版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
海南省五指山市中考數(shù)學真題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題25分)一、單選題(5小題,每小題2分,共計10分)1、如圖,與的兩邊分別相切,其中OA邊與相切于點P.若,,則OC的長為()A.8 B. C. D.2、二次函數(shù)y=x2+px+q,當0≤x≤1時,此函數(shù)最大值與最小值的差(
)A.與p、q的值都有關 B.與p無關,但與q有關C.與p、q的值都無關 D.與p有關,但與q無關3、如圖,在△ABC中,∠CAB=64°,將△ABC在平面內繞點A旋轉到△AB′C′的位置,使CC′AB,則旋轉角的度數(shù)為()A.64° B.52° C.42° D.36°4、如圖,在中,,,,將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是()A. B. C. D.5、從下列命題中,隨機抽取一個是真命題的概率是()(1)無理數(shù)都是無限小數(shù);(2)因式分解;(3)棱長是的正方體的表面展開圖的周長一定是;(4)弧長是,面積是的扇形的圓心角是.A. B. C. D.1二、多選題(5小題,每小題3分,共計15分)1、若為圓內接四邊形,則下列哪個選項可能成立(
)A. B.C. D.2、在圖所示的4個圖案中不包含圖形的旋轉的是(
)A. B. C. D.3、下表時二次函數(shù)y=ax2+bx+c的x,y的部分對應值:…………則對于該函數(shù)的性質的判斷中正確的是()A.該二次函數(shù)有最大值B.不等式y(tǒng)>﹣1的解集是x<0或x>2C.方程y=ax2+bx+c的兩個實數(shù)根分別位于﹣<x<0和2<x<之間D.當x>0時,函數(shù)值y隨x的增大而增大4、如圖是二次函數(shù)圖象的一部分,過點,,對稱軸為直線.則錯誤的有(
)A. B. C. D.5、下列命題中,不正確的是(
)A.三點可確定一個圓B.三角形的外心是三角形三邊中線的交點C.一個三角形有且只有一個外接圓D.三角形的外心必在三角形的內部或外部第Ⅱ卷(非選擇題75分)三、填空題(5小題,每小題3分,共計15分)1、已知一元二次方程ax2+bx+c=0(a≠0),下列結論:①若方程兩根為-1和2,則2a+c=0;②若b>a+c,則方程有兩個不相等的實數(shù)根;③若b=2a+3c,則方程有兩個不相等的實數(shù)根;④若m是方程的一個根,則一定有b2-4ac=(2am+b)2成立.其中結論正確的序號是__________.2、如果關于的一元二次方程有實數(shù)根,那么的取值范圍是___.3、如圖,已知,外心為,,,分別以,為腰向形外作等腰直角三角形與,連接,交于點,則的最小值是______.4、如圖,,,是上的三個點,四邊形是平行四邊形,連接,,若,則_____.5、若代數(shù)式有意義,則x的取值范圍是_____.四、簡答題(2小題,每小題10分,共計20分)1、如圖,在△ABC中,AB=AC,點P在BC上.(1)求作:△PCD,使點D在AC上,且△PCD∽△ABP;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)(2)在(1)的條件下,若∠APC=2∠ABC,求證:PD//AB.2、如圖,在平面直角坐標系中,已知拋物線與軸交于,兩點,與軸交于點,連接.(1)求拋物線的解析式;(2)點在拋物線的對稱軸上,當?shù)闹荛L最小時,點的坐標為_____________;(3)點是第四象限內拋物線上的動點,連接和.求面積的最大值及此時點的坐標;(4)若點是對稱軸上的動點,在拋物線上是否存在點,使以點、、、為頂點的四邊形是平行四邊形?若存在,請直接寫出點的坐標;若不存在,請說明理由.五、解答題(4小題,每小題10分,共計40分)1、某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當天舉辦了甲.乙兩種品牌化妝品有獎酬賓活動,凡購物滿88元,均可得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其他都相同,搖獎者必須從搖獎機內一次連續(xù)搖出兩個球,根據(jù)球的顏色決定送禮金券的多少(如表).甲種品牌化妝品球兩紅一紅一白兩白禮金券(元)6126乙種品牌化妝品球兩紅一紅一白兩白禮金券(元)12612(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;(2)如果一個顧客當天在本店購買滿88元,若只考慮獲得最多的禮品券,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.2、已知關于的二次函數(shù).(1)求證:不論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點;(2)若,兩點在該二次函數(shù)的圖象上,直接寫出與的大小關系;(3)若將拋物線沿軸翻折得到新拋物線,當時,新拋物線對應的函數(shù)有最小值3,求的值.3、已知拋物線c:y=-x2-2x+3和直線l:y=x+d。將拋物線c在x軸上方的部分沿x軸翻折180°,其余部分保持不變,翻折后的圖象與x軸下方的部分組成一個“M”型的新圖象(即新函數(shù)m:y=-|x2+2x-3|的圖象)。(1)當直線l與這個新圖象有且只有一個公共點時,d=;(2)當直線l與這個新圖象有且只有三個公共點時,求d的值;(3)當直線l與這個新圖象有且只有兩個公共點時,求d的取值范圍;(4)當直線l與這個新圖象有四個公共點時,直接寫出d的取值范圍.4、如圖,在方格紙中,已知頂點在格點處的△ABC,請畫出將△ABC繞點C旋轉180°得到的△A'B'C'.(需寫出△A'B'C'各頂點的坐標).-參考答案-一、單選題1、C【分析】如圖所示,連接CP,由切線的性質和切線長定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根據(jù)勾股定理求解即可.【詳解】解:如圖所示,連接CP,∵OA,OB都是圓C的切線,∠AOB=90°,P為切點,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故選C.【點睛】本題主要考查了切線的性質,切線長定理,等腰直角三角形的性質與判定,勾股定理,熟知切線長定理是解題的關鍵.2、D【解析】【分析】分別求出函數(shù)解析式的最小值、當0≤x≤1時端點值即:當x=0和x=1時的函數(shù)值.由二次函數(shù)性質可知此函數(shù)最大值與最小值必是其中的兩個,通過比較可知差值與p有關,但與q無關【詳解】解:依題意得:當時,端點值,當時,端點值,當時,函數(shù)最小值,由二次函數(shù)的最值性質可知,當0≤x≤1時,此函數(shù)最大值和最小值是、、其中的兩個,所以最大值與最小值的差可能是或或,故其差只含p不含q,故與p有關,但與q無關故選:.【考點】本題考查了二次函數(shù)的最值問題,掌握二次函數(shù)的性質、靈活運用配方法是解題的關鍵.3、B【分析】先根據(jù)平行線的性質得∠ACC′=∠CAB=64°,再根據(jù)旋轉的性質得∠CAC′等于旋轉角,AC=AC′,則利用等腰三角形的性質得∠ACC′=∠AC′C=64°,然后根據(jù)三角形內角和定理可計算出∠CAC′的度數(shù),從而得到旋轉角的度數(shù).【詳解】解:∵CC′∥AB,∴∠ACC′=∠CAB=64°∵△ABC在平面內繞點A旋轉到△AB′C′的位置,∴∠CAC′等于旋轉角,AC=AC′,∴∠ACC′=∠AC′C=64°,∴∠CAC′=180°-∠ACC′-∠AC′C=180°-2×64°=52°,∴旋轉角為52°.故選:B.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.4、C【分析】過點A作AC⊥x軸于點C,設,則,根據(jù)勾股定理,可得,從而得到,進而得到∴,可得到點,再根據(jù)旋轉的性質,即可求解.【詳解】解:如圖,過點A作AC⊥x軸于點C,設,則,∵,,∴,∵,,∴,解得:,∴,∴,∴點,∴將繞原點O順時針旋轉90°,則旋轉后點A的對應點的坐標是,∴將繞原點O逆時針旋轉90°,則旋轉后點A的對應點的坐標是.故選:C【點睛】本題考查坐標與圖形變化一旋轉,解直角三角形等知識,解題的關鍵是求出點A的坐標,屬于中考常考題型.5、C【解析】【分析】分別判斷各命題的真假,再利用概率公式求解.【詳解】解:(1)無理數(shù)都是無限小數(shù),是真命題,(2)因式分解,是真命題,(3)棱長是的正方體的表面展開圖的周長一定是,是真命題,(4)設扇形半徑為r,圓心角為n,∵弧長是,則=,則,∵面積是,則=,則360×240,則,則n=3600÷24=150°,故扇形的圓心角是,是假命題,則隨機抽取一個是真命題的概率是,故選C.【考點】本題考查了命題的真假,概率,扇形的弧長和面積,無理數(shù),因式分解,正方體展開圖,知識點較多,難度一般,解題的關鍵是運用所學知識判斷各個命題的真假.二、多選題1、BD【解析】【分析】根據(jù)圓內接四邊形的性質得出∠A+∠C=∠B+∠D=180°,再逐個判斷即可.【詳解】解:∵四邊形ABCD是圓內接四邊形,∴∠A+∠C=180°,∠B+∠D=180°,∴∠A+∠C=∠B+∠D,A.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;B.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;C.∵,∴∠A+∠C≠∠B+∠D,故本選項不符合題意;D.∵,∴∠A+∠C=∠B+∠D,故本選項符合題意;故選:BD.【考點】本題考查了圓周角定理和圓內接四邊形的性質,注意:圓內接四邊形的對角互補.2、AC【解析】【分析】根據(jù)中心對稱與軸對稱的概念,即可求解.【詳解】解:A、是軸對稱圖形,故本選項符合題意;B、是中心對稱圖形,屬于圖形的旋轉,故本選項不符合題意;C、是軸對稱圖形,故本選項符合題意;D、既是軸對稱圖形,也是中心對稱圖形,包含圖形的旋轉,故本選項不符合題意;故選:AC.【考點】本題主要考查了中心對稱與軸對稱的概念,熟練掌握軸對稱圖形的關鍵是尋找對稱軸,圖象沿對稱軸折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合是解題的關鍵.3、BC【解析】【分析】由圖表可得二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,a>0,即可判斷A,D不正確,由圖表可直接判斷B,C正確.【詳解】解:∵當x=0時,y=-1;當x=2時,y=-1;當x=,y=;當x=,y=;∴二次函數(shù)y=ax2+bx+c的對稱軸為直線x=1,x>1時,y隨x的增大而增大,x<1時,y隨x的增大而減?。郺>0即二次函數(shù)有最小值則A,D錯誤由圖表可得:不等式y(tǒng)>-1的解集是x<0或x>2;由圖表可得:方程ax2+bx+c=0的兩個實數(shù)根分別位于-<x<0和2<x<之間;所以選項B,C正確,故選:BC.【考點】本題考查了拋物線與x軸的交點,二次函數(shù)的性質,二次函數(shù)的最值,理解圖表中信息是本題的關鍵.4、BD【解析】【分析】由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸x=?1可得2a+b的符號;再由根的判別式可得,根據(jù)二次函數(shù)的對稱性進而對所得結論進行判斷.【詳解】解:A、由拋物線的開口向下知a<0,與y軸的交點在y軸的正半軸上,知c>0,∵對稱軸為直線,得2a=b,∴a、b同號,即b<0,∴abc>0;故本選項正確,不符合題意;B、∵對稱軸為,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本選項錯誤,符合題意;C、從圖象知,該函數(shù)與x軸有兩個不同的交點,所以根的判別式,即;故本選項正確,不符合題意;D、∵?3<x1<?2,∴根據(jù)二次函數(shù)圖象的對稱性,知當x=1時,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本選項錯誤,符合題意.故選:BD.【考點】本題主要考查了二次函數(shù)圖象與系數(shù)之間的關系,熟練運用對稱軸的范圍求2a與b的關系,二次函數(shù)與方程及不等式之間的關系是解決本題的關鍵.5、ABD【解析】【分析】根據(jù)圓的性質定理逐項排查即可.【詳解】解:A.不在同一條直線上的三點確定一個圓,故本選項錯誤;B.三角形的外心是三角形三邊垂直平分線的交點,所以本選項是錯誤;C.三角形的外接圓是三條垂直平分線的交點,有且只有一個交點,所以任意三角形一定有一個外接圓,并且只有一個外接圓,所以本選項是正確的;D.直角三角形的外心在斜邊中點處,故本選項錯誤.故選:ABD.【考點】考查確定圓的條件以及三角形外接圓的知識,掌握三角形的外接圓是三條垂直平分線的交點是解題的關鍵.三、填空題1、①③④【解析】【分析】利用根與系數(shù)的關系判斷①;由Δ=b2-4ac判斷②;由判別式可判斷③;將x=m代入方程得am2=-(bm+c),再代入=(2am+b)2變形可判斷④.【詳解】解:若方程兩根為-1和2,則=-1×2=-2,即c=-2a,2a+c=2a-2a=0,故①正確;由b>a+c不能判斷Δ=b2-4ac值的大小情況,故②錯誤;若b=2a+3c,則Δ=b2-4ac=4(a+c)2+5c2>0,一元二次方程ax2+bx+c=0有兩個不相等的實數(shù)根,故③正確.若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2=-(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.故④正確;故答案為:①③④.【考點】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系及根的判別式Δ=b2-4ac:當Δ>0,方程有兩個不相等的實數(shù)根;當Δ=0,方程有兩個相等的實數(shù)根;當Δ<0,方程沒有實數(shù)根.2、【解析】【分析】由一元二次方程根與系數(shù)的關鍵可得:從而列不等式可得答案.【詳解】解:關于的一元二次方程有實數(shù)根,故答案為:【考點】本題考查的是一元二次方程根的判別式,掌握一元二次方程根的判別式是解題的關鍵.3、【分析】由與是等腰直角三角形,得到,,根據(jù)全等三角形的性質得到,求得在以為直徑的圓上,由的外心為,,得到,如圖,當時,的值最小,解直角三角形即可得到結論.【詳解】解:與是等腰直角三角形,,,在與中,,≌,,,,在以為直徑的圓上,的外心為,,,如圖,當時,的值最小,,,,,.則的最小值是,故答案為:.【點睛】本題考查了三角形的外接圓與外心,全等三角形的判定和性質,等腰直角三角形的性質,正確的作出輔助線是解題的關鍵.4、64【解析】【分析】先根據(jù)圓周角定理求出∠O的度數(shù),然后根據(jù)平行四邊形的對角相等求解即可.【詳解】∵,∴∠O=2,∵四邊形是平行四邊形,∴∠O=.故答案為:64.【考點】本題考查了圓周角定理,平行四變形的性質,熟練掌握圓周角定理是解答本題的關鍵.在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半.5、﹣3≤x≤且x≠.【解析】【分析】根據(jù)二次根式的性質,被開方數(shù)大于等于0;分母中有字母,分母不為0.【詳解】解:若代數(shù)式有意義,必有,解①得解②移項得兩邊平方得整理得解得③∴解集為﹣3≤x≤且x≠.故答案為:﹣3≤x≤且x≠.【考點】本題考查了二次根式的概念:式子(a≥0)叫二次根式,(a≥0)是一個非負數(shù).注意:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義;當二次根式在分母上時還要考慮分母不等于零,此時被開方數(shù)大于0.四、簡答題1、(1)見解析;(2)見解析【解析】【分析】(1)根據(jù)相似三角形的性質可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD與AC的交點為D即可;(2)利用外角的性質以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根據(jù)平行線的判定即可.【詳解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如圖,即為所作圖形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考點】本題考查了尺規(guī)作圖,相似三角形的性質,外角的性質,難度不大,解題的關鍵是掌握尺規(guī)作圖的基本作法.2、(1);(2);(3)面積最大為,點坐標為;(4)存在點,使以點、、、為頂點的四邊形是平行四邊形,,點坐標為,,.【解析】【分析】(1)將點,代入即可求解;(2)BC與對稱軸的交點即為符合條件的點,據(jù)此可解;(3)過點作軸于點,交直線與點,當EF最大時面積的取得最大值,據(jù)此可解;(4)根據(jù)平行四邊形對邊平行且相等的性質可以得到存在點N使得以B,C,M,N為頂點的四邊形是平行四邊形.分三種情況討論.【詳解】解:(1)拋物線過點,解得:拋物線解析式為.(2)點,∴拋物線對稱軸為直線點在直線上,點,關于直線對稱,當點、、在同一直線上時,最?。畳佄锞€解析式為,∴C(0,-6),設直線解析式為,解得:直線:,,故答案為:.(3)過點作軸于點,交直線與點,設,則,當時,面積最大為,此時點坐標為.(4)存在點,使以點、、、為頂點的四邊形是平行四邊形.設N(x,y),M(,m),①四邊形CMNB是平行四邊形時,CM∥NB,CB∥MN,,∴x=,∴y==,∴N(,);②四邊形CNBM是平行四邊形時,CN∥BM,CM∥BN,,∴x=,∴y==∴N(,);③四邊形CNMB是平行四邊形時,CB∥MN,NC∥BM,,∴x=,∴y==∴N(,);點坐標為(,),(,),(,).【考點】本題考查二次函數(shù)與幾何圖形的綜合題,熟練掌握二次函數(shù)的性質,靈活運用數(shù)形結合思想得到坐標之間的關系是解題的關鍵.五、解答題1、(1)搖出一紅一白的概率=(2)選擇甲品牌化妝品,理由見解析【分析】(1)讓所求的情況數(shù)除以總情況數(shù)即為所求的概率;(2)算出相應的平均收益,比較即可.(1)解:樹狀圖為:∴一共有6種情況,搖出一紅一白的情況共有4種,搖出一紅一白的概率=;(2)(2)∵兩紅的概率P=,兩白的概率P=,一紅一白的概率P=,∴甲品牌化妝品獲禮金券的平均收益是:×6+×12+×6=10元.乙品牌化妝品獲禮金券的平均收益是:×12+×6+×12=8元.∴選擇甲品牌化妝品.【點睛】本題主要考查的是概率的計算,畫樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.2、(1)見解析(2)(3)的值為1或-5【解析】【分析】(1)計算判別式的值,得到,即可判定;(2)計算二次函數(shù)的對稱軸為:直線,利用當拋物線開口向上時,誰離對稱軸遠誰大判斷即可;(3)先得到拋物線沿y軸翻折后的函數(shù)關系式,再利用對稱軸與取值范圍的位置分類討論即可.(1)證明:令,則∴∴不論為何實數(shù),方程有兩個不相等的實數(shù)根∴無論為何實數(shù),該二次函數(shù)的圖象與軸總有兩個公共點(2)解:二次函數(shù)的對稱軸為:直線∵,拋物線開口向上∴拋物線上的點離對稱軸越遠對應的函數(shù)值越大∵∴M點到對稱軸的距離為:1N點到對稱軸的距離為:2∴(3)解:∵拋物線∴沿軸翻折后的函數(shù)解析式為∴該拋物線的對稱軸為直線①若,即,則當時,有最小值∴解得,∵∴②若,即,則當時,有最小值-1不合題意,舍去③若,,則當時,有最小值∴解得,∵∴綜上,的值為1或-5【考點】本題考查了拋物線與x軸的交點以及二次函數(shù)的最值問題,利用一元二次方程根的判別式判斷拋物線與x軸的交點情況;熟練掌握二次函數(shù)的最值情況、根據(jù)對稱軸與取值范圍的位置關系來確定二次函數(shù)的最值是解本題的關鍵.3、(1)d=;(2)d=或d=(3)<d<或d<;(4)<d<?!窘馕觥俊痉治觥浚?)令-x2-2x+3=x+d求解即可;(2)設拋物線c:y=-x2-2x+3與x軸交于點A(-3,0),點B(1,0),則根據(jù)方程有兩個相等的實根求出P的坐標,然后求解即可;(3)(4)根據(jù)(2)求出的P點坐標進
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職(康復治療技術)言語治療學試題及答案
- 2025年高職醫(yī)學美容技術(醫(yī)學美容技術)試題及答案
- 2026年中職第一學年(農產品貯藏與加工)果蔬保鮮階段測試題及答案
- 2026年砌體工程(砌體施工)考題及答案
- 2025年大學大一(文物保護技術)文物保護材料基礎測試題及答案
- 2025年中職農業(yè)機械使用與維護(農機使用基礎)試題及答案
- 2025年大學大一(土地資源管理)土地管理學基礎試題及解析
- 2025-2026年高三歷史(單元突破)上學期期末測試卷
- 2025年大學二年級(老年學)老年政策與法規(guī)試題及答案
- 2025年高職(家政服務與管理)家庭膳食營養(yǎng)試題及答案
- 2025-2026冀人版三年級科學上冊教學設計(附目錄)
- 2025年度山坪塘生態(tài)保護與承包管理合同
- 2025年綜合執(zhí)法局公務員招錄考試法律法規(guī)知識解析與模擬題集
- 新能源充電行業(yè)知識培訓課件
- 全球衛(wèi)生導論
- 骨科傷口感染護理查房
- 護理清潔消毒滅菌
- 裝修工程質量保修服務措施
- 鈑金裝配調試工藝流程
- 腫瘤病人疼痛護理
- 醫(yī)療應用的輻射安全和防護課件
評論
0/150
提交評論