強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)測試試題(解析卷)_第1頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)測試試題(解析卷)_第2頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)測試試題(解析卷)_第3頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)測試試題(解析卷)_第4頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)測試試題(解析卷)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,△ABC中,AB=AC,DE是AB的垂直平分線交AB于點E,交AC于點D,連接BD;若BD⊥AC,則∠CBD的度數(shù)是(

)A.22° B.22.5° C.24° D.24.5°2、若點P(m﹣1,5)與點Q(3,2﹣n)關(guān)于y軸對稱,則m+n的值是()A.﹣5 B.1 C.5 D.113、如圖,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm速度向點A運動,點Q從點A同時出發(fā)以每秒2cm速度向點C運動,其中一個動點到達(dá)端點,另一個動點也隨之停止,當(dāng)△APQ是以PQ為底的等腰三角形時,運動的時間是(

)秒A.2.5 B.3 C.3.5 D.44、下列命題中,屬于假命題的是(

)A.邊長相等的兩個等邊三角形全等 B.斜邊相等的兩個等腰直角三角形全等C.周長相等的兩個三角形全等 D.底邊和頂角對應(yīng)相等的兩個等腰三角形全等5、已知點與點關(guān)于軸對稱,則點的坐標(biāo)為(

)A. B. C. D.6、如圖,在Rt△ABC中,∠ABC=90°,分別以點A和點B為圓心,大于AB的長為半徑作弧相交于點D和點E,直線DE交AC于點F,交AB于點G,連接BF,若BF=3,AG=2,則BC=()A.5 B.4 C.2 D.27、如圖,在△ABC中,∠ACB=90°,分別以點A和點B為圓心,以相同的長(大于

AB)為半徑作弧,兩弧相交于點M和點N,作直線MN交AB于點D,交BC于點E.若AC=3,AB=5,則DE等于(

A.2 B. C. D.8、下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.9、小軍同學(xué)在網(wǎng)格紙上將某些圖形進行平移操作,他發(fā)現(xiàn)平移前后的兩個圖形所組成的圖形可以是軸對稱圖形.如圖所示,現(xiàn)在他將正方形從當(dāng)前位置開始進行一次平移操作,平移后的正方形的頂點也在格點上,則使平移前后的兩個正方形組成軸對稱圖形的平移方向有(

)A.3個 B.4個 C.5個 D.無數(shù)個10、等腰三角形的一個角比另一個角2倍少20度,等腰三角形頂角的度數(shù)是(

)A.或或 B.或C.或 D.或第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,在中,,,AB的垂直平分線MN交AC于D點,連接BD,則的度數(shù)是________.2、如圖,中,D,E分別是AC,AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定是等腰三角形(用序號寫出一種情形):_______.3、如圖,平面直角坐標(biāo)系中有四個點,它們的橫縱坐標(biāo)均為整數(shù).若在此平面直角坐標(biāo)系內(nèi)移動點A,使得這四個點構(gòu)成的四邊形是軸對稱圖形,并且點A的橫坐標(biāo)仍是整數(shù),則移動后點A的坐標(biāo)為________.4、(1)等腰三角形底邊長為6cm,一腰上的中線把它的周長分成兩部分的差為2cm,則腰長為________.(2)已知的周長為24,,于點D,若的周長為20,則AD的長為________.(3)已知等腰三角形的周長為24,腰長為x,則x的取值范圍是________.5、如圖,BH是鈍角三角形ABC的高,AD是角平分線,且2∠C=90°-∠ABH,若CD=4,ΔABC的面積為12,則AD=_____.6、已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=_____.7、把兩個同樣大小含角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個三角尺的直角頂點重合于點,且另外三個銳角頂點在同一直線上.若,則____.8、如圖,分別以的邊,所在直線為稱軸作的對稱圖形和,,線段與相交于點O,連接、、、.有如下結(jié)論:①;②;③平分:④;③.其中正確的結(jié)論個數(shù)為______.9、點A(5,﹣2)關(guān)于x軸對稱的點的坐標(biāo)為___.10、正五邊形ABCDE中,對角線AC、BD相較于點P,則∠APB的度數(shù)為_______.三、解答題(5小題,每小題6分,共計30分)1、如圖,△是等邊三角形,在直線上,.求證:.2、如圖,在△ABC中,AB=AC,D是BC邊上的中點,連結(jié)AD,BE平分∠ABC交AC于點E,過點E作EF∥BC交AB于點F.(1)若∠C=36°,求∠BAD的度數(shù).(2)求證:FB=FE.3、如圖,在中,,點D,E分別在邊AB,AC上,,連結(jié)CD,BE.(1)若,求,的度數(shù).(2)寫出與之間的關(guān)系,并說明理由.4、如圖,是邊長為1的等邊三角形,,,點,分別在,上,且,求的周長.5、如圖所示的四個圖形中,從幾何圖形變換的角度考慮,哪一個與其他三個不同?請指出這個圖形,并簡述你的理由.

-參考答案-一、單選題1、B【解析】【分析】先利用線段垂直平分線的性質(zhì)、等腰三角形的性質(zhì)求得∠A、∠ABD、∠ABC,最后利用三角形內(nèi)角和定理求解即可.【詳解】解:∵BD⊥AC,DE是AB的垂直平分線,∴∠ADB=90°,DA=DB,∴∠A=∠ABD=45°,∵AB=AC,∴∠ABC=∠ACB=67.5°,∴∠CBD=∠ABC-∠ABD=67.5°-45°=22.5°,.故選B.【考點】本題主要考查了線段垂直平分線、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識點,明確題意、靈活應(yīng)用相關(guān)知識點成為解答本題的關(guān)鍵.2、A【解析】【分析】根據(jù)關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù),求出m、n,問題得解.【詳解】解:由題意得:m﹣1=﹣3,2﹣n=5,解得:m=﹣2,n=﹣3,則m+n=﹣2﹣3=﹣5,故選:A【考點】本題考查了關(guān)于y軸的對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù).3、D【解析】【分析】設(shè)運動時間為x秒時,AP=AQ,根據(jù)點P、Q的出發(fā)點及速度,即可得出關(guān)于t的一元一次方程,解之即可得出結(jié)論.【詳解】設(shè)運動的時間為x秒,在△ABC中,AB=20cm,AC=12cm,點P從點B出發(fā)以每秒3cm的速度向點A運動,點Q從點A同時出發(fā)以每秒2cm的速度向點C運動,當(dāng)△APQ是以PQ為底的等腰三角形時,AP=AQ,AP=20﹣3x,AQ=2x,即20﹣3x=2x,解得x=4故選:D.【考點】此題主要考查學(xué)生對等腰三角形的性質(zhì)這一知識點的理解和掌握,此題涉及到動點,有一定的拔高難度,屬于中檔題.4、C【解析】【分析】根據(jù)全等三角形的判定定理,等腰三角形的性質(zhì),等邊三角形的性質(zhì),直角三角形的性質(zhì),逐一判斷選項,即可得到答案.【詳解】解:A、邊長相等的兩個等邊三角形全等,是真命題,故A不符合題意;B、斜邊相等的兩個等腰直角三角形全等,是真命題,故B不符合題意;C、周長相等的兩個三角形不一定全等,原命題是假命題,故C符合題意;D、底邊和頂角對應(yīng)相等的兩個等腰三角形全等,是真命題,故D不符合題意.故選:C.【考點】本題考查了命題與定理,牢記有關(guān)的性質(zhì)、定義及定理是解決此類題目的關(guān)鍵.5、B【解析】【分析】根據(jù)關(guān)于軸對稱的性質(zhì):橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即可得解.【詳解】由題意,得與點關(guān)于軸對稱點的坐標(biāo)是,故選:B.【考點】此題主要考查關(guān)于軸對稱的點坐標(biāo)的求解,熟練掌握,即可解題.6、C【解析】【分析】利用線段垂直平分線的性質(zhì)得到,,再證明,利用勾股定理即可解決問題.【詳解】解:由作圖方法得垂直平分,∴,,∴,∵,∴,,∴,∴,∴,∴,,∴.故選:.【考點】本題考查了作圖-基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線)方法是解題關(guān)鍵,同時還考查了線段垂直平分線的性質(zhì).7、C【解析】【詳解】根據(jù)勾股定理求出BC,根據(jù)線段垂直平分線性質(zhì)求出AE=BE,根據(jù)勾股定理求出AE,再根據(jù)勾股定理求出DE即可.解:在RtABC中,由勾股定理得:BC==4,連接AE,從作法可知:DE是AB的垂直評分線,根據(jù)性質(zhì)AE=BE,在Rt△ACE中,由勾股定理得:AC+CE=AE,即3+(4-AE)=AE,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE+()=(),解得:DE=.故選C.“點睛”:本題考查了線段垂直平分線性質(zhì),勾股定理的應(yīng)用,能靈活運用勾股定理得出方程是解此題的關(guān)鍵.8、D【解析】【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、不是軸對稱圖形,是中心對稱圖形,不符合題意;C、不是軸對稱圖形,是中心對稱圖形,不符合題意;D、是軸對稱圖形,符合題意.故選D.【考點】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.9、C【解析】【分析】結(jié)合正方形的特征,可知平移的方向只有5個,向上,下,右,右上45°,右下45°方向,否則兩個圖形不軸對稱.【詳解】因為正方形是軸對稱圖形,有四條對稱軸,因此只要沿著正方形的對稱軸進行平移,平移前后的兩個圖形組成的圖形一定是軸對稱圖形,觀察圖形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移時,平移前后的兩個圖形組成的圖形都是軸對稱圖形,故選C.【考點】本題考查了圖形的平移、軸對稱圖形等知識,熟練掌握正方形的結(jié)構(gòu)特征是解本題的關(guān)鍵.10、A【解析】【分析】設(shè)另一個角是x,表示出一個角是2x-20°,然后分①x是頂角,2x-20°是底角,②x是底角,2x-20°是頂角,③x與2x-20°都是底角根據(jù)三角形的內(nèi)角和等于180°與等腰三角形兩底角相等列出方程求解即可.【詳解】設(shè)另一個角是x,表示出一個角是2x﹣20°,①x是頂角,2x﹣20°是底角時,x+2(2x﹣20°)=180°,解得x=44°,所以,頂角是44°;②x是底角,2x﹣20°是頂角時,2x+(2x﹣20°)=180°,解得x=50°,所以,頂角是2×50°﹣20°=80°;③x與2x﹣20°都是底角時,x=2x﹣20°,解得x=20°,所以,頂角是180°﹣20°×2=140°;綜上所述,這個等腰三角形的頂角度數(shù)是44°或80°或140°.故選:A.【考點】本題考查了等腰三角形兩底角相等的性質(zhì),三角形的內(nèi)角和定理,難點在于分情況討論,特別是這兩個角都是底角的情況容易漏掉而導(dǎo)致出錯.二、填空題1、15°【解析】【分析】根據(jù)等腰三角形兩底角相等,求出∠ABC的度數(shù),再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等,可得AD=BD,根據(jù)等邊對等角的性質(zhì),可得∠ABD=∠A,然后求∠DBC的度數(shù)即可.【詳解】∵AB=AC,∠A=50°,∴∠ABC=(180°?∠A)=(180°?50°)=65°,∵MN垂直平分線AB,∴AD=BD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC?∠ABD=65°?50°=15°.故答案為:15°.【考點】考查等腰三角形的性質(zhì),線段垂直平分線的性質(zhì),掌握垂直平分線的性質(zhì)是解題的關(guān)鍵.2、①③或②③【解析】【分析】已知①③條件,先證△BEO≌△CDO,再證明∠ABC=∠ACB最后得到△ABC是等腰三角形;已知②③條件可證明△BEO≌△CDO,再證明△ABC是等腰三角形.【詳解】解:①③或②③.由①③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD.∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.因此△ABC是等腰三角形.由②③證明△ABC是等腰三角形.在△BEO和△CDO中,∵∠EOB=∠DOC,∠BEO=∠CDO,BE=CD,∴△BEO≌△CDO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC.∴△ABC是等腰三角形.故答案為:①③或②③.【考點】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的判定;其中掌握用“AAS”判定兩個三角形全等和用“等角對等邊”判定三角形為等腰三角形是解決本題的關(guān)鍵.3、(﹣1,1),(﹣2,﹣2),(0,2),(﹣2,﹣3)【解析】【詳解】試題解析:如圖所示:(此時不是四邊形,舍去),故答案為4、

4cm或8cm

8

【解析】【分析】(1)根據(jù)題意畫出圖形,由題意得,即可得,又由等腰三角形的底邊長為6cm,即可求得答案.(2)由△ABC的周長為24得到AB,BC的關(guān)系,由△ABD的周長為20得到AB,BD,AD的關(guān)系,再由等腰三角形的性質(zhì)知,BC為BD的2倍,故可解出AD的值.(3)設(shè)底邊長為y,再由三角形的三邊關(guān)系即可得出答案.【詳解】(1)如圖,,BD是中線由題意得存在兩種情況:①②①,∵∴②,∵∴∴腰長為:4cm或8cm故答案為:4cm或8cm.(2)∵△ABC的周長為24,∴∵∴∴∴∵的周長為20∴∴故答案為:8.(3)設(shè)底邊長為y∵等腰三角形的周長為24,腰長為x∴∴,即解得故答案為:.【考點】本題考查了三角形的綜合問題,掌握等腰三角形的性質(zhì)、等腰三角形三線合一的性質(zhì)、三角形的周長定義、三角形的三邊關(guān)系是解題的關(guān)鍵.5、3【解析】【分析】根據(jù)三角形的外角性質(zhì)和已知條件易證明∠ABC=∠C,則可判斷△ABC為等腰三角形,然后根據(jù)等腰三角形的性質(zhì)可得AD⊥BC,BD=CD=4,再利用三角形面積公式即可求出AD的長.【詳解】解:∵BH為△ABC的高,∴∠AHB=90°,∴∠BAH=90°﹣∠ABH,而2∠C=90°﹣∠ABH,∴∠BAH=2∠C,∵∠BAH=∠C+∠ABC,∴∠ABC=∠C,∴△ABC為等腰三角形,∵AD是角平分線,∴AD⊥BC,BD=CD=4,∵ΔABC的面積為12,∴×AD×BC=12,即×AD×8=12,∴AD=3.故答案為:3.【考點】本題考查了三角形的外角性質(zhì)、等腰三角形的判定和性質(zhì)以及三角形的面積,熟練掌握上述知識是解題的關(guān)鍵.6、4.【解析】【分析】過點D作DM⊥OB,垂足為M,則DM=DE=2,在Rt△OEF中,利用三角形內(nèi)角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所對的直角邊等于斜邊的一半可求出DF的長,此題得解.【詳解】過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.【考點】本題考查了角平分線的性質(zhì)、三角形內(nèi)角和定理以及含30度角的直角三角形,利用角平分線的性質(zhì)及30°角所對的直角邊等于斜邊的一半,求出DF的長是解題的關(guān)鍵.7、.【解析】【分析】如圖,先利用等腰直角三角形的性質(zhì)求出,,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點作于,在中,,,,兩個同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.8、3【解析】【分析】根據(jù)軸對稱的性質(zhì)以及全等三角形的性質(zhì)一一判斷即可.【詳解】解:和是的軸對稱圖形,,,,,故①正確;,由翻折的性質(zhì)得,,又,,故②正確;,,,邊上的高與邊上的高相等,即點到兩邊的距離相等,平分,故③正確;只有當(dāng)時,,才有,故④錯誤;在和中,,,,,,故⑤錯誤;綜上所述,結(jié)論正確的是①②③.故答案為:3.【考點】本題考查軸對稱的性質(zhì),全等三角形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.9、(5,2)【解析】【分析】根據(jù)關(guān)于x軸對稱的點的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)解答.【詳解】解:點A(5,-2)關(guān)于x軸對稱的點的坐標(biāo)是(5,2).故答案為:(5,2).【考點】本題考查了關(guān)于原點對稱的點的坐標(biāo),關(guān)于x軸、y軸對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:(1)關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);(2)關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);(3)關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).10、72°##72度【解析】【分析】根據(jù)正五邊形的性質(zhì),可得,AB=BC=CD,從而得到∠ACB=∠CBD=36°,再由三角形外角的性質(zhì),即可求解.【詳解】解:∵多邊形ABCDE是正五邊形,∴,AB=BC=CD,∴∠ACB=∠CBD=36°,∴∠APB=∠ACB+∠CBD=72°.故答案為:72°【考點】本題主要考查了正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì),熟練掌握正多邊形的性質(zhì),等腰三角形的性質(zhì),三角形外角的性質(zhì)是解題的關(guān)鍵.三、解答題1、詳見解析【解析】【分析】由等邊三角形的性質(zhì)以及題設(shè)條件,可證△ADB≌△AEC,由全等三角形的性質(zhì)可得.【詳解】證明:∵△是等邊三角形,∴AB=AC,∠ABC=∠ACB,∴∠ABD=∠ACE,在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴.【考點】本題考查等邊三角形的性質(zhì)、補角的性質(zhì)、全等三角形的判定和性質(zhì),綜合性強,但是整體難度不大.2、(1)54°,(2)見解析【解析】【分析】(1)利用等腰三角形的三線合一的性質(zhì)證明∠ADB=90°,再利用等腰三角形的性質(zhì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論