版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
永州市中考數(shù)學期末幾何綜合壓軸題易錯匯編一、中考數(shù)學幾何綜合壓軸題1.如圖1,已知點G在正方形ABCD的對角線AC上,GE⊥BC,垂足為點E,GF⊥CD,垂足為點F.(1)證明:四邊形CEGF是正方形;(2)探究與證明:將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖2所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說明理由;(3)拓展與運用:正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖3所示,當B,E,F(xiàn)三點在一條直線上時,延長CG交AD于點H,若AG=6,GH=2,求BC的長.解析:(1)證明見解析;(2)AG=BE,理由見解析;(3)BC=3.【分析】(1)先說明GE⊥BC、GF⊥CD,再結(jié)合∠BCD=90°可證四邊形CEGF是矩形,再由∠ECG=45°即可證明;(2)連接CG,證明△ACG∽△BCE,再應用相似三角形的性質(zhì)解答即可;(3)先證△AHG∽△CHA可得,設BC=CD=AD=a,則AC=a,求出AH=a,DH=a,CH=,最后代入即可求得a的值.【詳解】(1)∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形.(2)結(jié)論:AG=BE;理由:連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=,,∴,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點B、E、F三點共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設BC=CD=AD=a,則AC=a,則由,得,∴AH=a,則DH=AD﹣AH=a,,∴,得,解得:a=3,即BC=3.【點睛】本題屬于四邊形綜合題,主要考查相似形的判定和性質(zhì)、正方形的性質(zhì)等知識點,解題的關(guān)鍵是正確尋找相似三角形解決問題并利用參數(shù)構(gòu)建方程解決問題.2.綜合與實踐數(shù)學問題:(1)如圖1,是等腰直角三角形,過斜邊的中點作正方形,分別交,于點,,則,,之間的數(shù)量關(guān)系為______.問題解決:(2)如圖2,在任意內(nèi),找一點,過點作正方形,分別交,于點,,若,求的度數(shù);圖2拓展提升:(3)如圖3,在(2)的條件下,分別延長,,交于點,,則,,的數(shù)量關(guān)系為______.圖3(4)在(3)的條件下,若,,則______.解析:(1);(2)135°;(3);(4)【分析】(1)根據(jù)等腰直角三角形的斜邊與直角邊的關(guān)系及正方形的性質(zhì)即可得出數(shù)量關(guān)系;(2)延長至點,使,連接,根據(jù)正方形的性質(zhì)易證,從而可得DP=DB,進而可證,從而可得,,由三角形內(nèi)角和定理即可求得∠ADB的度數(shù);(3)由正方形的對邊平行的性質(zhì)易得AM=DM,BN=DN,從而在Rt△MDN中,由勾股定理即可得MN、AM、BN的數(shù)量關(guān)系;(4)由(2)知FP=BE,即可求得DE=DF=1,根據(jù)相似三角形的性質(zhì)可分別求得EM、FN的長,從而可得DM、DN的長,在Rt△MDN中,由勾股定理即可求得MN的長.【詳解】(1)∵是等腰直角三角形,且AB=AC,∴,∠A=∠B=45°,∵四邊形DECF是正方形,且D是AB的中點,∴DF=FC=CE=DE,∠DFA=∠DEB=90°,DF∥BC,DE∥AC,∴∠ADF=∠B=45°,∠BDE=∠A=45°,∴AF=DF,BE=DE,∴F、E分別是AC、BC的中點,∴CF=BE,∴AC=AF+CF=AF+BE,∴;(2)延長至點,使,連接.∵四邊形是正方形,∴,.∵,,,∴.∴.∵,,,∴.又∵,,∴.∴.同理可得:.∵,∴.∴.∴.(3)∵DF∥BC,DE∥AC,∴∠CBD=∠NDB,∠DAC=∠ADM,∵,,∴∠ABD=∠NDB,∠ADM=∠DAB,∴BN=DN,AM=DM.在Rt△MDN中,由勾股定理得:故答案為:,(4)∵△ABC是直角三角形,AC=3,BC=4,∴由勾股定理得:AB=5,設正方形DECF的邊長為x,由(2)知,AP=AB=5,BE=FP,CP=AP-AC=2,∵FP=CP+CF,BE=BC-CE,即4-x=2+x,解得x=1,∴BE=BC-CE=3,AF=AC-CF=2,∵EM∥AC,F(xiàn)N∥BC,∴△BME∽△BAC,△AFN∽△ACB∴,,∴,.∵DM=ME-DE=,DN=FN-DF=,.故答案為:.【點睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理等知識,截長補短法作輔助線是本題的關(guān)鍵.3.(問題原型)如圖,在矩形中,對角線、交于點,以為直徑作.求證:點、在上.請完成上面問題的證明,寫出完整的證明過程.(發(fā)現(xiàn)結(jié)論)矩形的四個頂點都在以該矩形對角線的交點為圓心,對角線的長為直徑的圓上.(結(jié)論應用)如圖,已知線段,以線段為對角線構(gòu)造矩形.求矩形面積的最大值.(拓展延伸)如圖,在正方形中,,點、分別為邊、的中點,以線段為對角線構(gòu)造矩形,矩形的邊與正方形的對角線交于、兩點,當?shù)拈L最大時,矩形的面積為_____________________解析:問題原型:見解析;結(jié)論應用:見解析;發(fā)現(xiàn)結(jié)論:2;拓展延伸:2【分析】問題原型:運用矩形對角線互相平分且相等,即可求證四點共圓;結(jié)論應用:根據(jù)結(jié)論矩形面積最大時為正方形,利用對角線的長求得正方形的面積;拓展延伸:由上一問的結(jié)論,可知四邊形為正方形,證明四邊形是正方形,繼而求得面積【詳解】解:【問題原型】∵為直徑,∴為半徑.令.∵四邊形為矩形,∴,,.∴.∴點、在上.【結(jié)論應用】連續(xù)交于點,過點作于點.∴.由【發(fā)現(xiàn)結(jié)論】可知,點在以為直徑的圓上,即,∴當即時,矩形的面積最大.∴矩形的面積最大值為.【拓展延伸】如圖,連接,設與的交點為四邊形是正方形,,點、分別為邊、的中點,四邊形是矩形由【結(jié)論應用】可知,時,矩形的面積最大為此時四邊形為正方形,此時最大,,四邊形是正方形正方形的面積為:【點睛】本題考查了矩形的性質(zhì),正方形的性質(zhì)與判定,靈活運用矩形,正方形的性質(zhì)和判定是解題的關(guān)鍵.4.[初步嘗試](1)如圖①,在三角形紙片ABC中,∠ACB=90°,將△ABC折疊,使點B與點C重合,折痕為MN,則AM與BM的數(shù)量關(guān)系為;[思考說理](2)如圖②,在三角形紙片ABC中,AC=BC=6,AB=10,將△ABC折疊,使點B與點C重合,折痕為MN,求的值;[拓展延伸](3)如圖③,在三角形紙片ABC中,AB=9,BC=6,∠ACB=2∠A,將△ABC沿過頂點C的直線折疊,使點B落在邊AC上的點B′處,折痕為CM.①求線段AC的長;②若點O是邊AC的中點,點P為線段OB′上的一個動點,將△APM沿PM折疊得到△A′PM,點A的對應點為點A′,A′M與CP交于點F,求的取值范圍.解析:(1)AM=BM;(2);(3)①AC=;②≤≤.【分析】(1)利用平行線分線段成比例定理解決問題即可.(2)利用相似三角形的性質(zhì)求出BM,AM即可.(3)①證明△BCM∽△BAC,推出由此即可解決問題.②證明△PFA′∽△MFC,推出,因為CM=5,推出即可解決問題.【詳解】解:(1)如圖①中,∵△ABC折疊,使點B與點C重合,折痕為MN,∴MN垂直平分線段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案為:AM=BM.(2)如圖②中,∵CA=CB=6,∴∠A=∠B,由題意MN垂直平分線段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴,∴,∴BM=,∴AM=AB﹣BM=10﹣,∴;(3)①如圖③中,由折疊的性質(zhì)可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴∴,∴BM=4,∴AM=CM=5,∴,∴AC=.②如圖③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴,∵CM=5,∴,∵點P在線段OB上運動,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.【點睛】本題屬于幾何變換綜合題,考查了相似三角形的判定和性質(zhì),解直角三角形,等腰三角形的判定和性質(zhì),平行線分線段成比例定理等知識,解題的關(guān)鍵是正確尋找相似三角形解決問題,屬于中考壓軸題.5.(概念學習)在平面直角坐標系中,的半徑為,若平移個單位后,使某圖形上所有點在內(nèi)或上,則稱的最小值為對該圖形的“最近覆蓋距離”.例如,如圖①,,則對線段的“最近覆蓋距離”為.(概念理解)(1)對點的“最近覆蓋距離”為_.(2)如圖②,點是函數(shù)圖像上一點,且對點的“最近覆蓋距離”為,則點的坐標為_.(拓展應用)(3)如圖③,若一次函數(shù)的圖像上存在點,使對點的“最近覆蓋距離”為,求的取值范圍.(4),且,將對線段的“最近覆蓋距離”記為,則的取值范圍是.解析:(1)4;(2)或;(3)或;(4)【分析】(1)求出點(3,4)與原點的距離,這個距離與1的差即是所求結(jié)果;(2)設點P的坐標為,根據(jù)P到圓心的距離為4及勾股定理,可得關(guān)于x的方程,解方程即可求得點P的坐標;(3)考慮臨界狀態(tài),當OC=2時,函數(shù)圖象上存在點C,使對點C的“最近覆蓋距離”為1,利用三角形相似求出;同理,另一個臨界狀態(tài)為,即可求解;(4)由題意可得DE是一條傾斜角度為45°,長度為的線段,可在圓上找到兩條與之平行且等長的弦AB、FG,如果D落在弧AF上,或者落在弧BG上,進而求解.【詳解】(1)點(3,4)與原點的距離為,而5-1=4,則對點的“最近覆蓋距離”為4;故答案為:(2)由題意可知,到圓的最小距離為,即到圓心的距離為由點P在直線上,故設,則解得故點P的坐標為:或故答案為:或(3)如圖,考慮臨界狀態(tài),過O作OC⊥DE于C點,當時,函數(shù)圖像上存在點,使對點的“最近覆蓋距離”為則設則由勾股定理可得:解得(舍)此時.同理,另一個臨界狀態(tài)為經(jīng)分析可知,函數(shù)相比臨界狀態(tài)更靠近軸,則存在點或由題意可知,是一條傾斜角度為,長度為的線段可在圓上找到兩條與之平行且等長的弦如果落在弧上,或者落在弧上,則成立當時,到弧的最小距離為此時當時,到弧的最小距離為此時綜上【點睛】本題是圓的綜合題,主要考查了一次函數(shù)的性質(zhì)、圓的基本知識、三角形相似的判定與性質(zhì)、新定義等,數(shù)形結(jié)合是本題解題的關(guān)鍵.6.(了解概念)在凸四邊形中,若一邊與它的兩條鄰邊組成的兩個內(nèi)角相等,則稱該四邊形為鄰等四邊形,這條邊叫做這個四邊形的鄰等邊.(理解運用)(1)在鄰等四邊形中,,,若是這個鄰等四邊形的鄰等邊,則的度數(shù)為__________;(2)如圖,凸四邊形中,P為邊的中點,,判斷四邊形是否為鄰等四邊形,并證明你的結(jié)論;(拓展提升)(3)在平面直角坐標系中,為鄰等四邊形的鄰等邊,且邊與x軸重合,已知,,,若在邊上使的點P有且僅有1個,則m的值是__________.解析:(1)130°;(2)四邊形ABCD是鄰等四邊形,理由見解析;(3)﹣5±4【分析】(1)根據(jù)鄰等四邊形的定義即可求解;(2)由△ADP∽△PDC,可得,∠DAP=∠DPC,∠APD=∠PCD,由P為AB的中點,可得AP=BP,則,可證△BPC∽△ADP,由相似三角形的性質(zhì)得出∠A=∠B即可;(3)①若點B在點A右側(cè),如圖,由AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,可證△ADP∽△BPC,可得=,設點P(n,0),由等腰直角三角形可求∠BAD=45°,可求B、C橫坐標之差為3,B(m+3,0),將AP,BP,AD,BC,代入得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個解,可求得m=﹣5+4;②若點B在點A左側(cè),可求得∠BAD=135°,可證△ADP∽△BPC,可得=,可求得B、C橫坐標之差為3,,可求得m=﹣5﹣4.【詳解】解:(1)∵CD為鄰等邊,∴∠C=∠D,又∵,,∴∠C=∠D=(360°﹣∠A﹣∠B)÷2=130°,∴∠C=130°.故答案為:130°;(2)四邊形ABCD是鄰等四邊形,理由如下:∵△ADP∽△PDC,∴,∠DAP=∠DPC,∠APD=∠PCD,∠ADP=∠PDC,又∵P為AB的中點,∴AP=BP,∴,∴,∵∠APD+∠BPC=180°﹣∠DPC,∠PCD+∠PDC=180°﹣∠DPC,且∠APD=∠PCD,∴∠BPC=∠PDC,∵∠ADP=∠PDC,∴∠ADP=∠BPC,∴△BPC∽△ADP,∴∠B=∠A,∴四邊形ABCD為鄰等四邊形;(3)若點B在點A右側(cè),如圖,∵AB為鄰等邊,則有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴=,設點P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,過點C作CE⊥x軸于點E,則∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵點C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD==,BC==,代入=得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由題意可知n只有一個解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣5±4,又∵點C在點D右側(cè),∴m=﹣5+4;②若點B在點A左側(cè),如圖,此時,∵A(﹣2,0),D(2,4),∴∠OAD=45°,∴∠BAD=∠ABC=∠DPC=135°,∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴ADP=∠BPC,∴△ADP∽△BPC,∴=,由①得:B(m+3,0),C(m,3),P(n,0),AP=﹣2﹣n,BP=n﹣m﹣3,AD=,BC=,∴,解得:m=﹣5±4,又∵點C在點D左側(cè),∴m=﹣5﹣4;綜上所述:m=﹣5±4.【點睛】本題是相似綜合題,考查新定義圖形,仔細閱讀題目,抓住定義中的性質(zhì),會驗證新定義圖形,相似三角形的判定與性質(zhì),一元二次方程根的判別式,利用相似三角形的性質(zhì)構(gòu)造關(guān)于n的一元二次方程是解題關(guān)鍵.7.我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”(1)概念理解:請你根據(jù)上述定義舉一個等鄰角四邊形的例子;(2)問題探究;如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;(3)應用拓展;如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點A順時針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當凸四邊形AD′BC為等鄰角四邊形時,求出它的面積.解析:(1)矩形或正方形;(2)AC=BD,理由見解析;(3)10或12﹣.【分析】(1)矩形或正方形鄰角相等,滿足“等鄰角四邊形”條件;(2)AC=BD,理由為:連接PD,PC,如圖1所示,根據(jù)PE、PF分別為AD、BC的垂直平分線,得到兩對角相等,利用等角對等角得到兩對角相等,進而確定出∠APC=∠DPB,利用SAS得到三角形ACB與三角形DPB全等,利用全等三角形對應邊相等即可得證;(3)分兩種情況考慮:(i)當∠AD′B=∠D′BC時,延長AD′,CB交于點E,如圖3(i)所示,由S四邊形ACBD′=S△ACE﹣S△BED′,求出四邊形ACBD′面積;(ii)當∠D′BC=∠ACB=90°時,過點D′作D′E⊥AC于點E,如圖3(ii)所示,由S四邊形ACBD′=S△AED′+S矩形ECBD′,求出四邊形ACBD′面積即可.【詳解】(1)矩形或正方形;(2)AC=BD,理由為:連接PD,PC,如圖1所示:∵PE是AD的垂直平分線,PF是BC的垂直平分線,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分兩種情況考慮:(i)當∠AD′B=∠D′BC時,延長AD′,CB交于點E,如圖3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,設EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,過點D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴,即,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,則S四邊形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)當∠D′BC=∠ACB=90°時,過點D′作D′E⊥AC于點E,如圖3(ii)所示,∴四邊形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根據(jù)勾股定理得:AE=,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,則S四邊形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.【點睛】此題是四邊形綜合題,主要考查了“等鄰角四邊形”的理解,三角形,四邊形的內(nèi)角和定理,角平分線的意義,勾股定理,旋轉(zhuǎn)的性質(zhì),相似三角形的性質(zhì)和判定,理解“等鄰角四邊形”的定義是解本題的關(guān)鍵,分類討論是解本題的難點,是一道中考??碱}.8.如圖,在中,,,點是射線上一動點,過點作,垂足為點,交直線于點.(問題發(fā)現(xiàn))(1)如圖1,若點在的延長線上,試猜想,,之間的數(shù)量關(guān)系為_______;(類比探究)(2)如圖2,若點在線段上,試猜想,,之間的數(shù)量關(guān)系,并說明理由;(拓展應用)(3)當點為的中點時,直接寫出線段的長度.解析:(1);(2),理由見解析;(3)的長為或【分析】(1)通過證明,可得,再根據(jù),即可得證;(2)通過證明,可得,再根據(jù),即可得證;(3)分兩種情況:①當點D在線段BC上時;②當點D在線段BC的延長線上時,求解即可.【詳解】解:(1)如圖1,若點D在BC的延長線上,且點E在線段AD上,AP,CD,BC之間的數(shù)量關(guān)系為,理由如下,垂足為點E在△BPC和△ADC中(2).理由如下,如圖∵,∴,,∴∵,∴∴∵∴(3)的長為或①當點D在線段BC上時∵,∴∴∴②當點D在線段BC的延長線上時【點睛】本題考查了全等三角形的綜合問題,掌握全等三角形的性質(zhì)以及判定定理是解題的關(guān)鍵.9.問題背景(1)如圖(1),,都是等邊三角形,可以由通過旋轉(zhuǎn)變換得到,請寫出旋轉(zhuǎn)中心、旋轉(zhuǎn)方向及旋轉(zhuǎn)角的大?。畤L試應用(2)如圖(2).在中,,分別以AC,AB為邊,作等邊和等邊,連接ED,并延長交BC于點F,連接BD.若,求的值.拓展創(chuàng)新(3)如圖(3).在中,,,將線段AC繞點A順時針旋轉(zhuǎn)得到線段AP,連接PB,直接寫出PB的最大值.解析:(1)旋轉(zhuǎn)中心是點A,旋轉(zhuǎn)方向是順時針,旋轉(zhuǎn)角是;(2);(3).【分析】(1)由等邊三角形得出,,,,證明,由旋轉(zhuǎn)性質(zhì)即可得;(2)證明,由全等三角形的性質(zhì)得,,得出,由直角三角形性質(zhì)得,則可計算得答案;(3)過點A作,且使AE=AD,連接PE,BE,由直角三角形的性質(zhì)求出BE、PE的長即可得解.【詳解】解(1)∵,都是等邊三角形,∴,,,,,,,可以由繞點A順時針旋轉(zhuǎn)得到,即旋轉(zhuǎn)中心是點A,旋轉(zhuǎn)方向是順時針,旋轉(zhuǎn)角是;(2)和都是等邊三角形,,,,,,,,,,,,,,,設BF=x,則CF=DF=2x,DE=3x,∴;(3),∴點C在以AB為直徑的圓上運動,取AB的中點D,連接CD,,如圖,過點A作,且使AE=AD,連接PE,BE,∵將線段AC繞點A順時針旋轉(zhuǎn)得到線段AP,,PA=AC.,,,∴PE=CD=1.∵AB=2,AE=AD=1,∴BE===,,∴BP的最大值為+1.【點睛】本題是幾何變換的綜合題,考查了旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、直角三角形的性質(zhì)、圓周角定理;熟練掌握旋轉(zhuǎn)的性質(zhì)是本題的關(guān)鍵.10.問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,∠ACB=∠DCE=90°,點B,D,E在同一直線上,連接AD,BD.①請?zhí)骄緼D與BD之間的位置關(guān)系:________;②若AC=BC=,DC=CE=,則線段AD的長為________;拓展延伸(2)如圖2,△ABC和△DEC均為直角三角形,∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1.將△DCE繞點C在平面內(nèi)順時針旋轉(zhuǎn),設旋轉(zhuǎn)角∠BCD為α(0°≤α<360°),作直線BD,連接AD,當點B,D,E在同一直線上時,畫出圖形,并求線段AD的長.解析:(1)①垂直,②4;(2)作圖見解析,或【分析】(1)①由“SAS”可證△ACD≌△BCE,可得∠ADC=∠BEC=45°,可得AD⊥BD;②過點C作CF⊥AD于點F,由勾股定理可求DF,CF,AF的長,即可求AD的長;(2)分點D在BC左側(cè)和BC右側(cè)兩種情況討論,根據(jù)勾股定理和相似三角形的性質(zhì)可求解.【詳解】解:(1)∵△ABC和△DEC均為等腰直角三角形,∴AC=BC,CE=CD,∠ABC=∠DEC=45°=∠CDE∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,且AC=BC,CE=CD∴△ACD≌△BCE(SAS)∴∠ADC=∠BEC=45°∴∠ADE=∠ADC+∠CDE=90°∴AD⊥BD故答案為:垂直②如圖,過點C作CF⊥AD于點F,∵∠ADC=45°,CF⊥AD,CD=∴DF=CF=1∴∴AD=AF+DF=4故答案為:4.(2)①如圖:∵∠ACB=∠DCE=90°,AC=,BC=,CD=,CE=1,∴AB=2,DE=2,∠ACD=∠BCE,.∴△ACD∽△BCE.∴∠ADC=∠E,.又∵∠CDE+∠E=90°,∴∠ADC+∠CDE=90°,即∠ADE=90°.∴AD⊥BE.設BE=x,則AD=x.在Rt△ABD中,,即.解得(負值舍去).∴AD=.②如圖,同①設BE=x,則AD=x.在Rt△ABD中,,即.解得(負值舍去).∴AD=.綜上可得,線段AD的長為【點睛】本題是幾何變換綜合題,考查了全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì)等知識點,關(guān)鍵是添加恰當輔助線.11.(閱讀理解)如圖1,,的面積與的面積相等嗎?為什么?解:相等,在和中,分別作,,垂足分別為,.,.,四邊形是平行四邊形,.又,,.(類比探究)問題①,如圖2,在正方形的右側(cè)作等腰,,,連接,求的面積.解:過點作于點,連接.請將余下的求解步驟補充完整.(拓展應用)問題②,如圖3,在正方形的右側(cè)作正方形,點,,在同一直線上,,連接,,,直接寫出的面積.解析:①;②.【分析】①過點作于點,連接,可得,根據(jù)材料可知,再由等腰三角形性質(zhì)可知,即可求出;②連接CE,證明,即可得,由此即可求解.【詳解】解:①過點作于點,連接,∵在正方形中,,∴,∴,∵,,∴,∵在正方形中,,∴;②,過程如下:如解圖3,連接CE,∵在正方形、正方形中,∴,∴,∴,∵在正方形中,,,∴.【點睛】本題主要考查了正方形性質(zhì)和平行線判定和性質(zhì)以及三角形面積,解題關(guān)鍵是理解閱讀材料,根據(jù)平行線找到等底等高的三角形.12.(1)問題發(fā)現(xiàn)如圖1,在和中,,,,連接交于點.填空:①的值為______;②的度數(shù)為______.(2)類比探究如圖2,在和中,,,連接交的延長線于點.請判斷的值及的度數(shù),并說明理由;(3)拓展延伸在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點,若,,請直接寫出當點與點在同一條直線上時的長.解析:(1)①1;②;(2),.理由見解析;(3)2或4.【分析】(1)①證明△COA≌△DOB(SAS),得AC=BD,比值為1;②由△COA≌△DOB,得∠CAO=∠DBO,然后根據(jù)三角形的內(nèi)角和定理先求∠OAB+∠OBA的值,再求∠AMB的值即可;(2)根據(jù)銳角三角比可得,根據(jù)兩邊的比相等且夾角相等可得△AOC∽△BOD,根據(jù)相似撒尿性的性質(zhì)求解即可;(3)當點與點在同一條直線上,有兩種情況:如圖3和圖4,然后根據(jù)旋轉(zhuǎn)的性質(zhì)和勾股定理,可得AD的長.【詳解】(1)①∵,∴∠BOD=∠AOC,又∵,,∴△BOD≌△AOC,∴BD=AC,∴=1;②∵,∴∠OAB+∠OBA=140°,∵△BOD≌△AOC,∴∠CAO=∠DBO,∴∠CAO+∠OAB+∠ABM=∠DBO+∠OAB+∠ABM=∠OAB+∠OBA=140°,∴∠AMB=;(2)如圖2,,.理由如下:中,,,,同理得:,,,,,,∠CAO=∠DBO,∵∠BEO+∠DBO=90°,∴∠CAE+∠AEM=90°,∴∠AMB=90°;(3)∵∠A=30°,,∴OA==3.如圖3,當點D和點A在點O的同側(cè)時,∵,∴AD=3-2=2;如圖4,當點D和點A在點O的兩側(cè)時,∵,,OA=3∴AD=3+1=4.綜上可知,AD的長是2或4.【點睛】本題是三角形的綜合題,主要考查了三角形全等和相似的性質(zhì)和判定,相似三角形的判定與性質(zhì),解直角三角形,旋轉(zhuǎn)的性質(zhì),以及分類討論的數(shù)學思想,解題的關(guān)鍵是能得出:△AOC∽△BOD,根據(jù)相似三角形的性質(zhì),并運用類比的思想解決問題,本題是一道比較好的題目.13.(操作)如圖①,在矩形中,為對角線上一點(不與點重合),將沿射線方向平移到的位置,的對應點為.已知(不需要證明).(探究)過圖①中的點作交延長線于點,連接,其它條件不變,如圖②.求證:.(拓展)將圖②中的沿翻折得到,連接,其它條件不變,如圖③.當最短時,若,,直接寫出的長和此時四邊形的周長.解析:探究:見解析;拓展:四邊形的周長為【分析】探究:證明四邊形EGBC是平行四邊形,推出EG=BC,利用SAS證明三角形全等即可.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.由題意四邊形AGFC是平行四邊形,推出GF=AC=,由BF=BF′,可以假設BF=x,則BG=利用相似三角形的性質(zhì),求出BH,HF′,利用勾股定理求出GF′,再利用二次函數(shù)的性質(zhì),求出GF′的值最小時BF′的值,推出BF′=此時點F′與O重合,由此即可解決問題.【詳解】解:探究:由平移,∴,即又∵,∴四邊形為平行四邊形∴∵,∴∠CBF=∠ACB,∵∴∠AEG=∠ACB,∴∠AEG=∠CBF∴.拓展:如圖3中,連接BD交AC于點O,作BK⊥AC于K,F(xiàn)′H⊥BC于H.∵四邊形ABCD是矩形,∴∠ABC=90°,AB=4,BC=2,∴∵∴,∴由題意四邊形AGFC是平行四邊形,∴GF=AC=,∵BF=BF′,可以假設BF=x,則BG=∵AC∥GF,∴∠BOK=∠HBF′,∵∠BKO=∠F′HB=90°,∴△F′HB∽△BKO,∴∴∴∴∵>0,∴當時,GF′的值最小,此時點F′與O重合,由對折得:由矩形的性質(zhì)得:四邊形BFCF′是菱形,四邊形BFCF′的周長為,且與互相平分,由勾股定理得:【點睛】本題屬于四邊形綜合題,考查了矩形的性質(zhì),翻折變換,平行四邊形的判定和性質(zhì),相似三角形的判定和性質(zhì),二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造相似三角形解決問題,學會構(gòu)建二次函數(shù)解決最值問題,屬于中考壓軸題.14.如圖1,在中,,,點分別是的中點,連接.(1)探索發(fā)現(xiàn):圖1圖2圖3圖1中,的值為_____________;的值為_________;(2)拓展探究若將繞點逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化,請僅就圖2的情形給出證明;(3)問題解決當旋轉(zhuǎn)至三點在同一直線時,直接寫出線段的長.解析:(1);(2)見解析(3)或【分析】(1)先判斷出∠AEB=90°,再判斷出∠B=30°,進而的粗AE,再用勾股定理求出BE,即可得出結(jié)論;(2)先判斷出,進而得出△ACD∽△BCE,即可得出結(jié)論;(3)分點D在線段AE上和AE的延長線上,利用含30度角的直角三角形的性質(zhì)和勾股定理,最后用線段的和差求出AD,即可得出結(jié)論.【詳解】解:解:(1)如圖1,連接AE,∵AB=AC=2,點E分別是BC的中點,∴AE⊥BC,∴∠AEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根據(jù)勾股定理得,BE∵點E是BC的中點,∴BC=2BE∴∵點D是AC的中點,∴AD=CD=AC=1,∴故答案為:,;(2)無變化,理由:由(1)知,CD=1,,∴,∴,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)線段BE的長為或,理由如下:當點D在線段AE上時,如圖2,過點C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴,∴,在Rt△AFC中,AC=2,根據(jù)勾股定理得,,∴AD=AF+DF=,由(2)知,,∴當點D在線段AE的延長線上時,如圖3,過點C作CG⊥AD交AD的延長線于G,∵∠CDG=60°,∴∠DCG=30°,∴,∴,在Rt△ACG中,根據(jù)勾股定理得,,∴,由(2)知,,∴即:線段BE的長為或.【點睛】此題是相似形綜合題,主要考查了等腰三角形的性質(zhì),含30度角的直角三角形的性質(zhì),勾股定理,相似三角形的判定和性質(zhì),構(gòu)造出直角三角形是解本題的關(guān)鍵.15.如圖1,在中,,,點,分別在邊,上,,連接,點,,分別為,,的中點.(1)觀察猜想圖1中,線段與的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明把繞點逆時針方向旋轉(zhuǎn)到圖2的位置,連接,,,判斷的形狀,并說明理由;(3)拓展延伸把繞點在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出面積的最大值.解析:(1)PM=PN,;(2)等腰直角三角形,理由詳見解析;(3).【詳解】試題分析:(1)已知點,,分別為,,的中點,根據(jù)三角形的中位線定理可得,,,根據(jù)平行線的性質(zhì)可得∠DPM=∠DCE,∠NPD=∠ADC,在中,,,,可得BD=EC,∠DCE+∠ADC=90°,即可得PM=PN,∠DPM+∠NPD=90°,即;(2)是等腰直角三角形,根據(jù)旋轉(zhuǎn)的性質(zhì)易證△BAD≌△CAE,即可得BD=CE,∠ABD=∠ACE,根據(jù)三角形的中位線定理及平行線的性質(zhì)(方法可類比(1)的方法)可得PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形;(3)把繞點旋轉(zhuǎn)到如圖的位置,此時PN=(AD+AB)="7,"PM=(AE+AC)=7,且PN、PM的值最長,由(2)可知PM=PN,,所以面積的最大值為.試題解析:(1)PM=PN,;(2)等腰直角三角形,理由如下:由旋轉(zhuǎn)可得∠BAD=∠CAE,又AB=AC,AD=AE∴△BAD≌△CAE∴BD=CE,∠ABD=∠ACE,∵點,分別為,的中點∴PM是△DCE的中位線∴PM=CE,且,同理可證PN=BD,且∴PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN為等腰直角三角形.(3).考點:旋轉(zhuǎn)和三角形的綜合題.16.我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在中,,.,試判斷是否是“等高底”三角形,請說明理由.(2)問題探究:如圖2,是“等高底”三角形,是“等底”,作關(guān)于所在直線的對稱圖形得到,連結(jié)交直線于點.若點是的重心,求的值.(3)應用拓展:如圖3,已知,與之間的距離為2.“等高底”的“等底”在直線上,點在直線上,有一邊的長是的倍.將繞點按順時針方向旋轉(zhuǎn)得到,所在直線交于點.求的值.解析:(1)證明見解析;(2)(3)的值為,,2【解析】分析:(1)過點A作AD⊥直線CB于點D,可以得到AD=BC=3,即可得到結(jié)論;(2)根據(jù)ΔABC是“等高底”三角形,BC是“等底”,得到AD=BC,再由ΔA′BC與ΔABC關(guān)于直線BC對稱,得到∠ADC=90°,由重心的性質(zhì),得到BC=2BD.設BD=x,則AD=BC=2x,CD=3x,由勾股定理得AC=x,即可得到結(jié)論;(3)分兩種情況討論即可:①當AB=BC時,再分兩種情況討論;②當AC=BC時,再分兩種情況討論即可.詳解:(1)是.理由如下:如圖1,過點A作AD⊥直線CB于點D,∴ΔADC為直角三角形,∠ADC=90°.∵∠ACB=30°,AC=6,∴AD=AC=3,∴AD=BC=3,即ΔABC是“等高底”三角形.(2)如圖2,∵ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ΔA′BC與ΔABC關(guān)于直線BC對稱,∴∠ADC=90°.∵點B是ΔAA′C的重心,∴BC=2BD.設BD=x,則AD=BC=2x,∴CD=3x,∴由勾股定理得AC=x,∴.(3)①當AB=BC時,Ⅰ.如圖3,作AE⊥l1于點E,DF⊥AC于點F.∵“等高底”ΔABC的“等底”為BC,l1//l2,l1與l2之間的距離為2,AB=BC,∴BC=AE=2,AB=2,∴BE=2,即EC=4,∴AC=.∵ΔABC繞點C按順時針方向旋轉(zhuǎn)45°得到ΔA'B'C,∴∠CDF=45°.設DF=CF=x.∵l1//l2,∴∠ACE=∠DAF,∴,即AF=2x.∴AC=3x=,可得x=,∴CD=x=.Ⅱ.如圖4,此時ΔABC是等腰直角三角形,∵ΔABC繞點C按順時針方向旋轉(zhuǎn)45°得到ΔA'B'C,∴ΔACD是等腰直角三角形,∴CD=AC=.②當AC=BC時,Ⅰ.如圖5,此時△ABC是等腰直角三角形.∵ΔABC繞點C按順時針方向旋轉(zhuǎn)45°得到ΔA′B′C,∴A′C⊥l1,∴CD=AB=BC=2.Ⅱ.如圖6,作AE⊥l1于點E,則AE=BC,∴AC=BC=AE,∴∠ACE=45°,∴ΔABC繞點C按順時針方向旋轉(zhuǎn)45°得到ΔA′B′C時,點A′在直線l1上,∴A′C∥l2,即直線A′C與l2無交點.綜上所述:CD的值為,,2.點睛:本題是幾何變換-旋轉(zhuǎn)綜合題.考查了重心的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)以及閱讀理解能力.解題的關(guān)鍵是對新概念“等高底”三角形的理解.17.問題背景(1)如圖1,△ABC中,DE∥BC分別交AB,AC于D,E兩點,過點E作EF∥AB交BC于點F.請按圖示數(shù)據(jù)填空:四邊形DBFE的面積,△EFC的面積,△ADE的面積.探究發(fā)現(xiàn)(2)在(1)中,若,,DE與BC間的距離為.請證明.拓展遷移(3)如圖2,□DEFG的四個頂點在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為2、5、3,試利用(2)中的結(jié)論求△ABC的面積.解析:(1),,;(2)見解析;(3)18【分析】(1)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì)即可解決問題.(2)根據(jù)平行四邊形面積公式、三角形面積公式,相似三角形的性質(zhì),分別求出S1、S2即可解決問題.(3)過點G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形,利用(2)的結(jié)論求出□DBHG的面積,△GHC的面積即可.【詳解】(1)∵DE∥BC,EF∥AB,∴四邊形DBFE是平行四邊形,∴S=2×3=6,∴∠AED=∠C,∠A=∠CEF∴△ADE∽△EFC∴S2=1,故答案為6,9,1.(2)證明:∵DE∥BC,EF∥AB,∴四邊形DBFE為平行四邊形,,.∴△ADE∽△EFC.∴.∵,∴.∴.而,∴(3)解:過點G作GH∥AB交BC于H,則四邊形DBHG為平行四邊形.∴∠GHC=∠B,BD=HG,DG=BH,∵四邊形DEFG為平行四邊形,∴DG=EF.∴BH=EF.∴BE=HF,∴△DBE≌△GHF.∴△GHC的面積為5+3=8.由(2)得,□DBHG的面積為.∴△ABC的面積為.【點睛】本題考查四邊形綜合題、相似三角形的性質(zhì)等知識,解題的關(guān)鍵是學會轉(zhuǎn)化的思想,把問題轉(zhuǎn)化為我們熟悉的題型,屬于中考壓軸題,18.問題情境:如圖1,在正方形ABCD中,E為邊BC上一點(不與點B、C重合),垂直于AE的一條直線MN分別交AB、AE、CD于點M、P、N.判斷線段DN、MB、EC之間的數(shù)量關(guān)系,并說明理由.問題探究:在“問題情境”的基礎上,(1)如圖2,若垂足P恰好為AE的中點,連接BD,交MN于點Q,連接EQ,并延長交邊AD于點F.求∠AEF的度數(shù);(2)如圖3,當垂足P在正方形ABCD的對角線BD上時,連接AN,將△APN沿著AN翻折,點P落在點P'處.若正方形ABCD的邊長為4,AD的中點為S,求P'S的最小值.問題拓展:如圖4,在邊長為4的正方形ABCD中,點M、N分別為邊AB、CD上的點,將正方形ABCD沿著MN翻折,使得BC的對應邊B'C'恰好經(jīng)過點A,C'N交AD于點F.分別過點A、F作AG⊥MN,F(xiàn)H⊥MN,垂足分別為G、H.若AG=,請直接寫出FH的長.解析:問題情境:.理由見解析;問題探究:(1);(2)的最小值為;問題拓展:.【分析】問題情境:過點B作BF∥MN分別交AE、CD于點G、F,證出四邊形MBFN為平行四邊形,得出NF=MB,證明△ABE≌△BCF得出BE=CF,即可得出結(jié)論;問題探究:(1)連接AQ,過點Q作HI∥AB,分別交AD、BC于點H、I,證出△DHQ是等腰直角三角形,HD=HQ,AH=QI,證明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直角三角形,得出∠EAQ=∠AEQ=45°,即可得出結(jié)論;(2)連接AC交BD于點O,則△APN的直角頂點P在OB上運動,設點P與點B重合時,則點P′與點D重合;設點P與點O重合時,則點P′的落點為O′,由等腰直角三角形的性質(zhì)得出∠ODA=∠ADO′=45°,當點P在線段BO上運動時,過點P作PG⊥CD于點G,過點P′作P′H⊥CD交CD延長線于點H,連接PC,證明△APB≌△CPB得出∠BAP=∠BCP,證明Rt△PGN≌Rt△NHP'得出PG=NH,GN=P'H,由正方形的性質(zhì)得出∠PDG=45°,易得出PG=GD,得出GN=DH,DH=P'H,得出∠P'DH=45°,故∠P'DA=45°,點P'在線段DO'上運動;過點S作SK⊥DO',垂足為K,即可得出結(jié)果;問題拓展:延長AG交BC于E,交DC的延長線于Q,延長FH交CD于P,則EG=AG=,PH=FH,得出AE=5,由勾股定理得出BE==3,得出CE=BC﹣BE=1,證明△ABE∽△QCE,得出QE=AE=,AQ=AE+QE=,證明△AGM∽△ABE,得出AM=,由折疊的性質(zhì)得:AB'=EB=3,∠B'=∠B=90°,∠C'=∠BCD=90°,求出B'M=,AC'=1,證明△AFC'∽△MAB',得出AF=,證明△DFP∽△DAQ,得出FP=,得出FH=FP=.【詳解】問題情境:因為四邊形是正方形,所以.過點作分別交于點.所以四邊形為平行四邊形.所以.所以,所以,又因為,所以.,所以.因為,所以,所以.問題探究:(1)連接,過點作,分別交于點.易得四邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)基金投資合同范本
- 零用工合同范本
- 飯店轉(zhuǎn)讓租合同范本
- 房屋退租轉(zhuǎn)租合同范本
- 門衛(wèi)安保崗位合同范本
- 弱電項目完工合同范本
- 工地工棚租用合同范本
- 家里防水合同范本
- 本田買賣合同范本
- 機柜噴涂合同范本
- 2025版腦損傷常見癥狀及護理策略
- GB/T 39693.4-2025硫化橡膠或熱塑性橡膠硬度的測定第4部分:用邵氏硬度計法(邵爾硬度)測定壓入硬度
- 2025年直播帶貨主播服務合同范本
- 2025年青海省政府采購評審專家考試測試題及答案
- 北京市西城區(qū)2024-2025學年七年級上學期期末道德與法治試卷
- 年生產(chǎn)加工鈉離子電池負極材料8000 噸、鋰離子電池負極材料3000噸項目環(huán)境風險專項評價報告環(huán)評報告
- 監(jiān)理工作制度(水利工程)
- 拖拉機運輸協(xié)議合同范本
- 遼寧省安全生產(chǎn)條例講解
- 營業(yè)執(zhí)照管理辦法公司
- 深圳市坪山區(qū)高標準農(nóng)田建設規(guī)劃(2021-2030年)(草案以及編輯說明)
評論
0/150
提交評論