2026屆湖南省長沙市明德啟南中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
2026屆湖南省長沙市明德啟南中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
2026屆湖南省長沙市明德啟南中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
2026屆湖南省長沙市明德啟南中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
2026屆湖南省長沙市明德啟南中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2026屆湖南省長沙市明德啟南中學(xué)九年級數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,⊙O是正△ABC的外接圓,點D是弧AC上一點,則∠BDC的度數(shù)().A.50° B.60° C.100° D.120°2.如圖,四邊形OABF中,∠OAB=∠B=90°,點A在x軸上,雙曲線過點F,交AB于點E,連接EF.若,S△BEF=4,則k的值為()A.6 B.8 C.12 D.163.如果,、分別對應(yīng)、,且,那么下列等式一定成立的是()A. B.的面積:的面積C.的度數(shù):的度數(shù) D.的周長:的周長4.下列四個圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.5.關(guān)于的一元二次方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.根的情況無法判斷6.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標(biāo)為2,當(dāng)時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>27.一元二次方程配方后化為()A. B. C. D.8.如圖,AB為⊙O的弦,AB=8,OC⊥AB于點D,交⊙O于點C,且CD=1,則⊙O的半徑為()A.8.5 B.7.5 C.9.5 D.89.如圖,4×2的正方形的網(wǎng)格中,在A,B,C,D四個點中任選三個點,能夠組成等腰三角形的概率為()A.1 B. C. D.10.拋物線y=-(x-2)2+3,下列說法正確的是()A.開口向下,頂點坐標(biāo)(2,3) B.開口向上,頂點坐標(biāo)(2,-3)C.開口向下,頂點坐標(biāo)(-2,3) D.開口向上,頂點坐標(biāo)(-2,-3)11.關(guān)于反比例函數(shù),下列說法不正確的是()A.y隨x的增大而減小 B.圖象位于第一、三象限C.圖象關(guān)于直線對稱 D.圖象經(jīng)過點(-1,-5)12.同時投擲兩個骰子,點數(shù)和為5的概率是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=5,AD=12,則四邊形ABOM的周長為.14.如圖,在菱形中,邊長為10,.順次連結(jié)菱形各邊中點,可得四邊形;順次連結(jié)四邊形各邊中點,可得四邊形;順次連結(jié)四邊形各邊中點,可得四邊形;按此規(guī)律繼續(xù)下去….則四邊形的周長是_________.15.在一個不透明的袋子中有10個除顏色外均相同的小球,通過多次摸球試驗后,發(fā)現(xiàn)摸到白球的概率約為30%,估計袋中白球有個.16.如圖,將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,點P是優(yōu)弧上一點,則∠APB的度數(shù)為_____.17.某小區(qū)2019年的綠化面積為3000m2,計劃2021年的綠化面積為4320m2,如果每年綠化面積的增長率相同,設(shè)增長率為x,則可列方程為______.18.如圖,河壩橫斷面迎水坡AB的坡比是1:(坡比是坡面的鉛直高度BC與水平寬度AC之比),壩高BC=3m,則坡面AB的長度是.三、解答題(共78分)19.(8分)如圖①,在△ABC中,∠BAC=90°,AB=AC,點E在AC上(且不與點A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.(1)請直接寫出線段AF,AE的數(shù)量關(guān)系;(2)將△CED繞點C逆時針旋轉(zhuǎn),當(dāng)點E在線段BC上時,如圖②,連接AE,請判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在圖②的基礎(chǔ)上,將△CED繞點C繼續(xù)逆時針旋轉(zhuǎn),請判斷(2)問中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過程;若變化,請說明理由.20.(8分)如圖,四邊形ABCD的三個頂點A、B、D在⊙O上,BC經(jīng)過圓心O,且交⊙O于點E,∠A=120°,∠C=30°.(1)求證:CD是⊙O的切線.(2)若CD=6,求BC的長.(3)若⊙O的半徑為4,則四邊形ABCD的最大面積為.21.(8分)小明和同學(xué)們在數(shù)學(xué)實踐活動課中測量學(xué)校旗桿的高度.如圖,已知他們小組站在教學(xué)樓的四樓,用測角儀看旗桿頂部的仰角為,看旗桿底部的俯角是為,教學(xué)樓與旗桿的水平距離是,旗桿有多高(結(jié)果保留整數(shù))?(已知,,,,)22.(10分)如圖,在菱形ABCD中,對角線AC,BD交于點O,AE⊥BC交CB延長線于E,CF∥AE交AD延長線于點F.(1)求證:四邊形AECF是矩形;(2)連接OE,若AE=4,AD=5,求OE的長.23.(10分)某校九年級學(xué)生參加了中考體育考試.為了了解該校九年級(1)班同學(xué)的中考體育成績情況,對全班學(xué)生的中考體育成績進行了統(tǒng)計,并繪制出以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:分組分?jǐn)?shù)段(分)頻數(shù)A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值為;(2)該班學(xué)生中考體育成績的中位數(shù)落在組;(在A、B、C、D、E中選出正確答案填在橫線上)(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.24.(10分)如圖,四邊形ABCD內(nèi)接于⊙O,點E在CB的延長線上,BA平分∠EBD,AE=AB.(1)求證:AC=AD.(2)當(dāng),AD=6時,求CD的長.25.(12分)已知在平面直角坐標(biāo)中,點A(m,n)在第一象限內(nèi),AB⊥OA且AB=OA,反比例函數(shù)y=的圖象經(jīng)過點A,(1)當(dāng)點B的坐標(biāo)為(4,0)時(如圖1),求這個反比例函數(shù)的解析式;(2)當(dāng)點B在反比例函數(shù)y=的圖象上,且在點A的右側(cè)時(如圖2),用含字母m,n的代數(shù)式表示點B的坐標(biāo);(3)在第(2)小題的條件下,求的值.26.如圖,點E是矩形ABCD對角線AC上的一個動點(點E可以與點A和點C重合),連接BE.已知AB=3cm,BC=4cm.設(shè)A、E兩點間的距離為xcm,BE的長度為ycm.某同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行探究.下面是該同學(xué)的探究過程,請補充完整:(1)通過取點、畫圖、測量及分析,得到了x與y的幾組值,如下表:說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))(2)建立平面直角坐標(biāo)系,描出已補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象.(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)BE=2AE時,AE的長度約為cm.(結(jié)果保留一位小數(shù))

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)等邊三角形的性質(zhì)和圓周角定理的推論解答即可.【詳解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故選:B.本題考查了等邊三角形的性質(zhì)和圓周角定理的推論,屬于基礎(chǔ)題型,熟練掌握上述基本知識是解題的關(guān)鍵.2、A【分析】由于,可以設(shè)F(m,n)則OA=3m,BF=2m,由于S△BEF=4,則BE=,然后即可求出E(3m,n-),依據(jù)mn=3m(n-)可求mn=1,即求出k的值.【詳解】如圖,過F作FC⊥OA于C,∵,∴OA=3OC,BF=2OC∴若設(shè)F(m,n)則OA=3m,BF=2m∵S△BEF=4∴BE=則E(3m,n-)∵E在雙曲線y=上∴mn=3m(n-)∴mn=1即k=1.故選A.此題主要考查了反比例函數(shù)的圖象和性質(zhì)、用坐標(biāo)表示線段長和三角形面積,表示出E點坐標(biāo)是解題關(guān)鍵.3、D【解析】相似三角形對應(yīng)邊的比等于相似比,面積之比等于相似比的平方,對應(yīng)角相等.【詳解】根據(jù)相似三角形性質(zhì)可得:A:BC和DE不是對應(yīng)邊,故錯;B:面積比應(yīng)該是,故錯;C:對應(yīng)角相等,故錯;D:周長比等于相似比,故正確.故選:D考核知識點:相似三角形性質(zhì).理解基本性質(zhì)是關(guān)鍵.4、D【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念,并結(jié)合圖形的特點求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,故選項錯誤;

B、不是軸對稱圖形,是中心對稱圖形,故選項錯誤;

C、是軸對稱圖形,不是中心對稱圖形,故選項錯誤;

D、是軸對稱圖形,是中心對稱圖形,故選項正確.

故選:D.本題考查了中心對稱圖形與軸對稱圖形的概念.

軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;

中心對稱圖形關(guān)鍵是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.5、A【解析】若△>0,則方程有兩個不等式實數(shù)根,若△=0,則方程有兩個相等的實數(shù)根,若△<0,則方程沒有實數(shù)根.求出△與零的大小,結(jié)果就出來了.【詳解】解:∵△=,∴方程有兩個不相等的實數(shù)根本題主要考查根的判別式,掌握一元二次方程的根的判別式是關(guān)鍵.6、D【分析】先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點坐標(biāo),再由函數(shù)圖象即可得出結(jié)論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關(guān)于原點對稱,

∴A、B兩點關(guān)于原點對稱,

∵點A的橫坐標(biāo)為1,∴點B的橫坐標(biāo)為-1,

∵由函數(shù)圖象可知,當(dāng)-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,

∴當(dāng)y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結(jié)合求出y1>y1時x的取值范圍是解答此題的關(guān)鍵.7、A【分析】先把常數(shù)項移到方程的右邊,再在方程兩邊同時加上一次項系數(shù)一半的平方,即可.【詳解】移項得:,方程兩邊同加上9,得:,即:,故選A.本題主要考查解一元二次方程的配方法,熟練掌握完全平方公式,是解題的關(guān)鍵.8、A【解析】根據(jù)垂徑定理得到直角三角形,求出的長,連接,得到直角三角形,然后在直角三角形中計算出半徑的長.【詳解】解:如圖所示:連接,則長為半徑.∵于點,∴,∵在中,,∴,∴,故答案為A.本題主要考查垂徑定理和勾股定理.根據(jù)垂徑定理“垂直于弦的直徑平分弦,并且平分弦所對的弧”得到一直角邊,利用勾股定理列出關(guān)于半徑的等量關(guān)系是解題關(guān)鍵.9、B【分析】根據(jù)題意,先列舉所有的可能結(jié)果,然后選取能組成等腰三角形的結(jié)果,根據(jù)概率公式即可求出答案.【詳解】解:根據(jù)題意,在A,B,C,D四個點中任選三個點,有:△ABC、△ABD、△ACD、△BCD,共4個三角形;其中是等腰三角形的有:△ACD、△BCD,共2個;∴能夠組成等腰三角形的概率為:;故選:B.本題考查了列舉法求概率,等腰三角形的性質(zhì),勾股定理與網(wǎng)格問題,解題的關(guān)鍵是熟練掌握列舉法求概率,以及正確得到等腰三角形的個數(shù).10、A【解析】根據(jù)拋物線的解析式,由a的值可得到開口方向,由頂點式可以得到頂點坐標(biāo).【詳解】解:∵y=-(x-2)2+3∴a=-1<0,拋物線的開口向下,頂點坐標(biāo)(2,3)故選A本題考查二次函數(shù)的性質(zhì),解題的關(guān)鍵是根據(jù)二次函數(shù)的解析式可以得到開口方向、對稱軸、頂點坐標(biāo)等性質(zhì).11、A【分析】根據(jù)反比例函數(shù)的圖像及性質(zhì)逐個分析即可.【詳解】解:選項A:要說成在每一象限內(nèi)y隨x的增大而減小,故選項A錯誤;選項B:,故圖像經(jīng)過第一、三象限,所以選項B正確;選項C:反比例函數(shù)關(guān)于直線對稱,故選項C正確;選項D:將(-1,-5)代入反比例函數(shù)中,等號兩邊相等,故選項D正確.故答案為:A.本題考查了反比例函數(shù)的性質(zhì);當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減?。划?dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.12、B【解析】試題解析:列表如下:

1

2

3

4

5

6

1

2

3

4

5

6

7

2

3

4

5

6

7

8

3

4

5

6

7

8

9

4

5

6

7

8

9

10

5

6

7

8

9

10

11

6

7

8

9

10

11

12

∵從列表中可以看出,所有可能出現(xiàn)的結(jié)果共有36種,且這些結(jié)果出現(xiàn)的可能性相等,其中點數(shù)的和為5的結(jié)果共有4種,∴點數(shù)的和為5的概率為:.故選B.考點:列表法與樹狀圖法.二、填空題(每題4分,共24分)13、1.【詳解】∵AB=5,AD=12,∴根據(jù)矩形的性質(zhì)和勾股定理,得AC=13.∵BO為Rt△ABC斜邊上的中線∴BO=6.5∵O是AC的中點,M是AD的中點,∴OM是△ACD的中位線∴OM=2.5∴四邊形ABOM的周長為:6.5+2.5+6+5=1故答案為114、【分析】根據(jù)菱形的性質(zhì),三角形中位線的性質(zhì)以及勾股定理求出四邊形各邊長,得出規(guī)律求出即可.【詳解】∵菱形ABCD中,邊長為10,∠A=60°,設(shè)菱形對角線交于點O,∴,∴,,∴,,順次連結(jié)菱形ABCD各邊中點,

∴△AA1D1是等邊三角形,四邊形A2B2C2D2是菱形,

∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四邊形A2B2C2D2的周長是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四邊形A2019B2019C2019D2019的周長是:故答案為:本題主要考查了菱形的性質(zhì)以及矩形的性質(zhì)和中點四邊形的性質(zhì)等知識,根據(jù)已知得出邊長變化規(guī)律是解題關(guān)鍵.15、1【分析】根據(jù)摸到白球的概率公式x10=40%【詳解】解:不透明的布袋中的小球除顏色不同外,其余均相同,共有10個小球,其中白色小球x個,根據(jù)古典型概率公式知:P(白色小球)=x10=10%解得:x=1.故答案為1.考點:已知概率求數(shù)量.16、60°【解析】分析:作半徑OC⊥AB于D,連結(jié)OA、OB,如圖,根據(jù)折疊的性質(zhì)得OD=CD,則OD=OA,根據(jù)含30度的直角三角形三邊的關(guān)系得到∠OAD=30°,接著根據(jù)三角形內(nèi)角和定理可計算出∠AOB=120°,然后根據(jù)圓周角定理計算∠APB的度數(shù).詳解:如圖作半徑OC⊥AB于D,連結(jié)OA、OB.∵將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°.∵OA=OB,∴∠ABO=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故答案為60°.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了含30度的直角三角形三邊的關(guān)系和折疊的性質(zhì),求得∠OAD=30°是解題的關(guān)鍵.17、3000(1+x)2=1【分析】設(shè)增長率為x,則2010年綠化面積為3000(1+x)m2,則2021年的綠化面積為3000(1+x)(1+x)m2,然后可得方程.【詳解】解:設(shè)增長率為x,由題意得:

3000(1+x)2=1,

故答案為:3000(1+x)2=1.本題考查了由實際問題抽象出一元二次方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系.18、6米.【解析】試題分析:在Rt△ABC中,已知坡面AB的坡比以及鉛直高度BC的值,通過解直角三角形即可求出斜面AB的長.試題解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考點:解直角三角形的應(yīng)用.三、解答題(共78分)19、(1)AF=AE;(2)AF=AE,證明詳見解析;(3)結(jié)論不變,AF=AE,理由詳見解析.【分析】(1)如圖①中,結(jié)論:AF=AE,只要證明△AEF是等腰直角三角形即可.(2)如圖②中,結(jié)論:AF=AE,連接EF,DF交BC于K,先證明△EKF≌△EDA再證明△AEF是等腰直角三角形即可.(3)如圖③中,結(jié)論不變,AF=AE,連接EF,延長FD交AC于K,先證明△EDF≌△ECA,再證明△AEF是等腰直角三角形即可.【詳解】解:(1)如圖①中,結(jié)論:AF=AE.理由:∵四邊形ABFD是平行四邊形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.(2)如圖②中,結(jié)論:AF=AE.理由:連接EF,DF交BC于K.∵四邊形ABFD是平行四邊形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如圖③中,結(jié)論不變,AF=AE.理由:連接EF,延長FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.本題考查四邊形綜合題,綜合性較強.20、(1)證明見解析;(2);(3).【分析】(1)連接、,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到,求得,又點在上,于是得到結(jié)論;(2)由(1)知:又,設(shè)為,則為,根據(jù)勾股定理即可得到結(jié)論;(3)連接BD,OA,根據(jù)已知條件推出當(dāng)四邊形ABOD的面積最大時,四邊形ABCD的面積最大,當(dāng)OA⊥BD時,四邊形ABOD的面積最大,根據(jù)三角形和菱形的面積公式即可得到結(jié)論.【詳解】解:(1)證明:連接、,四邊形為圓內(nèi)接四邊形,,,,又點在上,是的切線;(2)由(1)知:又,,設(shè)為,則為,在中,,即,,又,,;(3)連接,,,,,,,,,,,當(dāng)四邊形的面積最大時,四邊形的面積最大,當(dāng)時,四邊形的面積最大,四邊形的最大面積,故答案為:.本題考查了圓的綜合題,切線的判定,勾股定理,三角形的面積的計算,正確的作出輔助線是解題的關(guān)鍵.21、旗桿的高約是.【分析】過點B作于點,由題意知,,,,根據(jù)銳角三角函數(shù)即可分別求出AC和CD,從而求出結(jié)論.【詳解】解:過點B作于點,由題意知,,,∵,∴m,∵,∴m,∴m,答:旗桿的高約是.此題考查的是解直角三角形的應(yīng)用,掌握利用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.22、(1)見解析;(2)OE=25【解析】(1)根據(jù)菱形的性質(zhì)得到AD∥BC,推出四邊形AECF是平行四邊形,根據(jù)矩形的判定定理即可得到結(jié)論;(2)根據(jù)勾股定理得到BE=1,AC=45【詳解】(1)證明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四邊形AECF是平行四邊形.∵AE⊥BC,∴平行四邊形AECF是矩形.(2)解:∵AE=4,AD=5,∴AB=5,BE=1.∵AB=BC=5,∴CE=2.∴AC=45∵對角線AC,BD交于點O,∴AO=CO=25∴OE=25本題考查了矩形的判定和性質(zhì),菱形的性質(zhì),勾股定理解直角三角形,正確的識別圖形是解題的關(guān)鍵.23、(1)18;(2)D組;(3)圖表見解析,【分析】(1)利用C分?jǐn)?shù)段所占比例以及其頻數(shù)求出總數(shù)即可,進而得出m的值;(2)利用中位數(shù)的定義得出中位數(shù)的位置;(3)利用列表或畫樹狀圖列舉出所有的可能,再根據(jù)概率公式計算即可得解.【詳解】解:(1)由題意可得:全班學(xué)生人數(shù):15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案為:18;(2)∵全班學(xué)生人數(shù)有50人,∴第25和第26個數(shù)據(jù)的平均數(shù)是中位數(shù),∴中位數(shù)落在51﹣56分?jǐn)?shù)段,∴落在D段故答案為:D;(3)如圖所示:將男生分別標(biāo)記為A1,A2,女生標(biāo)記為B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6種等情況數(shù),∴恰好選到一男一女的概率是==.此題主要考查了列表法求概率以及扇形統(tǒng)計圖的應(yīng)用,根據(jù)題意利用列表法得出所有情況是解題關(guān)鍵.24、(1)證明見解析;(2)CD=1.【分析】(1)利用BA平分∠EBD得到∠ABE=∠ABD,再根據(jù)圓周角定理得到∠ABE=∠ADC,∠ABD=∠ACD,利用等量代換得到∠AC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論