2024年四川省什邡市中考數(shù)學模考模擬試題帶答案詳解(突破訓練)_第1頁
2024年四川省什邡市中考數(shù)學??寄M試題帶答案詳解(突破訓練)_第2頁
2024年四川省什邡市中考數(shù)學模考模擬試題帶答案詳解(突破訓練)_第3頁
2024年四川省什邡市中考數(shù)學??寄M試題帶答案詳解(突破訓練)_第4頁
2024年四川省什邡市中考數(shù)學模考模擬試題帶答案詳解(突破訓練)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省什邡市中考數(shù)學模考模擬試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,已知是的兩條切線,A,B為切點,線段交于點M.給出下列四種說法:①;②;③四邊形有外接圓;④M是外接圓的圓心,其中正確說法的個數(shù)是(

)A.1 B.2 C.3 D.42、2019年女排世界杯于9月在日本舉行,中國女排以十一連勝的驕人成績衛(wèi)冕冠軍,充分展現(xiàn)了團隊協(xié)作、頑強拼搏的女排精神.如圖是某次比賽中墊球時的動作,若將墊球后排球的運動路線近似的看作拋物線,在同一豎直平面內建立如圖所示的直角坐標系,已知運動員墊球時(圖中點A)離球網的水平距離為5米,排球與地面的垂直距離為0.5米,排球在球網上端0.26米處(圖中點B)越過球網(女子排球賽中球網上端距地面的高度為2.24米),落地時(圖中點)距球網的水平距離為2.5米,則排球運動路線的函數(shù)表達式為(

)A. B.C. D.3、已知△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則m的值等于()A.12 B.16 C.﹣12或﹣16 D.12或164、如圖,在等腰Rt△ABC中,AC=BC=,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當點P沿半圓從點A運動至點B時,點M運動的路徑長是(

)A.π B.π C.π D.25、下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.二、多選題(5小題,每小題3分,共計15分)1、下列說法不正確的是(

)A.經過三個點有且只有一個圓B.經過兩點的圓的圓心是這兩點連線的中點C.鈍角三角形的外心在三角形外部D.等腰三角形的外心即為其中心2、二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標為(-1,n),其部分圖象如圖所示.下列結論正確的是(

)A.B.C.若,是拋物線上的兩點,則D.關于x的方程無實數(shù)根3、如圖,是半圓的直徑,半徑于點,為半圓上一點,,與交于點,連接,,給出以下四個結論,其中正確的是(

)A.平分 B. C. D.4、二次函數(shù)(,,為常數(shù),)的部分圖象如圖所示,圖象頂點的坐標為,與軸的一個交點在點和點之間,給出的四個結論中正確的有(

)A. B.C. D.時,方程有解5、下列條件中,不能確定一個圓的是(

)A.圓心與半徑 B.直徑C.平面上的三個已知點 D.三角形的三個頂點第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、《九章算術》是我國古代的數(shù)學名著,其中“勾股”章有一題,大意是說:已知矩形門的高比寬多尺,門的對角線長尺,那么門的高和寬各是多少?如果設門的寬為尺,根據(jù)題意,那么可列方程___________.2、一個不透明的袋子裝有除顏色外其余均相同的2個紅球和m個黃球,隨機從袋中摸出個球記錄下顏色,再放回袋中搖勻大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,則m的值為_________.3、為了落實“雙減”政策,朝陽區(qū)一些學校在課后服務時段開設了與冬奧會項目冰壺有關的選修課.如圖,在冰壺比賽場地的一端畫有一些同心圓作為營壘,其中有兩個圓的半徑分別約為60cm和180cm,小明擲出一球恰好沿著小圓的切線滑行出界,則該球在大圓內滑行的路徑MN的長度為______cm.4、對任意實數(shù)a,b,定義一種運算:,若,則x的值為_________.5、已知⊙A的半徑為5,圓心A(4,3),坐標原點O與⊙A的位置關系是______.四、簡答題(2小題,每小題10分,共計20分)1、如圖①已知拋物線的圖象與軸交于、兩點(在的左側),與的正半軸交于點,連結;二次函數(shù)的對稱軸與軸的交點.(1)拋物線的對稱軸與軸的交點坐標為,點的坐標為_____(2)若以為圓心的圓與軸和直線都相切,試求出拋物線的解析式:(3)在(2)的條件下,如圖②是的正半軸上一點,過點作軸的平行線,與直線交于點與拋物線交于點,連結,將沿翻折,的對應點為’,在圖②中探究:是否存在點,使得’恰好落在軸上?若存在,請求出的坐標:若不存在,請說明理由.2、計算:五、解答題(4小題,每小題10分,共計40分)1、二次函數(shù)與軸分別交于點和點,與軸交于點,直線的解析式為,軸交直線于點.(1)求二次函數(shù)的解析式;(2)為線段上一動點,過點且垂直于軸的直線與拋物線及直線分別交于點、.直線與直線交于點,當時,求值.2、在數(shù)學活動課上,王老師要求學生將圖1所示的3×3正方形方格紙,剪掉其中兩個方格,使之成為軸對稱圖形.規(guī)定:凡通過旋轉能重合的圖形視為同一種圖形,如圖2的四幅圖就視為同一種設計方案(陰影部分為要剪掉部分)請在圖中畫出4種不同的設計方案,將每種方案中要剪掉的兩個方格涂黑(每個3×3的正方形方格畫一種,例圖除外)3、如圖1,點O為直線AB上一點,將兩個含60°角的三角板MON和三角板OPQ如圖擺放,使三角板的一條直角邊OM、OP在直線AB上,其中.(1)將圖1中的三角板OPQ繞點O按逆時針方向旋轉至圖2的位置,使得邊OP在的內部且平分,此時三角板OPQ旋轉的角度為______度;(2)三角板OPQ在繞點O按逆時針方向旋轉時,若OP在的內部.試探究與之間滿足什么等量關系,并說明理由;(3)如圖3,將圖1中的三角板MON繞點O以每秒2°的速度按順時針方向旋轉,同時將三角板OPQ繞點O以每秒3°的速度按逆時針方向旋轉,將射線OB繞點O以每秒5°的速度沿逆時針方向旋轉,旋轉后的射線OB記為OE,射線OC平分,射線OD平分,當射線OC、OD重合時,射線OE改為繞點O以原速按順時針方向旋轉,在OC與OD第二次相遇前,當時,直接寫出旋轉時間t的值.4、在“鄉(xiāng)村振興”行動中,某村辦企業(yè)以,兩種農作物為原料開發(fā)了一種有機產品,原料的單價是原料單價的1.5倍,若用900元收購原料會比用900元收購原料少.生產該產品每盒需要原料和原料,每盒還需其他成本9元.市場調查發(fā)現(xiàn):該產品每盒的售價是60元時,每天可以銷售500盒;每漲價1元,每天少銷售10盒.(1)求每盒產品的成本(成本=原料費+其他成本);(2)設每盒產品的售價是元(是整數(shù)),每天的利潤是元,求關于的函數(shù)解析式(不需要寫出自變量的取值范圍);(3)若每盒產品的售價不超過元(是大于60的常數(shù),且是整數(shù)),直接寫出每天的最大利潤.-參考答案-一、單選題1、C【解析】【分析】由切線長定理判斷①,結合等腰三角形的性質判斷②,利用切線的性質與直角三角形的斜邊上的中線等于斜邊的一半,判斷③,利用反證法判斷④.【詳解】如圖,是的兩條切線,故①正確,故②正確,是的兩條切線,取的中點,連接,則所以:以為圓心,為半徑作圓,則共圓,故③正確,M是外接圓的圓心,與題干提供的條件不符,故④錯誤,綜上:正確的說法是個,故選C.【考點】本題考查的是切線長定理,三角形的外接圓,四邊形的外接圓,掌握以上知識是解題的關鍵.2、A【解析】【分析】由題意可知點A坐標為(-5,0.5),點B坐標為(0,2.5),點C坐標為(2.5,0),設排球運動路線的函數(shù)表達式為:y=ax2+bx+c,將點A、B、C的坐標代入得關于a、b、c的三元一次方程組,解得a、b、c的值,則函數(shù)解析式可得,從而問題得解.【詳解】解:由題意可知點A坐標為(-5,0.5),點B坐標為(0,2.5),點C坐標為(2.5,0)設排球運動路線的函數(shù)解析式為:y=ax2+bx+c,∵排球經過A、B、C三點,,解得:,∴排球運動路線的函數(shù)解析式為,故選:A.【考點】本題考查了根據(jù)實際問題列二次函數(shù)關系式并求得關系式,數(shù)形結合并明確二次函數(shù)的一般式是解題的關鍵.3、D【解析】【分析】由△ABC為等腰三角形,BC=6,且AB,AC為方程x2﹣8x+m=0兩根,可得兩種情況:①BC=6=AB,把6代入方程得36﹣48+m=0②AB=AC,此時方程的判別式為0,分別求解即可.【詳解】解:∵△ABC為等腰三角形,若BC=6,且AB,AC為方程x2﹣8x+m=0兩根,則①BC=6=AB,把6代入方程得36﹣48+m=0,∴m=12;②AB=AC,此時方程的判別式為0,∴Δ=64﹣4m=0,∴m=16.故m的值等于12或16.故選:D.【考點】本題考查了一元二次方程的判別式和等腰三角形的性質,熟練掌握知識點是解題的關鍵.4、B【解析】【分析】取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,利用勾股定理得到AB的長,進而可求出OC,OP的長,求得∠CMO=90°,于是得到點M在以OC為直徑的圓上,然后根據(jù)圓的周長公式計算點M運動的路徑長.【詳解】解:取AB的中點O、AC的中點E、BC的中點F,連接OC、OP、OM、OE、OF、EF,如圖,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M為PC的中點,∴OM⊥PC,∴∠CMO=90°,∴點M在以OC為直徑的圓上,P點在A點時,M點在E點;P點在B點時,M點在F點.∵O是AB中點,E是AC中點,∴OE是△ABC的中位線,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四邊形CEOF是矩形,∵OE=OF,∴四邊形CEOF為正方形,EF=OC=2,∴M點的路徑為以EF為直徑的半圓,∴點M運動的路徑長=×π×2=π.故選:B.【考點】本題考查了等腰三角形的性質,勾股定理,正方形的判定與性質,圓周角定理,以及動點的軌跡:點按一定規(guī)律運動所形成的圖形為點運動的軌跡.解決此題的關鍵是利用圓周角定理確定M點的軌跡為以EF為直徑的半圓.5、D【詳解】解:.不是軸對稱圖形,也不是中心對稱圖形,故本選項不符合題意;.不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意;.是軸對稱圖形,不是中心對稱圖形,故本選項不符合題意;.既是軸對稱圖形,又是中心對稱圖形,故本選項符合題意.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,解題的關鍵是掌握軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.二、多選題1、ABD【解析】【分析】A.根據(jù)確定圓的條件求解即可;B.根據(jù)確定圓心的方法求解即可;C.根據(jù)三角形外心的性質求解即可;D.根據(jù)三角形外心的性質求解即可;【詳解】解:A、如果三個點在一條直線上,不存在經過這三個點的圓,故選項錯誤,符合題意;B、經過兩點的圓的所有圓心在兩點連線的垂直平分線上,不僅僅是這兩點連線的中點,故選項錯誤,符合題意;C、鈍角三角形的外心是三邊垂直平分線的交點,在三角形外部,選項正確,不符合題意;D、等腰三角形的外心是三邊垂直平分線的交點,不是其中心,故選項錯誤,符合題意;故選:ABD.【考點】此題考查了確定圓的條件,確定圓心的方法,三角形的外心等知識,解題的關鍵是熟練掌握確定圓的條件,確定圓心的方法,三角形的外心.2、CD【解析】【分析】根據(jù)二次函數(shù)的性質及與x軸另一交點的位置,即可判定A;當x=2時,即可判定B;根據(jù)對稱性及二次函數(shù)的性質,可判定C;根據(jù)平移后與x軸有無交點,可判定D.【詳解】解:由圖象可知:該二次函數(shù)圖象的對稱軸為直線,∴b=2a,由圖象可知:該二次函數(shù)圖象與x軸的左側交點在-3與-2之間,故與x軸的另一個交點在0與1之間,∴當x=1時,y<0,即a+b+c<0,3a+c<0,故A錯誤;當x=-2時,y>0,即4a-2b+c>0,故B錯誤;點關于對稱軸對稱的點的坐標為,即,在對稱軸的左側y隨x的增大而增大,故,故C正確;該二次函數(shù)的頂點坐標為(?1,n),將函數(shù)向下平移n+1個單位,函數(shù)圖象與x軸無交點,∴方程無實數(shù)根,故D正確,故選:CD.【考點】本題考查了二次函數(shù)圖象與性質,根據(jù)二次函數(shù)的圖象判定式子是否成立,解題的關鍵是從圖象中找到相關信息.3、ABCD【解析】【分析】根據(jù)圓周角定理即可得出平分,證明全等即可得到,根據(jù)即可得到,即可得到;【詳解】∵是半圓的直徑,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正確;又∵,,∴,∴,故B正確;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正確;∴,∴,故D正確;故選ABCD.【考點】本題主要考查了圓周角定理、直角三角形的性質、全等三角形的判定與性質、相似三角形的判定與性質,準確計算是解題的關鍵.4、BCD【解析】【分析】根據(jù)拋物線與軸有兩個交點,可知,即可判斷A選項;根據(jù)時,,即可判斷B選項;根據(jù)對稱軸,即可判斷C選項;D.根據(jù)拋物線的頂點坐標為,函數(shù)有最大即可判定D.【詳解】解:由圖象可知,拋物線開口向下,對稱軸在軸的右側,與軸的交點在軸的負半軸,∵拋物線與軸有兩個交點,∴,∴,即,故A錯誤;由圖象可知,時,,∴,故B正確;∵拋物線的頂點坐標為,∴,,∵,∴,即,故C正確;∵拋物線的開口向下,頂點坐標為,∴(為任意實數(shù)),即時,方程有解.故D正確.故選BCD.【考點】本題主要考查了二次函數(shù)的性質、二次函數(shù)圖像等知識點,掌握二次函數(shù)的性質與解析式的關系是解答本題的關鍵.5、C【解析】【分析】根據(jù)不在同一條直線上的三個點確定一個圓,已知圓心和直徑所作的圓是唯一的進行判斷即可得出答案.【詳解】解:A、已知圓心與半徑能確定一個圓,不符合題意;B、已知直徑能確定一個圓,不符合題意;C、平面上的三個已知點,不能確定一個圓,符合題意;D、已知三角形的三個頂點,能確定一個圓,不符合題意;故選C.【考點】本題考查了確定圓的條件,解題的關鍵是分類討論.三、填空題1、或【解析】【分析】設門的寬為x尺,則門的高為(x+6)尺,利用勾股定理,即可得出關于x的一元二次方程,此題得解.【詳解】解:設門的寬為x尺,則門的高為(x+6)尺,依題意得:即或.故答案為:或.【考點】本題考查了由實際問題抽象出一元二次方程以及勾股定理的應用,找準等量關系,正確列出一元二次方程是解題的關鍵.2、8【分析】首先根據(jù)題意可取確定摸出紅球的概率為0.2,然后根據(jù)概率公式建立方程求解即可.【詳解】解:∵大量重復試驗后,發(fā)現(xiàn)摸出紅球的頻率穩(wěn)定在0.2附近,∴摸出紅球的概率為0.2,由題意,,解得:,經檢驗,是原方程的解,且符合題意,故答案為:8.【點睛】本題考查由頻率估計概率,以及已知概率求數(shù)量;大量重復試驗后,某種情況出現(xiàn)的頻率穩(wěn)定在某個值附近時,這個值即為該事件發(fā)生的概率,掌握概率公式是解題關鍵.3、【分析】如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,根據(jù)切線的性質定理和垂徑定理求解即可.【詳解】解:如圖,設小圓的切線MN與小圓相切于點D,與大圓交于M、N,連接OD、OM,則OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即該球在大圓內滑行的路徑MN的長度為cm,故答案為:.【點睛】本題考查切線的性質定理、垂徑定理、勾股定理,熟練掌握切線的性質和垂徑定理是解答的關鍵.4、2或-3##-3或2【解析】【分析】根據(jù)題意得到關于x的一元二次方程,解方程即可.【詳解】解:∵,∴,∴,解得或,故答案為:2或-3.【考點】本題主要考查了新定義下的實數(shù)運算,解一元二次方程,正確理解題意是解題的關鍵.5、在⊙A上【分析】先根據(jù)兩點間的距離公式計算出OA,然后根據(jù)點與圓的位置關系的判定方法判斷點O與⊙A的位置關系.【詳解】解:∵點A的坐標為(4,3),∴OA==5,∵半徑為5,∴OA=r,∴點O在⊙A上.故答案為:在⊙A上.【點睛】本題考查了點與圓的位置關系:點與圓的位置關系有3種.設⊙O的半徑為r,點P到圓心的距離OP=d,當點P在圓外?d>r;當點P在圓上?d=r;當點P在圓內?d<r.四、簡答題1、(1);(2);(3)【解析】【分析】(1)由拋物線的對稱軸為直線,即可求得點E的坐標;在y=ax2﹣3ax﹣4a(a<0)令y=0可得關于x的方程ax2﹣3ax﹣4a=0,解方程即可求得點A的坐標;(2)如圖1,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,結合(1)可得DE=OE=,EB=,OC=-4a,在Rt△BDE中由勾股定理可得BD=2,這樣由tan∠OBC=即可列出關于a的方程,解方程求得a的值即可得到拋物線的解析式;(3)由折疊的性質和MN∥y軸可得∠MCN=∠M′CN=∠MNC,由此可得CM=MN,由點B的坐標為(4,0),點C的坐標為(0,3)可得線段BC=5,直線BC的解析式為y=﹣x+3,由此即可得到M、N的坐標分別為(m,﹣m+3)、(m,﹣m2+m+3),作MF⊥OC于F,這樣由sin∠BCO=即可解得CM=m,然后分點N在直線BC的上方和下方兩種情況用含m的代數(shù)式表達出MN的長度,結合MN=CM即可列出關于m的方程,解方程即可求得對應的m的值,從而得到對應的點Q的坐標.【詳解】解:(1)∵對稱軸x=,∴點E坐標(,0),令y=0,則有ax2﹣3ax﹣4a=0,∴x=﹣1或4,∴點A坐標(﹣1,0).故答案分別為(,0),(﹣1,0).(2)如圖①中,設⊙E與直線BC相切于點D,連接DE,則DE⊥BC,∵DE=OE=,EB=,OC=﹣4a,∴DB=,∵tan∠OBC=,∴,解得a=,∴拋物線解析式為y=.(3)如圖②中,由題意∠M′CN=∠NCB,∵MN∥OM′,∴∠M′CN=∠CNM,∴MN=CM,∵點B的坐標為(4,0),點C的坐標為(0,3),∴直線BC解析式為y=﹣x+3,BC=5,∴M(m,﹣m+3),N(m,﹣m2+m+3),作MF⊥OC于F,∵sin∠BCO=,∴,∴CM=m,①當N在直線BC上方時,﹣x2+x+3﹣(﹣x+3)=m,解得:m=或0(舍棄),∴Q1(,0).②當N在直線BC下方時,(﹣m+3)﹣(﹣m2+m+3)=m,解得m=或0(舍棄),∴Q2(,0),綜上所述:點Q坐標為(,0)或(,0).【考點】本題是一道二次函數(shù)與幾何及銳角三角函數(shù)綜合的題,解題的要點是:(1)熟悉二次函數(shù)的對稱軸方程及二次函數(shù)與一元二次方程的關系是解第1小題的關鍵;(2)由切線的性質得到DE⊥BC,從而得到tan∠OBC=,這樣結合已知條件求出a的值是解第2小題的關鍵;(3)過點M作MF⊥y軸于點F,這樣由sin∠BCO=變形把MC用含m的代數(shù)式表達出來,再由折疊的性質和MN∥y軸證得MN=MC,這樣就可分點N在BC的上方和下方兩種情況列出關于m的方程,解方程求得對應的m的值是解第3小題的關鍵.2、【解析】【分析】首先代入特殊角的三角函數(shù)值,再進行二次根式的運算即可求得.【詳解】解:.【考點】本題考查了含特殊角的三角形函數(shù)值的混合運算,熟練掌握特殊角的三角形函數(shù)值及二次根式的運算是解決本題的關鍵.五、解答題1、(1);(2)的值為,,.【解析】【分析】(1)由直線BC求出B、C的坐標,再代入二次函數(shù)的解析式,求出b、c的值,得出二次函數(shù)的解析式;(2)用含有m的代數(shù)式表示點E和點F的坐標,用相似三角形對應邊成比例的性質列方程,求出m的值.【詳解】(1)直線的解析式點,點和在拋物線上,解得:二次函數(shù)的解析式為:(2)二次函數(shù)與軸交于點、點軸交直線于點點軸,軸,軸交直線于點,點點的坐標為,點的坐標為①若點在原點右側,如圖1,則,即,解得:,;②若點在原點左側,如圖2,則即,解得:,(舍去);綜上所述,的值為,,.【考點】本題考查二次函數(shù)與幾何的綜合問題,熟練掌握二次函數(shù)的性質是本題的解題關鍵,解題時結合一次函數(shù)的性質,利用相似三角形的性質列方程,靈活應用函數(shù)圖像上點的坐標特征.2、見解析.【解析】【分析】根據(jù)軸對稱圖形和旋轉對稱圖形的概念作圖即可得.【詳解】解:根據(jù)剪掉其中兩個方格,使之成為軸對稱圖形;即如圖所示:【考點】本題主要考查利用旋轉設計圖案,解題的關鍵是掌握軸對稱圖形和旋轉對稱圖形的概念.3、(1)135°(2)∠MOP-∠NOQ=30°,理由見解析(3)s或s.【分析】(1)先根據(jù)OP平分得到∠PON,然后求出∠BOP即可;(2)先根據(jù)題意可得∠MOP=90°-∠POQ,∠NOQ=60°-∠POQ,然后作差即可;(3)先求出旋轉前OC、OD的夾角,然后再求出OC與OD第一次和第二次相遇所需要的時間,再設在OC與OD第二次相遇前,當時,需要旋轉時間為t,再分OE在OC的左側和OE在OC的右側兩種情況解答即可.(1)解:∵OP平分∠MON∴∠PON=∠MON=45°∴三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論