版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版8年級數(shù)學下冊《平行四邊形》定向測試考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、如圖,DE是ABC的中位線,點F在DE上,且∠AFB=90°,若AB=5,BC=8,則EF的長為()A.2.5 B.1.5 C.4 D.52、如圖,把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,再過點B折疊紙片,使點A落在MN上的點F處,折痕為BE,若AB的長為2,則FM的長為()A.2 B. C. D.13、在ABCD中,添加以下哪個條件能判斷其為菱形()A.AB⊥BC B.BC⊥CD C.CD⊥AC D.AC⊥BD4、在平面直角坐標系中,平行四邊形ABCD的頂點A、B、D的坐標分別是(0,0),(5,0),(2,3),則頂點C的坐標是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)5、如圖,把一張長方形紙片ABCD沿AF折疊,使B點落在處,若,要使,則的度數(shù)應為()A.20° B.55° C.45° D.60°6、如圖是用若干個全等的等腰梯形拼成的圖形,下列說法錯誤的是()A.梯形的下底是上底的兩倍 B.梯形最大角是C.梯形的腰與上底相等 D.梯形的底角是7、如圖,在△ABC中,AC=BC=8,∠BCA=60°,直線AD⊥BC于點D,E是AD上的一個動點,連接EC,將線段EC繞點C按逆時針方向旋轉60°得到FC,連接DF,則在點E的運動過程中,DF的最小值是()A.1 B.1.5 C.2 D.48、如圖,已知四邊形ABCD和四邊形BCEF均為平行四邊形,∠D=60°,連接AF,并延長交BE于點P,若AP⊥BE,AB=3,BC=2,AF=1,則BE的長為()A.5 B.2 C.2 D.39、如圖,菱形OABC在平面直角坐標系中的位置如圖所示,∠AOC=45°,OA=,則點C的坐標為()A.(,1) B.(1,1) C.(1,) D.(+1,1)10、順次連接矩形各邊中點得到的四邊形是()A.平行四邊形 B.矩形 C.菱形 D.正方形第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、在菱形ABCD中,∠B=60°,BC=2cm,M為AB的中點,N為BC上一動點(不與點B重合),將△BMN沿直線MN折疊,使點B落在點E處,連接DE,CE,當△CDE為等腰三角形時,線段BN的長為_____.2、如圖,矩形ABCD中,AB=9,AD=12,點M在對角線BD上,點N為射線BC上一動點,連接MN,DN,且∠DNM=∠DBC,當DMN是等腰三角形時,線段BN的長為___.3、如圖,在?ABCD中,BC=3,CD=4,點E是CD邊上的中點,將△BCE沿BE翻折得△BGE,連接AE,A、G、E在同一直線上,則AG=______,點G到AB的距離為______.4、如圖,正方形紙片ABCD的邊長為12,E是邊CD上一點,連接AE.折疊該紙片,使點A落在AE上的G點,并使折痕經(jīng)過點B,得到折痕BF,點F在AD上.若,則GE的長為__________.5、如圖,四邊形AOBC是正方形,曲線CP1P2P3???叫做“正方形的漸開線”,其中弧CP1,弧P1P2,弧P2P3,弧P3P4的圓心依次按點A,O,B,C循環(huán),點A的坐標為(2,0),按此規(guī)律進行下去,則點P2021的坐標為_____.6、如圖,圓柱形容器高為0.8m,底面周長為4.8m,在容器內(nèi)壁離底部0.1m的點處有一只蚊子,此時一只壁虎正好在容器的頂部點處,若容器壁厚忽略不計,則壁虎捕捉蚊子的最短路程是______m.7、如圖,在矩形ABCD中,對角線AC,BD相交于O,EF過點O分別交AB,CD于E,F(xiàn),已知AB=8cm,AD=5cm,那么圖中陰影部分面積為_____cm2.8、如圖,矩形ABCD的兩條對角線AC,BD交于點O,∠AOB=60°,AB=3,則矩形的周長為_____.9、如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F,G分別在邊AB,AD上,則cos∠EFG的值為________.10、如圖,將長方形ABCD按圖中方式折疊,其中EF、EC為折痕,折疊后、、E在一直線上,已知∠BEC=65°,那么∠AEF的度數(shù)是_____.三、解答題(5小題,每小題6分,共計30分)1、如圖,在長方形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,將∠B沿直線AE折疊,使點B落在點處.
(1)如圖1,當點E與點C重合時,與AD交于點F,求證:FA=FC;(2)如圖2,當點E不與點C重合,且點在對角線AC上時,求CE的長.2、如圖,△AOB是等腰直角三角形.(1)若A(﹣4,1),求點B的坐標;(2)AN⊥y軸,垂足為N,BM⊥y軸,垂足為點M,點P是AB的中點,連PM,求∠PMO度數(shù);(3)在(2)的條件下,點Q是ON的中點,連PQ,求證:PQ⊥AM.
3、在ABC中,D、E、F分別是AB、AC、BC的中點,連接DE、DF.(1)如圖1,若AC=BC,求證:四邊形DECF為菱形;(2)如圖2,過C作CGAB交DE延長線于點G,連接EF,AG,在不添加任何輔助線的情況下,寫出圖中所有與ADG面積相等的平行四邊形.4、如圖,在平行四邊形中,連接.(1)請用尺規(guī)完成基本作圖:在上方作,使,射線交于點F,在線段上截取,使.(2)連接,求證:四邊形是菱形.5、在平面直角坐標系xOy中,點A(x,﹣m)在第四象限,A,B兩點關于x軸對稱,x=+n(n為常數(shù)),點C在x軸正半軸上,(1)如圖1,連接AB,直接寫出AB的長為;(2)延長AC至D,使CD=AC,連接BD.①如圖2,若OA=AC,求線段OC與線段BD的關系;②如圖3,若OC=AC,連接OD.點P為線段OD上一點,且∠PBD=45°,求點P的橫坐標.-參考答案-一、單選題1、B【解析】【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得,再利用三角形中位線定理可得DE=4,進而可得答案.【詳解】解:∵D為AB中點,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位線,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故選:B.【點睛】此題主要考查了直角三角形的性質和三角形中位線定理,三角形的中位線平行于第三邊,并且等于第三邊的一半.2、B【解析】【分析】由折疊的性質可得,∠BMN=90°,F(xiàn)B=AB=2,由此利用勾股定理求解即可.【詳解】解:∵把正方形紙片ABCD沿對邊中點所在的直線對折后展開,折痕為MN,AB=2,∴,∠BMN=90°,∵四邊形ABCD為正方形,AB=2,過點B折疊紙片,使點A落在MN上的點F處,∴FB=AB=2,則在Rt△BMF中,,故選B.【點睛】本題主要考查了正方形與折疊,勾股定理,解題的關鍵在于能夠熟練掌握折疊的性質.3、D【解析】【分析】根據(jù)對角線互相垂直的平行四邊形是菱形,結合選項找到對角線互相垂直即可求解.【詳解】A、∵AB⊥BC,∴∠ABC=90°,又∵四邊形ABCD是平行四邊形,∴四邊形ABCD是矩形;故選項A不符合題意;B、C選項,同A選項一樣,均為鄰邊垂直,ABCD是矩形;故選項B、C不符合題意;D、∵四邊形ABCD是平行四邊形,又∵AC⊥BD,∴四邊形ABCD是菱形;故選項D符合題意故選D【點睛】本題考查了菱形的判定,掌握菱形的判定定理是解題的關鍵.4、A【解析】【分析】利用平行四邊形的對邊平行且相等的性質,先利用對邊平行,得到D點和C點的縱坐標相等,再求出CD=AB=5,得到C點橫坐標,最后得到C點的坐標.【詳解】解:四邊形ABCD為平行四邊形。且。C點和D的縱坐標相等,都為3.A點坐標為(0,0),B點坐標為(5,0),.D點坐標為(2,3),C點橫坐標為,點坐標為(7,3).故選:A.【點睛】本題主要是考察了平行四邊形的性質、利用線段長求點坐標,其中,熟練應用平行四邊形對邊平行且相等的性質,是解決與平行四邊形有關的坐標題的關鍵.5、B【解析】【分析】設直線AF與BD的交點為G,由題意易得,則有,由折疊的性質可知,由平行線的性質可得,然后可得,進而問題可求解.【詳解】解:設直線AF與BD的交點為G,如圖所示:∵四邊形ABCD是矩形,∴,∵,∴,由折疊的性質可知,∵,∴,∴,∴;故選B.【點睛】本題主要考查折疊的性質及矩形的性質,熟練掌握折疊的性質及矩形的性質是解題的關鍵.6、D【解析】【分析】如圖(見解析),先根據(jù)平角的定義可得,再根據(jù)可求出,由此可判斷選項;先根據(jù)等邊三角形的判定與性質可得,再根據(jù)平行四邊形的判定可得四邊形是平行四邊形,根據(jù)平行四邊形的性質可得,然后根據(jù)菱形的判定可得四邊形是菱形,根據(jù)菱形的性質可得,最后根據(jù)線段的和差、等量代換可得,由此可判斷選項.【詳解】解:如圖,,,,,梯形是等腰梯形,,則梯形最大角是,選項B正確;沒有指明哪個角是底角,梯形的底角是或,選項D錯誤;如圖,連接,,是等邊三角形,,,點共線,,,,四邊形是平行四邊形,,,,,,四邊形是菱形,,,,選項A、C正確;故選:D.【點睛】本題考查了等腰梯形、菱形的判定與性質、等邊三角形的判定與性質等知識點,熟練掌握各判定與性質是解題關鍵.7、C【解析】【分析】取線段AC的中點G,連接EG,根據(jù)等邊三角形的性質以及角的計算即可得出CD=CG以及∠FCD=∠ECG,由旋轉的性質可得出EC=FC,由此即可利用全等三角形的判定定理SAS證出△FCD≌△ECG,進而即可得出DF=GE,再根據(jù)點G為AC的中點,即可得出EG的最小值,此題得解.【詳解】解:取線段AC的中點G,連接EG,如圖所示.∵AC=BC=8,∠BCA=60°,∴△ABC為等邊三角形,且AD為△ABC的對稱軸,∴CD=CG=AB=4,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG,在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.當EG∥BC時,EG最小,∵點G為AC的中點,∴此時EG=DF=CD=BC=2.故選:C.【點睛】本題考查了等邊三角形的性質以及全等三角形的判定與性質,三角形中位線的性質,解題的關鍵是通過全等三角形的性質找出DF=GE,本題屬于中檔題,難度不大,解決該題型題目時,根據(jù)全等三角形的性質找出相等的邊是關鍵.8、D【解析】【分析】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,先證∠DHC=90o,再證四邊形ADEF是平行四邊形,最后利用勾股定理得出結果.【詳解】過點D作DH⊥BC,交BC的延長線于點H,連接BD,DE,∵四邊形ABCD是平行四邊形,AB=3,∠ADC=60o,∴CD=AB=3,∠DCH=∠ABC=∠ADC=60o,∵DH⊥BC,∴∠DHC=90o,∴∠ADC+∠CDH=90°,∴∠CDH=30°,在Rt△DCH中,CH=CD=,DH=,∴,∵四邊形BCEF是平行四邊形,∴AD=BC=EF,AD∥EF,∴四邊形ADEF是平行四邊形,∴AF∥DE,AF=DE=1,∵AF⊥BE,∴DE⊥BE,∴,∴,故選D.【點睛】本題考查了平行四邊形的判定與性質,勾股定理,解題的關鍵是熟練運用這些性質解決問題.9、B【解析】【分析】作CD⊥x軸,根據(jù)菱形的性質得到OC=OA=,在Rt△OCD中,根據(jù)勾股定理求出OD的值,即可得到C點的坐標.【詳解】:作CD⊥x軸于點D,則∠CDO=90°,∵四邊形OABC是菱形,OA=,∴OC=OA=,又∵∠AOC=45°,∴∠OCD=90°-∠AOC=90°-45°=45°,∴∠DOC=∠OCD,∴CD=OD,在Rt△OCD中,OC=,CD2+OD2=OC2,∴2OD2=OC2=2,∴OD2=1,∴OD=CD=1(負值舍去),則點C的坐標為(1,1),故選:B.【點睛】此題考查了菱形的性質、等腰直角三角形的性質以及勾股定理,根據(jù)勾股定理和等腰直角三角形的性質求出OD=CD=1是解決問題的關鍵.10、C【解析】【分析】如圖,矩形中,利用三角形的中位線的性質證明,再證明四邊形是平行四邊形,再證明從而可得結論.【詳解】解:如圖,矩形中,分別為四邊的中點,,四邊形是平行四邊形,四邊形是菱形.故選C.【點睛】本題考查的是矩形的性質,菱形的判定,三角形的中位線的性質,熟練的運用三角形的中位線的性質解決中點四邊形問題是解本題的關鍵.二、填空題1、cm或2cm【解析】【分析】分兩種情況:①如圖1,當DE=DC時,連接DM,作DG⊥BC于G,由菱形的性質得出AB=CD=BC=2,AD∥BC,AB∥CD,得出∠DCG=∠B=60°,∠A=120°,DE=AD=2,求出DG=,CG=1,BG=BC+CG=3,由折疊的性質得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,證明△ADM≌△EDM,得出∠A=∠DEM=120°,證出D、E、N三點共線,設BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得出方程,解方程即可;②如圖2,當CE=CD上,CE=CD=AD,此時點E與A重合,N與點C重合,CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2(含CE=DE這種情況).【詳解】解:分兩種情況,①如圖1,當DE=DC時,連接DM,作DG⊥BC于G,∵四邊形ABCD是菱形,∴AB=CD=BC=2,AD∥BC,AB∥CD,∴∠DCG=∠B=60°,∠A=120°,∴DE=AD=2,∵DG⊥BC,∴∠CDG=90°-60°=30°,∴CG=CD=1,∴DG=CG=,BG=BC+CG=3,∵M為AB的中點,∴AM=BM=1,由折疊的性質得:EN=BN,EM=BM=AM,∠MEN=∠B=60°,在△ADM和△EDM中,AD=ED,AM=EM,DM=DM,∴△ADM≌△EDM(SSS),∴∠A=∠DEM=120°,∴∠MEN+∠DEM=180°,∴D、E、N三點共線,設BN=EN=x,則GN=3-x,DN=x+2,在Rt△DGN中,由勾股定理得:,解得:x=,即BN=cm;②當CE=CD時,CE=CD=AD,此時點E與A重合,N與點C重合,如圖2所示:CE=CD=DE=DA,△CDE是等邊三角形,BN=BC=2cm(符合題干要求);綜上所述,當△CDE為等腰三角形時,線段BN的長為cm或2cm;故答案為cm或2cm.【點睛】本題考查了折疊變換的性質、菱形的性質、全等三角形的判定與性質、三點共線、勾股定理、直角三角形的性質、等腰三角形的性質等知識,熟練掌握并靈活運用是解題的關鍵.2、15或24或【解析】【分析】分三種情形討論求解即可.【詳解】解:①如圖1中,當NM=ND時,∴∠NDM=∠NMD,∵∠MND=∠CBD,∴∠BDN=∠BND,∴BD=BN==15;②如圖2中,當DM=DN時,此時M與B重合,∴BC=CN=12,∴BN=24;③如圖3中,當MN=MD時,∴∠NDM=∠MND,∵∠MND=∠CBD,∴∠NDM=∠MND=∠CBD,∴BN=DN,設BN=DN=x,在Rt△DNC中,∵DN2=CN2+CD2,∴x2=(12-x)2+92,∴x=,綜上,當DMN是等腰三角形時,線段BN的長為15或24或.故答案為:15或24或.【點睛】本題考查了矩形的性質、等腰三角形的判定和性質、勾股定理等知識,解題的關鍵是學會用分類討論的思想思考問題,注意不能漏解.3、2##【解析】【分析】根據(jù)折疊性質和平行四邊形的性質可以證明△ABG≌△EAD,可得AG=DE=2,然后利用勾股定理可得求出AF的長,進而可得GF的值.【詳解】解:如圖,GF⊥AB于點F,∵點E是CD邊上的中點,∴CE=DE=2,由折疊可知:∠BGE=∠C,BC=BG=3,CE=GE=2,在?ABCD中,BC=AD=3,BC∥AD,∴∠D+∠C=180°,BG=AD,∵∠BGE+∠AGB=180°,∴∠AGB=∠D,∵AB∥CD,∴∠BAG=∠AED,在△ABG和△EAD中,,∴△ABG≌△EAD(AAS),∴AG=DE=2,∴AB=AE=AG+GE=4,∵GF⊥AB于點F,∴∠AFG=∠BFG=90°,在Rt△AFG和△BFG中,根據(jù)勾股定理,得AG2-AF2=BG2-BF2,即22-AF2=32-(4-AF)2,解得AF=,∴GF2=AG2-AF2=4-=,∴GF=,故答案為2,.【點睛】本題考查了折疊的性質、平行四邊形的性質、勾股定理等知識,證明△ABG≌△EAD是解題的關鍵.4、##【解析】【分析】由折疊及軸對稱的性質可知,△ABF≌△GBF,BF垂直平分AG,先證△ABF≌△DAE,推出AF的長,再利用勾股定理求出BF的長,最后在Rt△ABF中利用面積法可求出AH的長,可進一步求出AG的長,GE的長.【詳解】解:∵四邊形ABCD為正方形,∴AB=AD=12,∠BAD=∠D=90°,由折疊及軸對稱的性質可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB?AF=BF?AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案為:.【點睛】本題考查了正方形的性質,軸對稱的性質,全等三角形的判定與性質,勾股定理,面積法求線段的長度等,解題關鍵是能夠靈活運用正方形的性質和軸對稱的性質.5、(4044,0)【解析】【分析】由題意可知:正方形的邊長為2,分別求得,可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,找到規(guī)律,即求得點P2021在x軸正半軸,進而求得OP的長度,即可求得點的坐標.【詳解】由題意可知:正方形的邊長為2,∵A(2,0),B(0,2),C(2,2),P1(4,0),P2(0,﹣4),P3(﹣6,2),P4(2,10),P5(12,0),P6(0,﹣12)…可發(fā)現(xiàn)點的位置是四個一循環(huán),每旋轉一次半徑增加2,2021÷4=505…1,故點P2021在x軸正半軸,OP的長度為2021×2+2=4044,即:P2021的坐標是(4044,0),故答案為:(4044,0).【點睛】本題考查了平面直角坐標系點的坐標規(guī)律,正方形的性質,找到點的位置是四個一循環(huán),每旋轉一次半徑增加2的規(guī)律是解題的關鍵.6、2.5.【解析】【分析】如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,然后分別求出AC,BC的長度,利用勾股定理求解即可.【詳解】解:如圖所示,將容器側面展開,連接AB,則AB的長即為最短距離,∵圓柱形容器高為0.8m,底面周長為4.8m在容器內(nèi)壁離底部0.1m的點B處有一只蚊子,此時一只壁虎正好在容器的頂部點A處,∴,,,過點B作BC⊥AD于C,∴∠BCD=90°,∵四邊形ADEF是矩形,∴∠ADE=∠DEF=90°∴四邊形BCDE是矩形,∴,,∴,∴,答:則壁虎捕捉蚊子的最短路程是2.5m.故答案為:2.5.【點睛】本題主要考查了平面展開—最短路徑,解題的關鍵在于能夠根據(jù)題意確定展開圖中AB的長即為所求.7、10【解析】【分析】利用矩形性質,求證,將陰影部分的面積轉為的面積,最后利用中線平分三角形的面積,求出的面積,即可得到陰影部分的面積.【詳解】解:四邊形為矩形,,,,,在與中,,陰影部分的面積最后轉化為了的面積,中,,平分,陰影部分的面積:,故答案為:10.【點睛】本題主要是考查了矩形的性質以全等三角形的判定與性質以及中線平分三角形面積,熟練利用矩形性質,證明三角形全等,將陰影部分面積轉化為其他圖形的面積,這是解決本題的關鍵.8、##【解析】【分析】根據(jù)矩形性質得出AD=BC,AB=CD,∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,推出OA=OB=OC=OD,得出等邊三角形AOB,求出BD,根據(jù)勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠BAD=90°,OA=OC=AC,BO=OD=BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等邊三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=3,∵四邊形ABCD是矩形,∴AB=CD=3,AD=BC=3,∴矩形ABCD的周長是AB+BC+CD+AD=6+6.故答案為:6+6.【點睛】本題考查了矩形性質,等邊三角形的性質和判定,勾股定理等知識點,關鍵是求出AD的長.9、【解析】【分析】根據(jù)題意連接BE,連接AE交FG于O,如圖,利用菱形的性質得△BDC為等邊三角形,∠ADC=120°,再在在Rt△BCE中計算出BE=CE=,然后證明BE⊥AB,利用勾股定理計算出AE,從而得到OA的長;設AF=x,根據(jù)折疊的性質得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理計算出OF,再利用余弦的定義求解即可.【詳解】解:連接BE,連接AE交FG于O,如圖,∵四邊形ABCD為菱形,∠A=60°,∴△BDC為等邊三角形,∠ADC=120°,∵E點為CD的中點,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,設AF=x,∵菱形紙片翻折,使點A落在CD的中點E處,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案為:.【點睛】本題考查了折疊的性質以及菱形的性質,注意掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.10、25°【解析】【分析】利用翻折變換的性質即可解決.【詳解】解:由折疊可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案為:25°.【點睛】本題考查了折疊的性質,熟練掌握折疊的性質是解題的關鍵.三、解答題1、(1)見解析;(2)CE=.【分析】(1)根據(jù)平行線的性質及折疊性質證明∠FAC=∠FCA即可.(2)由題意可得,根據(jù)勾股定理求出AC=5,進而求出B'C=2,設CE=x.然后在Rt△中,根據(jù)勾股定理EC2=2+2列方程求解即可;【詳解】解:(1)如圖1,
∵四邊形ABCD是矩形,∴ADBC,∴∠FAC=∠ACB,∵∠ACB=∠ACF,∴∠FAC=∠FCA,∴FA=FC.(2)∵,如圖2,設CE=x,
∵四邊形ABCD是矩形,∴∠B=90°,∴AC2=AB2+BC2=32+42=25,∴AC=5,由折疊可知:,,,∴=5-3=2,在Rt△中,EC2=2+2∴x2=(4-x)2+22,∴x=,∴CE=.【點睛】本題屬于矩形折疊問題,考查了矩形的性質,勾股定理,直角三角形的判定和性質,等腰三角形的判定和性質等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題,屬于中考??碱}型.2、(1)(1,4);(2)45°;(3)見解析
【分析】(1)過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,證明△OAE≌△BOF得到OF=AE,BF=OE,再由點A的坐標為(-4,1),得到OF=AE=1,BF=OE=4,則點B的坐標為(1,4);(2)延長MP與AN交于H,證明△APH≌△BPM得到AH=BM,再由A點坐標為(-4,1),B點坐標為(1,4),得到AN=4,OM=4,BM=1,ON=1,則HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)連接OP,AM,取BM中點G,連接GP,則GP是△ABM的中位線,AM∥GP,證明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,則PQ⊥PG,即PG⊥AM;【詳解】解:(1)如圖所示,過點A作AE⊥x軸于E,過點B作BF⊥x軸于F,∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOF,∵AO=OB,∴△OAE≌△BOF(AAS),∴OF=AE,BF=OE,∵點A的坐標為(-4,1),∴OF=AE=1,BF=OE=4,∴點B的坐標為(1,4);(2)如圖所示,延長MP與AN交于H,∵AH⊥y軸,BM⊥y軸,∴BM∥AN,∴∠MBP=∠HAP,∠AHP=∠BMP,∵點P是AB的中點,∴AP=BP,∴△APH≌△BPM(AAS),∴AH=BM,∵A點坐標為(-4,1),B點坐標為(1,4),∴AN=4,OM=4,BM=1,ON=1,∴HN=AN-AH=AN-BM=3,MN=OM-ON=3,∴HN=MN,∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如圖所示,連接OP,AM,取BM中點G,連接GP,∴GP是△ABM的中位線,∴AM∥GP,∵Q是ON的中點,G是BM的中點,ON=BM=1,∴,∵P是AB中點,△AOB是等腰直角三角形,∠AOB=90°,∴,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON,∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ,由(2)得∠GBP=∠BAN,∴∠GBP=∠QOP,∴△PQO≌△PGB(SAS),∴∠OPQ=∠BPG,∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,∴PQ⊥PG,∴PG⊥AM;【點睛】本題主要考查了坐標與圖形,全等三角形的性質與判定,三角形中位線定理,等腰直角三角形的性質與判定等等,解題的關鍵在于能夠熟練掌握全等三角形的性質與判定條件.3、(1)見解析;(2)DECF,DEFB,EGCF,AEFD【分析】(1)根據(jù)鄰邊相等的平行四邊形是菱形即可證明;(2)利用等高模型即可解決問題.【詳解】解:(1)∵D、E、F分別是AB、AC、BC的中點,∴DE、DF分別是△ABC中BC邊、AC邊上的中位線,∴DE∥BC,DE=BC,DF∥AC,DF=AC,∵DE∥FC,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)健康與心理健康的整合服務策略
- 金華浙江金華永康市疾病預防控制中心工作人員招聘筆試歷年參考題庫附帶答案詳解
- 荊門2025年湖北荊門市人民醫(yī)院招聘護理人員30人筆試歷年參考題庫附帶答案詳解
- 海南2025年中國熱帶農(nóng)業(yè)科學院椰子研究所高層次人才招聘筆試歷年參考題庫附帶答案詳解
- 沈陽2025年遼寧沈陽藥科大學招聘高層次和急需緊缺人才70人筆試歷年參考題庫附帶答案詳解
- 廣州廣東廣州市女子強制隔離戒毒所招聘編外人員5人筆試歷年參考題庫附帶答案詳解
- 宜賓四川宜賓珙縣各機關事業(yè)單位招聘派遣工作人員10人筆試歷年參考題庫附帶答案詳解
- 大理2025年秋季學期云南大理洱源縣教育體育局招募基礎教育銀齡教師筆試歷年參考題庫附帶答案詳解
- 吉安2025年江西吉安市萬安縣城區(qū)學校選調教師78人筆試歷年參考題庫附帶答案詳解
- 職業(yè)人群健康教育轉化實踐
- 系統(tǒng)性紅斑狼瘡的飲食護理
- 電氣試驗報告模板
- 重慶市沙坪壩小學小學語文五年級上冊期末試卷
- 陶瓷巖板應用技術規(guī)程
- 中藥制劑技術中職PPT完整全套教學課件
- 龍虎山正一日誦早晚課
- WORD版A4橫版密封條打印模板(可編輯)
- 1比較思想政治教育
- 藝術課程標準(2022年版)
- JJF 1654-2017平板電泳儀校準規(guī)范
- 上海市工業(yè)用水技術中心-工業(yè)用水及廢水處理課件
評論
0/150
提交評論