強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(含答案詳解版)_第1頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(含答案詳解版)_第2頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(含答案詳解版)_第3頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(含答案詳解版)_第4頁
強化訓(xùn)練人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)試卷(含答案詳解版)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

人教版8年級數(shù)學(xué)上冊《軸對稱》章節(jié)練習(xí)考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計30分)1、等腰三角形兩邊長為3,6,則第三邊的長是(

)A.3 B.6 C. D.3或62、如圖,已知是的角平分線,是的垂直平分線,,,則的長為(

)A.6 B.5 C.4 D.3、如圖是A,B,C三島的平面圖,C島在A島的北偏東35度方向,B島在A島的北偏東80度方向,C島在B島的北偏西55度方向,則A,B,C三島組成一個()A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等邊三角形4、如圖是一個正方體,小敏同學(xué)經(jīng)過研究得到如下5個結(jié)論,正確的結(jié)論有(

)個①用剪刀沿著它的棱剪開這個紙盒,至少要剪7刀,才能展開成平面圖形;②用一平面去截這個正方體得到的截面是三角形ABC,則∠ABC=45°;③一只螞蟻在一個實心正方體木塊P點處想沿著表面爬到C點最近的路只有4條;④用一平面去截這個正方體得到的截面可能是八邊形;⑤正方體平面展開圖有11種不同的圖形.A.1 B.2 C.3 D.45、如圖,在矩形中,,,動點滿足,則點到、兩點距離之和的最小值為(

)A. B. C. D.6、下列電視臺標(biāo)志中是軸對稱圖形的是(

)A. B.C. D.7、如圖,D是等邊的邊AC上的一點,E是等邊外一點,若,,則對的形狀最準(zhǔn)確的是(

).A.等腰三角形 B.直角三角形 C.等邊三角形 D.不等邊三角形8、如果點與關(guān)于軸對稱,則,的值分別為(

)A., B.,C., D.,9、如圖,在小正三角形組成的網(wǎng)格中,已有個小正三角形涂黑,還需涂黑個小正三角形,使它們與原來涂黑的小正三角形組成的新圖案恰有三條對稱軸,則的最小值為()A. B. C. D.10、如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點B的坐標(biāo)是(﹣5,2),先把△ABC向右平移4個單位長度得到△A1B1C1,再作與△A1B1C1關(guān)于于x軸對稱的△A2B2C2,則點B的對應(yīng)點B2的坐標(biāo)是()A.(﹣3,2) B.(2,﹣3) C.(1,2) D.(﹣1,﹣2)第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計40分)1、點(3,0)關(guān)于y軸對稱的點的坐標(biāo)是_______2、等腰三角形的一個外角為100°,則它的底角是______.3、如圖,將長方形紙片按如圖所示的方式折疊,為折痕,點落在,點落在點在同一直線上,則_______度;4、一輛汽車的牌照在車下方水坑中的像是,則這輛汽車的牌照號碼應(yīng)為_____.5、如圖所示,在Rt△ABC中,∠C=90°,AC=4,BC=3,P為AB上一動點(不與A、B重合),作PE⊥AC于點E,PF⊥BC于點F,連接EF,則EF的最小值是______.6、如圖,一束光沿方向,先后經(jīng)過平面鏡、反射后,沿方向射出,已知,,則_________.7、如圖,在△ABC中,AB=AC,∠BAC=36°,DE是線段AC的垂直平分線,若BE=,AE=,則用含、的代數(shù)式表示△ABC的周長為__________.8、點A(5,﹣2)關(guān)于x軸對稱的點的坐標(biāo)為___.9、如圖,在△ABC中,AC=8,BC=5,AB的垂直平分線DE交AB于點D,交邊AC于點E,則△BCE的周長為_______.10、如圖,屋頂鋼架外框是等腰三角形,其中,立柱,且頂角,則的大小為_______.三、解答題(5小題,每小題6分,共計30分)1、(1)如圖1,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m,CE⊥直線m,垂足分別為點D、E.求證:△ABD≌△CAE;(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論△ABD≌△CAE是否成立?如成立,請給出證明;若不成立,請說明理由.(3)拓展應(yīng)用:如圖3,D,E是D,A,E三點所在直線m上的兩動點(D,A,E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD,CE,若∠BDA=∠AEC=∠BAC,求證:△DEF是等邊三角形.2、如圖,在等邊三角形ABC中,點M為AB邊上任意一點,延長BC至點N,使CN=AM,連接MN交AC于點P,MH⊥AC于點H.(1)求證:MP=NP;(2)若AB=a,求線段PH的長(結(jié)果用含a的代數(shù)式表示).3、如圖,點P是∠AOB外的一點,點Q與P關(guān)于OA對稱,點R與P關(guān)于OB對稱,直線QR分別交OA、OB于點M、N,若PM=PN=4,MN=5.(1)求線段QM、QN的長;(2)求線段QR的長.4、在中,,D為BC延長線上一點,點E為線段AC,CD的垂直平分線的交點,連接EA,EC,ED.(1)如圖1,當(dāng)時,則_______°;(2)當(dāng)時,①如圖2,連接AD,判斷的形狀,并證明;②如圖3,直線CF與ED交于點F,滿足.P為直線CF上一動點.當(dāng)?shù)闹底畲髸r,用等式表示PE,PD與AB之間的數(shù)量關(guān)系為_______,并證明.5、請僅用無刻度的直尺完成下列畫圖,不寫畫法,保留畫圖痕跡.(1)如圖①,四邊形ABCD中,AB=AD,B=D,畫出四邊形ABCD的對稱軸m;(2)如圖②,四邊形ABCD中,AD∥BC,A=D,畫出邊BC的垂直平分線n.-參考答案-一、單選題1、B【解析】【分析】題目給出等腰三角形有兩條邊長為3和6,而沒有明確腰、底分別是多少,所以要進行討論,還要應(yīng)用三角形的三邊關(guān)系驗證能否組成三角形.【詳解】由等腰三角形的概念,得第三邊的長可能為3或6,當(dāng)?shù)谌吺?時,而3+3=6,所以應(yīng)舍去;則第三邊長為6.故選B.【考點】此題考查等腰三角形的性質(zhì)和三角形的三邊關(guān)系解題關(guān)鍵在于已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進行解答.2、D【解析】【分析】根據(jù)ED是BC的垂直平分線、BD是角平分線以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,從而可得CD=BD=2AD=6,然后利用三角函數(shù)的知識進行解答即可得.【詳解】∵ED是BC的垂直平分線,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分線,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE=3,故選D.【考點】本題考查了線段垂直平分線的性質(zhì),三角形內(nèi)角和定理,含30度角的直角三角形的性質(zhì),余弦等,結(jié)合圖形熟練應(yīng)用相關(guān)的性質(zhì)及定理是解題的關(guān)鍵.3、A【解析】【分析】先根據(jù)方位角的定義分別可求出,再根據(jù)角的和差、平行線的性質(zhì)可得,,從而可得,然后根據(jù)三角形的內(nèi)角和定理可得,最后根據(jù)等腰直角三角形的定義即可得.【詳解】由方位角的定義得:由題意得:由三角形的內(nèi)角和定理得:是等腰直角三角形即A,B,C三島組成一個等腰直角三角形故選:A.【考點】本題考查了方位角的定義、平行線的性質(zhì)、三角形的內(nèi)角和定理、等腰直角三角形的定義等知識點,掌握理解方位角的概念是解題關(guān)鍵.4、B【解析】【分析】根據(jù)正方體的每個面都是正方形判斷②;根據(jù)一平面去截n棱柱,截面最多是(n+2)邊形判斷④;根據(jù)正方體的展開圖判斷⑤①;根據(jù)正方體有六個面,從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個組合的兩個面展開均是相同的長方形,而P到C的最短路線是這個長方形的對角線,判斷③.【詳解】解:(1)AB、BC、AC均是相同正方形的對角線,故AB=BC=AC,△ABC是等邊三角形,∠ABC=60°,②錯誤;(2)用一平面去截n棱柱,截面最多是(n+2)邊形,正方體是四棱柱,所以截面最多是六邊形,④錯誤;(3)正方體的展開圖只有11種,⑤正確;(4)正方體的11種展開圖,六個小正方形均是一連一關(guān)系,即必須是5條邊相連,正方體有12條棱,所以要剪12-5=7條棱,才能把正方體展開成平面圖形,①正確;(5)正方體有六個面,P點屬于“前、左、下面”這三個面,所以從P到C,可以走“前+上、前+右、左+上、左+后、下+右、下+后”這六處組合的面,這其中任何一個組合的兩個面展開均是相同的長方形,而P到C的最短路線是這個長方形的對角線,這些對角線均相等,故從P到C的最短路線有6條;③錯誤.綜上所述,正確的選項是①⑤,故選B【考點】本題考查了正方體的有關(guān)知識.初中數(shù)學(xué)中的典型題型“多結(jié)論題型”,判別時方法:①容易判別的先判別,無需按順序解答;②注意部分結(jié)論間存在有一定的關(guān)聯(lián)性.5、D【解析】【分析】由,可得△PAB的AB邊上的高h=2,表明點P在平行于AB的直線EF上運動,且兩平行線間的距離為2;延長FC到G,使FC=CG,連接AG交EF于點H,則點P與H重合時,PA+PB最小,在Rt△GBA中,由勾股定理即可求得AG的長,從而求得PA+PB的最小值.【詳解】解:設(shè)△PAB的AB邊上的高為h∵∴∴h=2表明點P在平行于AB的直線EF上運動,且兩平行線間的距離為2,如圖所示∴BF=2∵四邊形ABCD為矩形∴BC=AD=3,∠ABC=90゜∴FC=BC-BF=3-2=1延長FC到G,使CG=FC=1,連接AG交EF于點H∴BF=FG=2∵EF∥AB∴∠EFG=∠ABC=90゜∴EF是線段BG的垂直平分線∴PG=PB∵PA+PB=PA+PG≥AG∴當(dāng)點P與點H重合時,PA+PB取得最小值A(chǔ)G在Rt△GBA中,AB=5,BG=2BF=4,由勾股定理得:即PA+PB的最小值為故選:D.【考點】本題是求兩條線段和的最小值問題,考查了矩形的性質(zhì),勾股定理,線段垂直平分線的性質(zhì)、兩點之間線段最短等知識,難點在于確定點P運動的路徑,路徑確定后就是典型的將軍飲馬問題.6、A【解析】【分析】根據(jù)軸對稱圖形的定義進行判斷,即一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.【詳解】解:A選項中的圖形是軸對稱圖形,對稱軸有兩條,如圖所示;B、C、D選項中的圖形均不能沿某條直線折疊,直線兩旁的部分能夠互相重合,因此,它們都不是軸對稱圖形;故選:A.【考點】本題考查了軸對稱圖形的概念,其中正確理解軸對稱圖形的概念是解題關(guān)鍵.7、C【解析】【分析】先根據(jù)已知利用SAS判定△ABD≌△ACE得出AD=AE,∠BAD=∠CAE=60°,從而推出△ADE是等邊三角形.【詳解】解:∵三角形ABC為等邊三角形,∴AB=AC,∵BD=CE,∠1=∠2,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE=60°,∴△ADE是等邊三角形.故選:C.【考點】本題考查了等邊三角形的判定和全等三角形的判定方法,掌握等邊三角形的判定和全等三角形的判定是本題的關(guān)鍵,做題時要對這些知識點靈活運用.8、A【解析】【分析】根據(jù)關(guān)于y軸對稱點的坐標(biāo)特點:橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變.即點P(x,y)關(guān)于y軸的對稱點P′的坐標(biāo)是(-x,y),進而得出答案.【詳解】解:∵點P(-m,3)與點Q(-5,n)關(guān)于y軸對稱,∴m=-5,n=3,故選:A.【考點】此題主要考查了關(guān)于y軸對稱點的性質(zhì),正確記憶關(guān)于坐標(biāo)軸對稱點的性質(zhì)是解題關(guān)鍵.9、C【解析】【分析】由等邊三角形有三條對稱軸可得答案.【詳解】如圖所示,n的最小值為3.故選C.【考點】本題考查了利用軸對稱設(shè)計圖案,解題的關(guān)鍵是掌握常見圖形的性質(zhì)和軸對稱圖形的性質(zhì).10、D【解析】【分析】首先利用平移的性質(zhì)得到△A1B1C1中點B的對應(yīng)點B1坐標(biāo),進而利用關(guān)于x軸對稱點的性質(zhì)得到△A2B2C2中B2的坐標(biāo),即可得出答案.【詳解】解:把△ABC向右平移4個單位長度得到△A1B1C1,此時點B(-5,2)的對應(yīng)點B1坐標(biāo)為(-1,2),則與△A1B1C1關(guān)于于x軸對稱的△A2B2C2中B2的坐標(biāo)為(-1,-2),故選D.【考點】此題主要考查了平移變換以及軸對稱變換,正確掌握變換規(guī)律是解題關(guān)鍵.二、填空題1、(-3,0)【解析】【分析】根據(jù)平面直角坐標(biāo)系中兩個關(guān)于坐標(biāo)軸成軸對稱的點的坐標(biāo)特點,直接用假設(shè)法設(shè)出相關(guān)點即可.【詳解】解:點(m,n)關(guān)于y軸對稱點的坐標(biāo)(-m,n),所以點(3,0)關(guān)于y軸對稱的點的坐標(biāo)為(-3,0).故答案為:(-3,0).【考點】本題考查平面直角坐標(biāo)系點的對稱性質(zhì):(1)關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);(2)關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);(3)關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).2、80°或50°【解析】【分析】等腰三角形的一個外角等于100°,則等腰三角形的一個內(nèi)角為80°,但已知沒有明確此角是頂角還是底角,所以應(yīng)分兩種情況進行分類討論.【詳解】∵等腰三角形的一個外角等于100°,∴等腰三角形的一個內(nèi)角為80°,當(dāng)80°為頂角時,其他兩角都為50°、50°,當(dāng)80°為底角時,其他兩角為80°、20°,所以等腰三角形的底角可以是50°,也可以是80°.答案為:80°或50°.【考點】本題考查等腰三角形的性質(zhì),當(dāng)已知角沒有明確是頂角還是底角的時候,分類討論是關(guān)鍵.3、【解析】【分析】由折疊的性質(zhì)可得,,再由角的和差及平角的定義即可求出答案.【詳解】解:由題意得:,,∵在同一直線上,∴.故答案為:90.【考點】本題主要考查了折疊的性質(zhì)和平角的定義,屬于基本題型,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.4、H?8379【解析】【分析】易得所求的牌照與看到的牌照關(guān)于水平的一條直線成軸對稱,作出相應(yīng)圖形即可求解.【詳解】解:如圖所示:該車牌照號碼為:H?8379.故答案為:H?8379.【考點】本題考查軸對稱的應(yīng)用,熟練掌握軸對稱的性質(zhì)是解題關(guān)鍵.5、2.4【解析】【分析】連接CP,利用勾股定理列式求出AB,判斷出四邊形CFPE是矩形,根據(jù)矩形的對角線相等可得EF=CP,再根據(jù)垂線段最短可得CP⊥AB時,線段EF的值最小,然后根據(jù)三角形的面積公式列出方程求解即可.【詳解】解:如圖,連接CP.∵∠C=90°,AC=3,BC=4,∴AB===5,∵PE⊥AC,PF⊥BC,∠C=90°,∴四邊形CFPE是矩形,∴EF=CP,由垂線段最短可得CP⊥AB時,線段EF的值最小,此時,S△ABC=BC?AC=AB?CP,即×4×3=×5?CP,解得CP=2.4.故答案為:2.4.【考點】本題考查了矩形的判定與性質(zhì),垂線段最短的性質(zhì),勾股定理,判斷出CP⊥AB時,線段EF的值最小是解題的關(guān)鍵,難點在于利用三角形的面積列出方程.6、40°##40度【解析】【分析】根據(jù)入射角等于反射角,可得,根據(jù)三角形內(nèi)角和定理求得,進而即可求解.【詳解】解:依題意,,∵,,,∴,.故答案為:40.【考點】本題考查了軸對稱的性質(zhì),三角形內(nèi)角和定理的應(yīng)用,掌握軸對稱的性質(zhì)是解題的關(guān)鍵.7、2a+3b【解析】【分析】由題意可知:AC=AB=a+b,由于DE是線段AC的垂直平分線,∠BAC=36°,所以易證AE=CE=BC=b,從可知△ABC的周長為:AB+AC+BC=2a+3b.【詳解】解:∵AB=AC,BE=a,AE=b,∴AC=AB=a+b,∵DE是線段AC的垂直平分線,∴AE=CE=b,∴∠ECA=∠BAC=36°,∵∠BAC=36°,∴∠ABC=∠ACB=72°,∴∠BCE=∠ACB?∠ECA=36°,∴∠BEC=180°?∠ABC?∠ECB=72°,∴CE=BC=b,∴△ABC的周長為:AB+AC+BC=2a+3b故答案為2a+3b.【考點】本題考查線段垂直平分線的性質(zhì),解題的關(guān)鍵是利用等腰三角形的性質(zhì)以及垂直平分線的性質(zhì)得出AE=CE=BC,本題屬于中等題型.8、(5,2)【解析】【分析】根據(jù)關(guān)于x軸對稱的點的橫坐標(biāo)不變,縱坐標(biāo)互為相反數(shù)解答.【詳解】解:點A(5,-2)關(guān)于x軸對稱的點的坐標(biāo)是(5,2).故答案為:(5,2).【考點】本題考查了關(guān)于原點對稱的點的坐標(biāo),關(guān)于x軸、y軸對稱的點的坐標(biāo),解決本題的關(guān)鍵是掌握好對稱點的坐標(biāo)規(guī)律:(1)關(guān)于x軸對稱的點,橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);(2)關(guān)于y軸對稱的點,縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù);(3)關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù).9、13【解析】【詳解】已知DE是AB的垂直平分線,根據(jù)線段的垂直平分線的性質(zhì)得到EA=EB,所以△BCE的周長=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案為:13.10、30°##30度【解析】【分析】先由等邊對等角得到,再根據(jù)三角形的內(nèi)角和進行求解即可.【詳解】,,,,,故答案為:30°.【考點】本題考查了等腰三角形的性質(zhì)及三角形的內(nèi)角和定理,熟練掌握知識點是解題的關(guān)鍵.三、解答題1、(1)見詳解;(2)成立,理由見詳解;(3)見詳解【解析】【分析】(1)根據(jù)直線,直線得,而,根據(jù)等角的余角相等得,然后根據(jù)“”可判斷;(2)利用,則,得出,然后問題可求證;(3)由題意易得,由(1)(2)易證,則有,然后可得,進而可證,最后問題可得證.【詳解】(1)證明:直線,直線,,,,,,在和中,,;解:(2)成立,理由如下:,,,在和中,,;(3)證明:∵△ABF和△ACF均為等邊三角形,∴,∴∠BDA=∠AEC=∠BAC=120°,∴,∴,∴,∴,∵,∴,∴(SAS),∴,∴,∴△DFE是等邊三角形.【考點】本題主要考查全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)與判定,熟練掌握全等三角形的判定與性質(zhì)及等邊三角形的性質(zhì)與判定是解題的關(guān)鍵.2、(1)見詳解;(2)0.5a.【解析】【分析】(1)過點M作MQCN,證明即可;(2)利用等邊三角形的性質(zhì)推出AH=HQ,則PH=HQ+PQ=0.5(AQ+CQ).(1)如下圖所示,過點M作MQCN,∵為等邊三角形,MQCN,∴,則AM=AQ,且∠A=60°,∴為等邊三角形,則MQ=AM=CN,又∵MQCN,∴∠QMP=∠CNP,在,∴,

則MP=NP;(2)∵為等邊三角形,且MH⊥AC,∴AH=HQ,

又由(1)得,,則PQ=PC,∴PH=HQ+PQ=0.5(AQ+CQ)=0.5AC=0.5a.【考點】本題考查了等邊三角形的性質(zhì)與判定、三角形全等的判定,正確作出輔助線是解題的關(guān)鍵.3、(1)4,1;(2)5【解析】【分析】(1)利用軸對稱的性質(zhì)求出MQ即可解決問題;(2)利用軸對稱的性質(zhì)求出NR即可解決問題.【詳解】(1)∵P,Q關(guān)于OA對稱,∴OA垂直平分線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論