人教版8年級數學上冊《軸對稱》達標測試試題(含答案解析)_第1頁
人教版8年級數學上冊《軸對稱》達標測試試題(含答案解析)_第2頁
人教版8年級數學上冊《軸對稱》達標測試試題(含答案解析)_第3頁
人教版8年級數學上冊《軸對稱》達標測試試題(含答案解析)_第4頁
人教版8年級數學上冊《軸對稱》達標測試試題(含答案解析)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教版8年級數學上冊《軸對稱》達標測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,在中,DE是AC的垂直平分線,,的周長為13cm,則的周長為(

)A.16cm B.13cm C.19cm D.10cm2、觀察下列作圖痕跡,所作線段為的角平分線的是(

)A. B.C. D.3、在下列命題中,正確的是()A.一組對邊平行的四邊形是平行四邊形B.有一個角是直角的四邊形是矩形C.有一組鄰邊相等的四邊形是菱形D.對角線互相垂直平分的四邊形是菱形4、等腰三角形的一個內角是80°,則它的底角是(

)A.50° B.80° C.50°或80° D.20°或80°5、如圖,在中,,觀察圖中尺規(guī)作圖的痕跡,則的度數為(

)A. B. C. D.6、已知點與點關于軸對稱,則點的坐標為(

)A. B. C. D.7、如圖,將?ABCD沿對角線AC折疊,使點B落在B′處,若∠1=∠2=44°,則∠B為()A.66° B.104° C.114° D.124°8、如圖,在中,,的周長10,和的平分線交于點,過點作分別交、于、,則的長為(

)A.10 B.6 C.4 D.不確定9、如圖,是由大小一樣的小正方形組成的網格,△ABC的三個頂點均落在小正方形的頂點上.在網格上能畫出的三個頂點都落在小正方形的頂點上,且與△ABC成軸對稱的三角形共有(

)A.5個 B.4個 C.3個 D.2個10、下列黑體字中,屬于軸對稱圖形的是(

)A.善 B.勤 C.健 D.樸第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、如圖,AB的垂直平分線l交AB于點M,P是l上一點,PB平分∠MPN.若AB=2,則點B到直線PN的距離為__________.2、如圖,C為線段AE上一動點(不與點A,E重合),在AE同側分別作等邊ABC和等邊CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.則下列結論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正確的有________.(填序號)3、一輛汽車的牌照在車下方水坑中的像是,則這輛汽車的牌照號碼應為_____.4、等腰三角形的的兩邊分別為6和3,則它的第三邊為______.5、如圖,在等腰直角三角形ABC中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線與AD相交于點P,連接PC,若△ABC的面積為2cm2,則△BPC的面積為___cm2.6、如圖,在中,,分別以點為圓心,大于的長為半徑畫弧,兩弧相交于點作直線,交邊于點,連接,則的周長為________.7、如圖,將一張直角三角形紙片對折,使點B、C重合,折痕為DE,連接DC,若AC=6cm,∠ACB=90°,∠B=30°,則△ADC的周長是_____cm.8、如圖,將長方形紙片按如圖所示的方式折疊,為折痕,點落在,點落在點在同一直線上,則_______度;9、點(3,0)關于y軸對稱的點的坐標是_______10、如圖,屋頂鋼架外框是等腰三角形,其中,立柱,且頂角,則的大小為_______.三、解答題(5小題,每小題6分,共計30分)1、如圖,點D,E在△ABC的邊BC上,AB=AC,AD=AE,求證:BD=CE.2、已知,平分,點分別在上.(1)如圖1,若于點,于點.①利用等腰三角形“三線合一”,將補成一個等邊三角形,可得的數量關系為________.②請問:是否等于呢?如果是,請予以證明.(2)如圖2,若,則(1)中的結論是否仍然成立?若成立,請予以證明;若不成立,請說明理由.3、如圖,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC與BD相交于點O,限用無刻度直尺完成以下作圖:(1)在圖1中作線段BC的中點P;(2)在圖2中,在OB、OC上分別取點E、F,使EF∥BC.4、如圖,在邊長為1個單位長度的小正方形組成的12×12網格中,給出了四邊形ABCD的兩條邊AB與BC,且四邊形ABCD是一個軸對稱圖形,其對稱軸為直線AC.(1)試在圖中標出點D,并畫出該四邊形的另兩條邊;(2)將四邊形ABCD向下平移5個單位長度,畫出平移后得到的四邊形A′B′C′D′.5、(1)已知等腰三角形的兩邊長分別為9cm和15cm,則周長為多少?(2)已知等腰三角形的兩邊長分別為6cm和15cm,則周長為多少?-參考答案-一、單選題1、C【解析】【分析】根據線段垂直平分線性質得出,求出AC和的長,即可求出答案.【詳解】解:∵DE是AC的垂直平分線,,∴,,∵的周長為13cm,∴,∴,∴的周長為,故選:C.【考點】考查垂直平分線的性質,三角形周長問題,解題的關鍵是掌握垂直平分線的性質.2、C【解析】【分析】根據角平分線畫法逐一進行判斷即可.【詳解】:所作線段為AB邊上的高,選項錯誤;B:做圖痕跡為AB邊上的中垂線,CD為AB邊上的中線,選項錯誤;C:CD為的角平分線,滿足題意。D:所作線段為AB邊上的高,選項錯誤故選:C.【考點】本題考查點到直線距離的畫法,角平分線的畫法,中垂線的畫法,能夠區(qū)別彼此之間的不同是解題切入點.3、D【解析】【分析】分別利用矩形的判定方法、以及菱形的判定與性質和平行四邊形的判定方法分析得出答案.【詳解】解:A、有一組對邊平行且相等的四邊形是平行四邊形,錯誤;B、有一個角是直角的平行四邊形是矩形,錯誤;C、有一組鄰邊相等的平行四邊形是菱形,錯誤;D、對角線互相垂直平分的四邊形是菱形,正確;故選:D.【考點】本題主要考查了矩形的判定、以及菱形的判定與性質和平行四邊形的判定,正確把握相關判定定理是解題關鍵.4、C【解析】【分析】先分情況討論:80°是等腰三角形的底角或80°是等腰三角形的頂角,再根據三角形的內角和定理進行計算.【詳解】解:當80°是等腰三角形的頂角時,則頂角就是80°,底角為(180°80°)=50°;當80°是等腰三角形的底角時,則頂角是180°80°×2=20°.∴等腰三角形的底角為50°或80°;故選:C.【考點】本題考查了等腰三角形的性質及三角形的內角和定理;若題目中沒有明確頂角或底角的度數,做題時要注意分情況進行討論,這是十分重要的,也是解答問題的關鍵.5、B【解析】【分析】先由等腰三角形的性質和三角形的內角和定理求出∠BCA,進而求得∠ACD,由作圖痕跡可知CE為∠ACD的平分線,利用角平分線定義求解即可.【詳解】∵在中,,∴,∴∠ACD=180°-∠ACB=180°-50°=130°,由作圖痕跡可知CE為∠ACD的平分線,∴,故選:B.【考點】本題考查了等腰三角形的性質、三角形的內角和定理、角平分線的定義和作法,熟練掌握等腰三角形的性質以及角平分線的尺規(guī)作圖法是解答的關鍵.6、B【解析】【分析】根據關于軸對稱的性質:橫坐標相等,縱坐標互為相反數,即可得解.【詳解】由題意,得與點關于軸對稱點的坐標是,故選:B.【考點】此題主要考查關于軸對稱的點坐標的求解,熟練掌握,即可解題.7、C【解析】【分析】根據平行四邊形性質和折疊性質得∠BAC=∠ACD=∠B′AC=∠1,再根據三角形內角和定理可得.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠ACD=∠BAC,由折疊的性質得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°,故選C.【考點】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質,求出∠BAC的度數是解決問題的關鍵.8、B【解析】【分析】根據平行線、角平分線和等腰三角形的關系可證DO=DB和EO=EC,從而得出DE=DB+EC,然后根據的周長即可求出AB.【詳解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可證:EO=EC∴DE=DO+EO=DB+EC∵,的周長10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故選B.【考點】此題考查的是平行線的性質、角平分線的定義和等腰三角形的判定,掌握平行線、角平分線和等腰三角形的關系是解決此題的關鍵.9、A【解析】【分析】認真讀題,觀察圖形,根據圖形特點先確定對稱軸,再根據對稱軸找出相應的三角形.【詳解】解:如圖:與△ABC成軸對稱的三角形有:①△FCD關于CG對稱;②△GAB關于EH對稱;③△AHF關于AD對稱;④△EBD關于BF對稱;⑤△BCG關于AG的垂直平分線對稱.共5個.故選A.【考點】本題考查軸對稱的基本性質,結合了圖形的常見的變化,要根據直角三角形的特點從圖中找到有關的直角三角形再判斷是否為對稱圖形.10、A【解析】【分析】軸對稱圖形:把一個圖形沿某條直線對折,直線兩旁的部分能夠完全重合,則這個圖形是軸對稱圖形,根據軸對稱圖形的定義可得答案.【詳解】解:由軸對稱圖形的定義可得:善是軸對稱圖形,勤,健,樸三個字都不是軸對稱圖形,故符合題意,不符合題意,故選:【考點】本題考查的是軸對稱圖形的含義,軸對稱圖形的識別,掌握定義,確定對稱軸是解題的關鍵.二、填空題1、1【解析】【分析】根據線段垂直平分線的性質得出BM=1,根據角平分線的性質得到BN=BM=1,即可得出答案.【詳解】解:如圖,過點B作BC⊥PN,垂足為點C,∵AB的垂直平分線l交AB于點M,∴,BM⊥PM,∵PB平分∠MPN,BM⊥PM,BC⊥PN,∴BC=BM=1,∴點B到直線PN的距離為1,故答案為:1.【考點】本題考查了線段垂直平分線的性質與角平分線的性質,能熟記線段垂直平分線上的點到線段兩個端點的距離相等是解此題的關鍵.2、①②③【解析】【分析】根據等邊三角形的三邊都相等,三個角都是60°,可以證明ACD與BCE全等,根據全等三角形對應邊相等可得AD=BE,所以①正確,對應角相等可得∠CAD=∠CBE,然后證明ACP與BCQ全等,根據全等三角形對應邊相等可得PC=PQ,從而得到CPQ是等邊三角形,再根據等腰三角形的性質可以找出相等的角,從而證明PQ∥AE,所以②正確;根據全等三角形對應邊相等可以推出AP=BQ,所以③正確,根據③可推出DP=EQ,再根據DEQ的角度關系DE≠DP.【詳解】解:∵等邊ABC和等邊CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在ACD與BCE中,,∴ACD≌BCE(SAS),∴AD=BE,故①小題正確;∵ACD≌BCE(已證),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已證),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在ACP與BCQ中,,∴ACP≌BCQ(ASA),∴AP=BQ,故③小題正確;PC=QC,∴PCQ是等邊三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小題正確;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小題錯誤.綜上所述,正確的是①②③.故答案為:①②③.【考點】本題考查了等邊三角形的性質,全等三角形的判定與性質,以及平行線的判定,需要多次證明三角形全等,綜合性較強,但難度不是很大,是熱點題目,仔細分析圖形是解題的關鍵.3、H?8379【解析】【分析】易得所求的牌照與看到的牌照關于水平的一條直線成軸對稱,作出相應圖形即可求解.【詳解】解:如圖所示:該車牌照號碼為:H?8379.故答案為:H?8379.【考點】本題考查軸對稱的應用,熟練掌握軸對稱的性質是解題關鍵.4、6【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應用三角形的三邊關系驗證能否組成三角形.【詳解】解:由題意得:當腰為3時,則第三邊也為腰,為3,此時3+3=6.故以3,3,6不能構成三角形;當腰為6時,則第三邊也為腰,為6,此時3+6>6,故以3,6,6可構成三角形.故答案為:6.【考點】本題考查了等腰三角形的定義和三角形的三邊關系,已知條件沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應驗證各種情況是否能構成三角形進行解答,這點非常重要,也是解題的關鍵.5、1【解析】【分析】根據等腰三角形三線合一的性質即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案.【詳解】∵BD=BA,BP是∠ABC的角平分線,∴,∴和是等底同高的三角形,和是等底同高的三角形,∴,.∵,,∴.故答案為:1.【考點】本題考查等腰三角形的性質.掌握等腰三角形“三線合一”是解答本題的關鍵.6、【解析】【分析】由題意可得MN為AB的垂直平分線,所以AD=BD,進一步可以求出的周長.【詳解】∵在中,分別以A、B為圓心,大于的長為半徑畫弧,兩弧交于M,N,作直線MN,交BC邊于D,連接AD;∴MN為AB的垂直平分線,∴AD=BD,∴的周長為:AD+DC+AC=BC+AC=13;故答案為13.【考點】本題主要考查的是垂直平分線的運用,掌握定義及相關方法即可.7、18【解析】【分析】【詳解】解:根據折疊前后角相等可知,∠B=∠DCB=30°,∠ADC=∠ACD=60°,∴AC=AD=DC=6,∴ADC的周長是18cm.故答案為8.8、【解析】【分析】由折疊的性質可得,,再由角的和差及平角的定義即可求出答案.【詳解】解:由題意得:,,∵在同一直線上,∴.故答案為:90.【考點】本題主要考查了折疊的性質和平角的定義,屬于基本題型,熟練掌握折疊的性質是解題的關鍵.9、(-3,0)【解析】【分析】根據平面直角坐標系中兩個關于坐標軸成軸對稱的點的坐標特點,直接用假設法設出相關點即可.【詳解】解:點(m,n)關于y軸對稱點的坐標(-m,n),所以點(3,0)關于y軸對稱的點的坐標為(-3,0).故答案為:(-3,0).【考點】本題考查平面直角坐標系點的對稱性質:(1)關于x軸對稱的點,橫坐標相同,縱坐標互為相反數;(2)關于y軸對稱的點,縱坐標相同,橫坐標互為相反數;(3)關于原點對稱的點,橫坐標與縱坐標都互為相反數.10、30°##30度【解析】【分析】先由等邊對等角得到,再根據三角形的內角和進行求解即可.【詳解】,,,,,故答案為:30°.【考點】本題考查了等腰三角形的性質及三角形的內角和定理,熟練掌握知識點是解題的關鍵.三、解答題1、見解析【解析】【分析】過A作AF⊥BC于F,根據等腰三角形的性質得出BF=CF,DF=EF,即可求出答案.【詳解】證明:如圖,過A作AF⊥BC于F,∵AB=AC,AD=AE,∴BF=CF,DF=EF,∴BF-DF=CF-EF,∴BD=CE.【考點】本題考查了等腰三角形的性質的應用,注意:等腰三角形的底邊上的高,底邊上的中線,頂角的平分線互相重合.2、(1)①(或),理由見解析;②,理由見解析;(2)仍成立,理由見解析【解析】【分析】(1)①由題意利用角平分線的性質以及含角的直角三角形性質進行分析即可;②根據題意利用①的結論進行等量代換求解即可;(2)根據題意過點分別作的垂線,垂足分別為,進而利用全等三角形判定得出,以此進行分析即可.【詳解】解:(1)①(或)平分,,又,利用等腰三角形“三線合一”,將補成一個等邊三角形,可知②證明:由①知,同理,平分,,又,,(2)仍成立證明:過點分別作的垂線,垂足分別為平分,又由(1)中②知.【考點】本題考查等腰三角形性質以及全等三角形判定,熟練掌握角平分線的性質以及含角的直角三角形性質和全等三角形判定定理是解題的關鍵.3、(1)見解析;(2)見解析.【解析】【分析】(1)延長BA和CD,它們相交于點Q,然后延長QO交BC于P,則PB=PC,根據線段垂直平分線的逆定理可證明;(2)連結AP交OB于E,連結DP交OC于F,則EF∥BC.分別證明△BEP≌△CFP,△BEP≌△CFP可得∠APB=∠DPC和∠PEF=∠PFE,根據三角形內角和定理和平角的定義可得∠APB=∠PEF,即可證明EF//BC.【詳解】解:(1)如圖1,點P為所作,理由如下:∵∠A=∠D=90°,AC=BD,BC=CB,∴△ABC≌△DCB∴∠ABC=∠DCB,∠ACB=∠DBC∴QB=QC,OB=OC∴Q,O在BC的垂直平分線上,∴延長QO交BC于P,就有P為線段BC的中點;(2)如圖2,EF為所作.理由如下:∵△ABC≌△DCB∴AB=DC,又∵∠ABC=∠DCB,BP=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論