陽市谷城縣石花鎮(zhèn)2025-2026學(xué)年八年級上學(xué)期期末考試生物試題(無答案)
- 養(yǎng)老院入住老人醫(yī)療護理技能培訓(xùn)制度
- 人力資源制度
- 企業(yè)內(nèi)部保密責(zé)任制度
- 老年終末期認知下降癥狀群管理方案
- 老年終末期疼痛評估的全程管理策略
- 科技創(chuàng)新能力培養(yǎng)實施細則
- 創(chuàng)新公共服務(wù)提供方式滿足多樣需求
- 2025年商洛市商州富興學(xué)校教師招聘筆試真題
- 地毯整經(jīng)工安全生產(chǎn)意識知識考核試卷含答案
- 八年級地理上冊《中國的氣候》探究式教學(xué)設(shè)計
- 重慶市2026年高一(上)期末聯(lián)合檢測(康德卷)化學(xué)+答案
- 2026年湖南郴州市百??毓杉瘓F有限公司招聘9人備考考試題庫及答案解析
- 2026貴州黔東南州公安局面向社會招聘警務(wù)輔助人員37人考試備考題庫及答案解析
- 綠電直連政策及新能源就近消納項目電價機制分析
- 鐵路除草作業(yè)方案范本
- 2026屆江蘇省常州市生物高一第一學(xué)期期末檢測試題含解析
- 2026年及未來5年市場數(shù)據(jù)中國高溫工業(yè)熱泵行業(yè)市場運行態(tài)勢與投資戰(zhàn)略咨詢報告
- 教培機構(gòu)排課制度規(guī)范
- 2026年檢視問題清單與整改措施(2篇)
- 認識時間(課件)二年級下冊數(shù)學(xué)人教版
評論
0/150
提交評論