版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
南京漢開書院學(xué)校中考數(shù)學(xué)期末二次函數(shù)和幾何綜合匯編一、二次函數(shù)壓軸題1.定義:若拋物線的頂點(diǎn)和與x軸的兩個(gè)交點(diǎn)所組成的三角形為等邊三角形時(shí).則稱此拋物線為正拋物線.概念理解:(1)如圖,在△ABC中,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).試證明:以點(diǎn)A為頂點(diǎn),且與x軸交于D、C兩點(diǎn)的拋物線是正拋物線;問題探究:(2)已知一條拋物線經(jīng)過x軸的兩點(diǎn)E、F(E在F的左邊),E(1,0)且EF=2若此條拋物線為正拋物線,求這條拋物線的解析式;應(yīng)用拓展:(3)將拋物線y1=﹣x2+2x+9向下平移9個(gè)單位后得新的拋物線y2.拋物線y2的頂點(diǎn)為P,與x軸的兩個(gè)交點(diǎn)分別為M、N(M在N左側(cè)),把△PMN沿x軸正半軸無滑動(dòng)翻滾,當(dāng)邊PN與x軸重合時(shí)記為第1次翻滾,當(dāng)邊PM與x軸重合時(shí)記為第2次翻滾,依此類推…,請(qǐng)求出當(dāng)?shù)?019次翻滾后拋物線y2的頂點(diǎn)P的對(duì)應(yīng)點(diǎn)坐標(biāo).2.如圖1,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A,C分別是直線y=﹣x+4與坐標(biāo)軸的交點(diǎn),點(diǎn)B的坐標(biāo)為(﹣2,0),點(diǎn)D是邊AC上的一點(diǎn),DE⊥BC于點(diǎn)E,點(diǎn)F在邊AB上,且D,F(xiàn)兩點(diǎn)關(guān)于y軸上的某點(diǎn)成中心對(duì)稱,連結(jié)DF,EF.設(shè)點(diǎn)D的橫坐標(biāo)為m,EF2為l,請(qǐng)?zhí)骄浚孩倬€段EF長度是否有最小值.②△BEF能否成為直角三角形.小明嘗試用“觀察﹣猜想﹣驗(yàn)證﹣應(yīng)用”的方法進(jìn)行探究,請(qǐng)你一起來解決問題.(1)小明利用“幾何畫板”軟件進(jìn)行觀察,測量,得到l隨m變化的一組對(duì)應(yīng)值,并在平面直角坐標(biāo)系中以各對(duì)應(yīng)值為坐標(biāo)描點(diǎn)(如圖2).請(qǐng)你在圖2中連線,觀察圖象特征并猜想l與m可能滿足的函數(shù)類別.(2)小明結(jié)合圖1,發(fā)現(xiàn)應(yīng)用三角形和函數(shù)知識(shí)能驗(yàn)證(1)中的猜想,請(qǐng)你求出l關(guān)于m的函數(shù)表達(dá)式及自變量的取值范圍,并求出線段EF長度的最小值.(3)小明通過觀察,推理,發(fā)現(xiàn)△BEF能成為直角三角形,請(qǐng)你求出當(dāng)△BEF為直角三角形時(shí)m的值.3.如圖,拋物線y=ax2+bx+4交x軸于A(﹣3,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,連接AC,BC.點(diǎn)P是第一象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m.(1)求此拋物線的表達(dá)式;(2)過點(diǎn)P作PM⊥x軸,垂足為點(diǎn)M,PM交BC于點(diǎn)Q.試探究點(diǎn)P在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由;(3)過點(diǎn)P作PN⊥BC,垂足為點(diǎn)N.請(qǐng)用含m的代數(shù)式表示線段PN的長,并求出當(dāng)m為何值時(shí)PN有最大值,最大值是多少?4.綜合與探究如圖,拋物線與軸相交于,兩點(diǎn),與軸相交于點(diǎn),,,直線是拋物線的對(duì)稱軸,在直線右側(cè)的拋物線上有一動(dòng)點(diǎn),連接,,,.(1)求拋物線的函數(shù)表達(dá)式:(2)若點(diǎn)在軸的下方,當(dāng)?shù)拿娣e是時(shí),求的面積;(3)在直線上有一點(diǎn),連接,,則的最小值為______;(4)在(2)的條件下,點(diǎn)是軸上一點(diǎn),點(diǎn)是拋物線上一動(dòng)點(diǎn),是否存在點(diǎn),使得以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.5.綜合與探究如圖1,已知拋物線與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,作直線BC,點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)是點(diǎn).(1)求點(diǎn)的坐標(biāo)和直線BC的表達(dá)式;(2)如圖2,點(diǎn)M在拋物線的對(duì)稱軸上,N為平面內(nèi)一點(diǎn),依次連接BM,,,NB,當(dāng)四邊形是菱形時(shí),求點(diǎn)M坐標(biāo);(3)如圖3,點(diǎn)P是拋物線第一象限內(nèi)一動(dòng)點(diǎn),過P作x軸的平行線分別交直線BC和y軸于點(diǎn)Q和點(diǎn)E,連接交直線BC于點(diǎn)D,連接,PB,設(shè)點(diǎn)P的橫坐標(biāo)為m,△的面積為,△PBD的面積為,求的最大值.6.如圖,邊長為5的正方形的兩邊在坐標(biāo)軸上,以點(diǎn)為頂點(diǎn)的拋物線經(jīng)過點(diǎn),點(diǎn)是拋物線上第一象限內(nèi)一點(diǎn),過點(diǎn)作于點(diǎn),點(diǎn)的坐標(biāo)為.連接.(1)求拋物線的解析式;(2)求的值;(3)①在點(diǎn)運(yùn)動(dòng)過程中,當(dāng)時(shí),點(diǎn)的坐標(biāo)為________;②連接,在①的條件下,把沿軸平移(限定點(diǎn)在射線上),并使拋物線與的邊始終有兩個(gè)交點(diǎn),探究點(diǎn)縱坐標(biāo)的取值范圍是多少?7.根據(jù)我們學(xué)習(xí)函數(shù)的過程與方法,對(duì)函數(shù)y=x2+bx+2﹣c|x﹣1|的圖像和性質(zhì)進(jìn)行探究,已知該函數(shù)圖像經(jīng)過(﹣1,﹣2)與(2,1)兩點(diǎn),(1)該函數(shù)的解析式為,補(bǔ)全下表:x?﹣4﹣3﹣2﹣1123?y?2﹣1﹣2212?(2)描點(diǎn)、連線,在所給的平面直角坐標(biāo)系中畫出該函數(shù)的圖象,寫出這個(gè)函數(shù)的一條性質(zhì):.(3)結(jié)合你所畫的圖象與函數(shù)y=x的圖象,直接寫出x2+bx+2﹣c|x﹣1|≤x的解集.8.某校九年級(jí)數(shù)學(xué)興趣社團(tuán)的同學(xué)們學(xué)習(xí)二次函數(shù)后,有興趣的在一起探究“函數(shù)的有關(guān)圖象和性質(zhì)”.探究過程如下:(1)列表:問______.x…012…y…620002m…(2)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出圖象.(3)若方程(p為常數(shù))有三個(gè)實(shí)數(shù)根,則______.(4)試寫出方程(p為常數(shù))有兩個(gè)實(shí)數(shù)根時(shí),p的取值范圍是______.9.在平面直角坐標(biāo)系中(如圖).已知點(diǎn),點(diǎn),點(diǎn).如果拋物線恰好經(jīng)過這三個(gè)點(diǎn)之中的兩個(gè)點(diǎn).(1)試推斷拋物線經(jīng)過點(diǎn)A、B、C之中的哪兩個(gè)點(diǎn)?簡述理由;(2)求常數(shù)a與b的值:(3)將拋物線先沿與y軸平行的方向向下平移2個(gè)單位長度,再與沿x軸平行的方向向右平移個(gè)單位長度,如果所得到的新拋物線經(jīng)過點(diǎn).設(shè)這個(gè)新拋物線的頂點(diǎn)是D.試探究的形狀.10.如圖,拋物線交x軸于,兩點(diǎn),與y軸交于點(diǎn)C,AC,BC.M為線段OB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作軸,交拋物線于點(diǎn)P,交BC于點(diǎn)Q.(1)求拋物線的表達(dá)式;(2)過點(diǎn)P作,垂足為點(diǎn)N.設(shè)M點(diǎn)的坐標(biāo)為,請(qǐng)用含m的代數(shù)式表示線段PN的長,并求出當(dāng)m為何值時(shí)PN有最大值,最大值是多少?(3)試探究點(diǎn)M在運(yùn)動(dòng)過程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.二、中考幾何壓軸題11.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).(1)觀察猜想:圖1中,線段PM與PN的數(shù)量關(guān)系是,位置關(guān)系是;(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出△PMN面積的最大值.12.石家莊某學(xué)校數(shù)學(xué)興趣小組利用機(jī)器人開展數(shù)學(xué)活動(dòng),在相距150個(gè)單位長度的直線跑道AB上,機(jī)器人甲從端點(diǎn)A出發(fā),勻速往返于端點(diǎn)A、B之間,機(jī)器人乙同時(shí)從端點(diǎn)B出發(fā),以大于甲的速度勻速往返于端點(diǎn)B、A之間.他們到達(dá)端點(diǎn)后立即轉(zhuǎn)身折返,用時(shí)忽略不計(jì),興趣小組成員探究這兩個(gè)機(jī)器人迎面相遇的情況,這里的“迎面相遇”包括面對(duì)面相遇、在端點(diǎn)處相遇這兩種.(觀察)①觀察圖1,若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為30個(gè)單位長度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長度.②若這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為35個(gè)單位長度,則他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為個(gè)單位長度.(發(fā)現(xiàn))設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長度,他們第二次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長度,興趣小組成員發(fā)現(xiàn)了y與x的函數(shù)關(guān)系,并畫出了部分函數(shù)圖象(線段OP,不包括點(diǎn)O,如圖2所示)①a=;②分別求出各部分圖象對(duì)應(yīng)的函數(shù)解析式,并在圖2中補(bǔ)全函數(shù)圖象.(拓展)設(shè)這兩個(gè)機(jī)器人第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為x個(gè)單位長度,他們第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離為y個(gè)單位長度,若這兩個(gè)機(jī)器人在第三次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離y不超過60個(gè)單位長度,則他們第一次迎面相遇時(shí),相遇地點(diǎn)與點(diǎn)A之間的距離x的取值范圍是.(直接寫出結(jié)果)13.(感知)(1)如圖①,在四邊形ABCD中,∠C=∠D=90°,點(diǎn)E在邊CD上,∠AEB=90°,求證:=.(探究)(2)如圖②,在四邊形ABCD中,∠C=∠ADC=90°,點(diǎn)E在邊CD上,點(diǎn)F在邊AD的延長線上,∠FEG=∠AEB=90°,且=,連接BG交CD于點(diǎn)H.求證:BH=GH.(拓展)(3)如圖③,點(diǎn)E在四邊形ABCD內(nèi),∠AEB+∠DEC=180°,且=,過E作EF交AD于點(diǎn)F,若∠EFA=∠AEB,延長FE交BC于點(diǎn)G.求證:BG=CG.14.(1)問題發(fā)現(xiàn)如圖1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.填空:①則的值為______;②∠EAD的度數(shù)為_______.(2)類比探究如圖2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,點(diǎn)E是線段AC上一動(dòng)點(diǎn),連接DE.請(qǐng)求出的值及∠EAD的度數(shù);(3)拓展延伸如圖3,在(2)的條件下,取線段DE的中點(diǎn)M,連接AM、BM,若BC=4,則當(dāng)△ABM是直角三角形時(shí),求線段AD的長.15.問題發(fā)現(xiàn):(1)如圖1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC,∠BCD的度數(shù)是;線段BD,AC之間的數(shù)量關(guān)系是.類比探究:(2)在Rt△ABC中,∠BAC=45°,∠ABC=90°,將線段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC,請(qǐng)問(1)中的結(jié)論還成立嗎?;拓展延伸:(3)如圖3,在Rt△ABC中,AB=2,AC=4,∠BDC=90°,若點(diǎn)P滿足PB=PC,∠BPC=90°,請(qǐng)直接寫出線段AP的長度.16.問題發(fā)現(xiàn):(1)正方形ABCD和正方形AEFG如圖①放置,AB=4,AE=2.5,則=___________.問題探究:(2)如圖②,在矩形ABCD中,AB=3,BC=4,點(diǎn)P在矩形的內(nèi)部,∠BPC=135°,求AP長的最小值.問題拓展:(3)如圖③,在四邊形ABCD中,連接對(duì)角線AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,則對(duì)角線BD是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說明理由.17.綜合與實(shí)踐:利用矩形的折疊開展數(shù)學(xué)活動(dòng),探究體會(huì)圖形在軸對(duì)稱,旋轉(zhuǎn)等變換過程中的變化,及其蘊(yùn)含的數(shù)學(xué)思想和方法.動(dòng)手操作:如圖①,矩形紙片ABCD的邊AB=2,將矩形紙片ABCD對(duì)折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,折痕為EF,然后展開,EF與AC交于點(diǎn)H;如圖②,將矩形ABCD沿過點(diǎn)A的直線折疊,使點(diǎn)B落在對(duì)角線AC上,且點(diǎn)B與點(diǎn)H重合,展開圖形,折痕為AG,連接GH;若在圖①中連接BH,得到如圖③,點(diǎn)M是線段BH上的動(dòng)點(diǎn),點(diǎn)N是線段AH上的動(dòng)點(diǎn),連接AM,MN,且∠AMN=∠ABH;若在圖②中連接BH,交折痕AG于點(diǎn)Q,隱去其它線段,得到如圖④.解決問題:(1)在圖②中,∠ACB=,BC=,=,與△ABG相似的三角形有個(gè);(2)在圖②中,AH2=AE·(從圖②中選擇一條線段填在空白處),并證明你的結(jié)論;(3)在圖③中,△ABH為三角形,設(shè)BM為x,則NH=(用含x的式子表示);拓展延伸:(4)在圖④中,將△ABQ繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)α(0°≤α≤180°),得到△A′BQ′,連接DQ′,則DQ′的最小值為,當(dāng)tan∠CBQ′=時(shí),△DBQ′的面積最大值為.18.(1)問題提出:如圖①,在矩形中,,點(diǎn)為邊上一點(diǎn),連接,過點(diǎn)作對(duì)角線的垂線,垂足為,點(diǎn)為的中點(diǎn),連接,,.可知的形狀為______;(2)深人探究:如圖②,將在平面內(nèi)繞點(diǎn)順時(shí)針旋轉(zhuǎn),請(qǐng)判斷的形狀是否變化,并說明理由;(提示:延長到,使;延長到,使,連接,,,構(gòu)造全等三角形進(jìn)行證明)(3)拓展延伸:如果,,在旋轉(zhuǎn)過程中,當(dāng)點(diǎn),,在同一條直線上時(shí),請(qǐng)直接寫出的長.19.如圖:兩個(gè)菱形與菱形的邊在同一條直線上,邊長分別為a和b,點(diǎn)C在上,點(diǎn)M為的中點(diǎn).(1)觀察猜想:如圖①,線段與線段的數(shù)量關(guān)系是______________.(2)拓展探究:如圖②,,將圖①中的菱形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)至圖②位置,其他條件不變,連接,①猜想線段與線段的數(shù)量關(guān)系,并說明理由.②求出線段與所成的最小夾角.(3)解決問題:如圖③,若將題目中的菱形改為矩形,且,請(qǐng)直接寫出線段與線段的數(shù)量關(guān)系.20.(發(fā)現(xiàn)問題)(1)如圖,已知和均為等邊三角形,在上,在上,易得線段和的數(shù)量關(guān)系是.(2)將圖中的繞點(diǎn)旋轉(zhuǎn)到圖的位置,直線和直線交于點(diǎn)①判斷線段和的數(shù)量關(guān)系,并證明你的結(jié)論.②圖中的度數(shù)是.(3)(探究拓展)如圖3,若和均為等腰直角三角形,,,,直線和直線交于點(diǎn),分別寫出的度數(shù),線段、之間的數(shù)量關(guān)系.【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、二次函數(shù)壓軸題1.A解析:(1)詳見解析;(2)y=或y=;(3)當(dāng)?shù)?019次翻滾后拋物線y2的頂點(diǎn)P的對(duì)應(yīng)點(diǎn)坐標(biāo)為(4039,3).【分析】(1)由Rt△ABC中AD是斜邊BC的中線可得AD=CD,由拋物線對(duì)稱性可得AD=AC,即證得△ACD是等邊三角形.(2)設(shè)拋物線頂點(diǎn)為G,根據(jù)正拋物線定義得△EFG是等邊三角形,又易求E、F坐標(biāo),即能求G點(diǎn)坐標(biāo).由于不確定點(diǎn)G縱坐標(biāo)的正負(fù)號(hào),故需分類討論,再利用頂點(diǎn)式求拋物線解析式.(3)根據(jù)題意求出拋物線y2的解析式,并按題意求出P、M、N的坐標(biāo),得到等邊△PMN,所以當(dāng)△PMN翻滾時(shí),每3次為一個(gè)周期,點(diǎn)P回到x軸上方,且橫坐標(biāo)每多一個(gè)周期即加6,其規(guī)律為當(dāng)翻滾次數(shù)n能被3整除時(shí),橫坐標(biāo)為:+n×2=(2n+1).2019能被3整除,代入即能求此時(shí)點(diǎn)P坐標(biāo).【詳解】解:(1)證明:∠BAC=90°,點(diǎn)D是BC的中點(diǎn)∴AD=BD=CD=BC∵拋物線以A為頂點(diǎn)與x軸交于D、C兩點(diǎn)∴AD=AC∴AD=AC=CD∴△ACD是等邊三角形∴以A為頂點(diǎn)與x軸交于D、C兩點(diǎn)的拋物線是正拋物線.(2)∵E(1,0)且EF=2,點(diǎn)F在x軸上且E在F的左邊∴F(3,0)∵一條經(jīng)過x軸的兩點(diǎn)E、F的拋物線為正拋物線,設(shè)頂點(diǎn)為G∴△EFG是等邊三角形∴xG=①當(dāng)G(2,)時(shí),設(shè)拋物線解析式為y=a(x﹣2)2+把點(diǎn)E(1,0)代入得:a+=0∴a=﹣∴y=﹣(x﹣2)2+②當(dāng)G(2,﹣)時(shí),設(shè)拋物線解析式為y=a(x﹣2)2﹣把點(diǎn)E(1,0)代入得:a﹣=0∴a=∴y=(x﹣2)2﹣綜上所述,這條拋物線的解析式為y=﹣(x﹣2)2+或y=(x﹣2)2﹣(3)∵拋物線y1=﹣x2+2x+9=﹣(x﹣)2+12∴y1向下平移9個(gè)單位后得拋物線y2=﹣(x﹣)2+3∴P(,3),M(0,0),N(2,0)∴PM=MN=PN=2∴△PMN是等邊三角形∴第一次翻滾頂點(diǎn)P的坐標(biāo)變?yōu)镻1(4,0),第二次翻滾得P2與P1相同,第三次翻滾得P3(7,3)即每翻滾3次為一個(gè)周期,當(dāng)翻滾次數(shù)n能被3整除時(shí),點(diǎn)P縱坐標(biāo)為3,橫坐標(biāo)為:+n×2=(2n+1)∵2019÷3=673∴(2×2019+1)×=4039∴當(dāng)?shù)?019次翻滾后拋物線y2的頂點(diǎn)P的對(duì)應(yīng)點(diǎn)坐標(biāo)為(4039,3).【點(diǎn)睛】本題考查了新定義的理解、性質(zhì)運(yùn)用,二次函數(shù)的圖象與性質(zhì),直角三角形和等邊三角形的性質(zhì).第(3)題的解題關(guān)鍵是發(fā)現(xiàn)等邊△PMN每3次翻滾看作一個(gè)周期,點(diǎn)P對(duì)應(yīng)點(diǎn)坐標(biāo)的特征,是規(guī)律探索的典型題.2.F解析:(1)連線見解析,二次函數(shù);(2);(3)m=0或m=【分析】(1)根據(jù)描點(diǎn)法畫圖即可;(2)過點(diǎn)F,D分別作FG,DH垂直于y軸,垂足分別為G,H,證明Rt△FGK≌Rt△DHK(AAS),由全等三角形的性質(zhì)得出FG=DH,可求出F(﹣m,﹣2m+4),根據(jù)勾股定理得出l=EF2=8m2﹣16m+16=8(m﹣1)2+8,由二次函數(shù)的性質(zhì)可得出答案;(3)分三種不同情況,根據(jù)直角三角形的性質(zhì)得出m的方程,解方程求出m的值,則可求出答案.【詳解】解:(1)用描點(diǎn)法畫出圖形如圖1,由圖象可知函數(shù)類別為二次函數(shù).(2)如圖2,過點(diǎn)F,D分別作FG,DH垂直于y軸,垂足分別為G,H,則∠FGK=∠DHK=90°,記FD交y軸于點(diǎn)K,∵D點(diǎn)與F點(diǎn)關(guān)于y軸上的K點(diǎn)成中心對(duì)稱,∴KF=KD,∵∠FKG=∠DKH,∴Rt△FGK≌Rt△DHK(AAS),∴FG=DH,∵直線AC的解析式為y=﹣x+4,∴x=0時(shí),y=4,∴A(0,4),又∵B(﹣2,0),設(shè)直線AB的解析式為y=kx+b,∴,解得,∴直線AB的解析式為y=2x+4,過點(diǎn)F作FR⊥x軸于點(diǎn)R,∵D點(diǎn)的橫坐標(biāo)為m,∴F(﹣m,﹣2m+4),∴ER=2m,F(xiàn)R=﹣2m+4,∵EF2=FR2+ER2,∴l(xiāng)=EF2=8m2﹣16m+16=8(m﹣1)2+8,令﹣+4=0,得x=,∴0≤m≤.∴當(dāng)m=1時(shí),l的最小值為8,∴EF的最小值為2.(3)①∠FBE為定角,不可能為直角.②∠BEF=90°時(shí),E點(diǎn)與O點(diǎn)重合,D點(diǎn)與A點(diǎn),F(xiàn)點(diǎn)重合,此時(shí)m=0.③如圖3,∠BFE=90°時(shí),有BF2+EF2=BE2.由(2)得EF2=8m2﹣16m+16,又∵BR=﹣m+2,F(xiàn)R=﹣2m+4,∴BF2=BR2+FR2=(﹣m+2)2+(﹣2m+4)2=5m2﹣20m+20,又∵BE2=(m+2)2,∴(5m2﹣20m+8)+(8m2﹣16m+16)2=(m+2)2,化簡得,3m2﹣10m+8=0,解得m1=,m2=2(不合題意,舍去),∴m=.綜合以上可得,當(dāng)△BEF為直角三角形時(shí),m=0或m=.【點(diǎn)睛】本題考查了二次函數(shù)的綜合應(yīng)用,考查了描點(diǎn)法畫函數(shù)圖象,待定系數(shù)法,全等三角形的判定與性質(zhì),坐標(biāo)與圖形的性質(zhì),二次函數(shù)的性質(zhì),勾股定理,中心對(duì)稱的性質(zhì),直角三角形的性質(zhì)等知識(shí).準(zhǔn)確分析給出的條件,結(jié)合一次函數(shù)的圖象進(jìn)行求解,熟練掌握方程思想及分類討論思想是解題的關(guān)鍵..3.A解析:(1)(2)存在,點(diǎn)Q的坐標(biāo)為:Q(1,3)或(,);(3)PN=﹣(m﹣2)2+,當(dāng)m=2時(shí),PN的最大值為.【分析】(1)由二次函數(shù)交點(diǎn)式表達(dá)式,即可求解;(2)分AC=AQ、AC=CQ、CQ=AQ三種情況,利用方程或方程組求解即可得到答案;(3)利用等腰直角三角形的性質(zhì)得到:PN=PQsin∠PQN=即可求解.【詳解】解:(1)拋物線y=ax2+bx+4交x軸于A(﹣3,0),B(4,0)兩點(diǎn),設(shè)即:﹣12a=4,解得:則拋物線的表達(dá)式為(2)存在,理由:點(diǎn)A、B、C的坐標(biāo)分別為(﹣3,0)、(4,0)、(0,4),則AC=5,AB=7,BC=,∠OBC=∠OCB=45°,將點(diǎn)B、C的坐標(biāo)代入一次函數(shù)表達(dá)式:y=kx+b并解得:y=﹣x+4…①,同理可得直線AC的表達(dá)式為:,①當(dāng)AC=AQ時(shí),如圖1,則AC=AQ=5,設(shè):QM=MB=n,則AM=7﹣n,由勾股定理得:解得:n=3或4(舍去4),故點(diǎn)Q(1,3);②當(dāng)AC=CQ時(shí),如圖1,CQ=5,則BQ=BC﹣CQ=則QM=MB=,故點(diǎn)Q(,);③當(dāng)CQ=AQ時(shí),則在的垂直平分線上,設(shè)直線AC的中點(diǎn)為K(,2),過點(diǎn)與CA垂直直線的表達(dá)式中的k值為,直線的表達(dá)式為:②,聯(lián)立①②并解得:(舍去);故點(diǎn)Q的坐標(biāo)為:Q(1,3)或(,);(3)設(shè)點(diǎn),則點(diǎn)Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,PN=PQsin∠PQN=∵∴PN有最大值,當(dāng)m=2時(shí),PN的最大值為:.【點(diǎn)睛】主要考查了二次函數(shù)的解析式的求法和等腰三角形的存在性問題,線段長度的最值問題,要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來.4.A解析:(1);(2);(3);(4)存在,點(diǎn)的坐標(biāo)為:或或【分析】(1)把A、B兩點(diǎn)坐標(biāo)代入可得關(guān)于a、b的二元一次方程組,解方程組求出a、b的值即可得答案;(2)過作軸于,交于,根據(jù)拋物線解析式可得點(diǎn)C坐標(biāo),利用待定系數(shù)法可得直線BC的解析式,設(shè),根據(jù)BC解析式可表示出點(diǎn)H坐標(biāo),即可表示出DH的長,根據(jù)△BCD的面積列方程可求出x的值,即可得點(diǎn)D坐標(biāo),利用三角形面積公式即可得答案;(3)根據(jù)二次函數(shù)的對(duì)稱性可得點(diǎn)A與點(diǎn)B關(guān)于直線l對(duì)稱,可得BC為AP+CP的最小值,根據(jù)兩點(diǎn)間距離公式計(jì)算即可得答案;(4)根據(jù)平行四邊形的性質(zhì)得到MB//ND,MB=ND,分MB為邊和MB為對(duì)角線兩種情況,結(jié)合點(diǎn)D坐標(biāo)即可得點(diǎn)N的坐標(biāo).【詳解】(1)∵拋物線與軸相交于,兩點(diǎn),,,∴,解得:,∴拋物線的解析式為:.(2)如圖,過作軸于,交于,當(dāng)時(shí),,∴,設(shè)的解析式為,則,解得,∴的解析式為:,設(shè),則,∴,∵的面積是,∴,∴,解得:或3,∵點(diǎn)在直線右側(cè)的拋物線上,∴,∴的面積;(3)∵拋物線與軸相交于,兩點(diǎn),∴點(diǎn)A與點(diǎn)B關(guān)于直線l對(duì)稱,∴BC為AP+CP的最小值,∵B(4,0),C(0,-6),∴AP+CP的最小值=BC==.故答案為:(4)①當(dāng)MB為對(duì)角線時(shí),MN//BD,MN=BD,過點(diǎn)N作NE⊥x軸于E,過當(dāng)D作DF⊥x軸于F,∵點(diǎn)D(3,),∴DF=,在△MNE和△BDF中,,∴△MNE≌△BDF,∴DF=NE=,∵點(diǎn)D在x軸下方,MB為對(duì)角線,∴點(diǎn)N在x軸上方,∴點(diǎn)N縱坐標(biāo)為,把y=代入拋物線解析式得:,解得:,,∴(,),(,)如圖,當(dāng)BM為邊時(shí),MB//ND,MB=ND,∵點(diǎn)D(3,),∴點(diǎn)N縱坐標(biāo)為,∴,解得:,(與點(diǎn)D重合,舍去),∴(,),綜上所述:存在點(diǎn),使得以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形,點(diǎn)的坐標(biāo)為:或或.【點(diǎn)睛】本題考查的是二次函數(shù)的綜合,首先要掌握待定系數(shù)法求解析式,其次要添加恰當(dāng)?shù)妮o助線,靈活運(yùn)用面積公式和平行四邊形的判定和性質(zhì),應(yīng)用數(shù)形結(jié)合的數(shù)學(xué)思想解題.5.A解析:(1),y=-x+4;(2)M(1,-1);(3)的最大值是4.【分析】(1)先求得點(diǎn)A,B,C的坐標(biāo),即可求得的坐標(biāo),再用待定系數(shù)法求得直線BC的表達(dá)式;(2)過M作MH⊥y軸于點(diǎn)H,連接OM.證明△OMB≌△O,即可得∠MOB=.再求得∠MOB==45°;由此求得.再求得拋物線的對(duì)稱軸,即可求得點(diǎn)M的坐標(biāo);(3)過B作BI⊥PQ于I.易求,再求得PQ的最大值,即可求得的最大值.【詳解】(1)∵拋物線與x軸相交于點(diǎn)A,B,當(dāng)y=0時(shí),,解,得;∴B(4,0)∵拋物線與x軸相交于點(diǎn)C,∴當(dāng)x=0時(shí),y=4,∴C(0,4),.設(shè)BC的表達(dá)式為y=kx+b,將B,C兩點(diǎn)坐標(biāo)分別代入得,解,得.直線BC的表達(dá)式為y=-x+4;(2)過M作MH⊥y軸于點(diǎn)H,連接OM.∵四邊形是菱形,∴BM=,∵B(4,0),C(0,4),∴OB=OC,∵OM=OM,∴△OMB≌△O,∴∠MOB=.∵∠BO=90°,∴∠MOB==45°;∵M(jìn)H⊥y,.∵拋物線的對(duì)稱軸為直線,.∴M(1,-1).(3)過B作BI⊥PQ于I.∵PQ//x軸,∴∠IEO=90°,∴四邊形EOBI是矩形..,∵點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為m,∴點(diǎn)P的縱坐標(biāo)為.∵PQ//x軸,∴點(diǎn)Q的縱坐標(biāo)為,將其代入y=-x+4,∴點(diǎn)Q的橫坐標(biāo)為.∵點(diǎn)P是拋物線第一象限內(nèi),∴點(diǎn)P在點(diǎn)Q右側(cè),.,∴當(dāng)m=2時(shí),PQ的最大值是2,∴的最大值是4.【點(diǎn)睛】本題是二次函數(shù)的綜合題,解決第(3)題時(shí)構(gòu)建二次函數(shù)模型是解決問題的關(guān)鍵.6.F解析:(1);(2);(3)①;②【分析】(1)由題可設(shè)拋物線解析式為,將N點(diǎn)坐標(biāo)代入,求出a即可求出拋物線的函數(shù)表達(dá)式.(2)過點(diǎn)作軸于,由題可設(shè),故可求出PF的長.在中,利用勾股定理可求出PE的長,即發(fā)現(xiàn),故.(3)①由題意易求,即.結(jié)合(2)即可列出關(guān)于m的方程,解出m即可求出此時(shí)P點(diǎn)坐標(biāo).②根據(jù)題意可知將沿y軸平移,使拋物線與△PEF的邊始終有兩個(gè)交點(diǎn)的極限條件為:向上平移,一直到點(diǎn)與點(diǎn)重合前和向下平移,一直到點(diǎn)與點(diǎn)重合前.根據(jù)平移規(guī)律結(jié)合①即可得出答案.【詳解】解:(1)由題可設(shè)拋物線解析式為,把代入,,解得,∴拋物線的函數(shù)表達(dá)式為.(2)如圖,過點(diǎn)作軸于,由題可設(shè),∴∵在中,,即,∴,∴,即.(3)①由題意可知,∵,∴,∴.由(2)可知,.∴,解得:(舍).故,即.②根據(jù)題意可知將沿y軸平移,使拋物線與△PEF的邊始終有兩個(gè)交點(diǎn)的條件為:向上平移,一直到點(diǎn)與點(diǎn)重合前和向下平移,一直到點(diǎn)與點(diǎn)重合前.Ⅰ當(dāng)沿y軸向上平移,且點(diǎn)與點(diǎn)重合時(shí),如圖,.∵,∴此時(shí)P點(diǎn)向上平移1個(gè)單位得到,即.∵點(diǎn)與點(diǎn)重合時(shí),拋物線與△PEF的邊有兩個(gè)交點(diǎn),即當(dāng)時(shí)拋物線與△PEF的邊有兩個(gè)交點(diǎn),∴.Ⅱ當(dāng)沿y軸向下平移,且點(diǎn)與點(diǎn)P重合時(shí),如圖,.∵,∴此時(shí)P點(diǎn)向下平移4個(gè)單位得到,即.∵點(diǎn)與點(diǎn)P重合時(shí),拋物線與△PEF的邊只有一個(gè)交點(diǎn),即當(dāng)時(shí)拋物線與△PEF的邊只有一個(gè)交點(diǎn),∴.綜上可知.【點(diǎn)睛】本題考查二次函數(shù)綜合,勾股定理,兩點(diǎn)的距離公式以及含角的直角三角形的性質(zhì).作出輔助線并利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.7.(1)y=x2﹣x+2﹣3|x﹣1|,補(bǔ)全表格見解析,(2)函數(shù)圖像見解析,當(dāng)x=-1時(shí),函數(shù)有最小值,最小值為-2;(3)≤x≤或≤x≤.【分析】(1)將點(diǎn)(﹣1,﹣2)與(2,1)代入解析式即可;(2)畫出函數(shù)圖象,觀察圖象得到一條性質(zhì)即可(3)根據(jù)圖象,求出兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo),通過觀察可確定解解集.【詳解】解:(1)∵該函數(shù)圖象經(jīng)過(﹣1,﹣2)與(2,1)兩點(diǎn),∴,∴,∴y=x2﹣x+2﹣3|x﹣1|,故答案為:y=x2﹣x+2﹣3|x﹣1|;當(dāng)x=-4時(shí),y=7;當(dāng)x=0時(shí),y=-1;補(bǔ)全表格如圖,x?﹣4﹣3﹣2﹣10123?y?72﹣1﹣2-1212?(2)函數(shù)圖像如圖所示,當(dāng)x=-1時(shí),函數(shù)有最小值,最小值為-2;(3)當(dāng)x≥1時(shí),x2﹣x+2﹣3x+3=x,解得,,,觀察圖象可知不等式的解集為:≤x≤;當(dāng)x<1時(shí),x2﹣x+2+3x﹣3=x,解得,,,觀察圖象可知不等式的解集為:≤x≤;∴不等式x2+bx+2﹣c|x﹣1|≤x的解集為≤x≤或≤x≤.【點(diǎn)睛】本題考查二次函數(shù)與不等式的關(guān)系;掌握描點(diǎn)法畫函數(shù)圖象,利用數(shù)形結(jié)合解不等式是解題的關(guān)鍵.8.(1);(2)見解析;(3);(4)或.【分析】(1)把x=代入解析式,計(jì)算即可;(2)按照畫圖像的基本步驟畫圖即可;(3)一個(gè)方程有兩個(gè)不同實(shí)數(shù)根,另一個(gè)方程有兩個(gè)相等的實(shí)數(shù)根和兩個(gè)方程都有兩個(gè)不同的實(shí)數(shù)根,但是有一個(gè)公共根;(4)結(jié)合函數(shù)的圖像,分直線經(jīng)過頂點(diǎn)和在x軸上方兩種情形解答即可.【詳解】(1)當(dāng)x=時(shí),==,∴;(2)畫圖像如下;(3)當(dāng)x≥0時(shí),函數(shù)為;當(dāng)x<0時(shí),函數(shù)為;∵方程(p為常數(shù))有三個(gè)實(shí)數(shù)根,∴兩個(gè)方程有一個(gè)公共根,設(shè)這個(gè)根為a,則,解得a=0,當(dāng)a=0時(shí),p=0,故答案為:p=0;(4)∵方程(p為常數(shù))有兩個(gè)實(shí)數(shù)根,∴p>0;或△=0即1+4p=0,解得.綜上所述,p的取值范圍是或.【點(diǎn)睛】本題考查了二次函數(shù)圖像,二次函數(shù)與一元二次方程的關(guān)系,熟練掌握拋物線與一元二次方程的關(guān)系,靈活運(yùn)用分類思想,數(shù)形結(jié)合思想是解題的關(guān)鍵.9.A解析:(1)點(diǎn)A、B在拋物線上,理由見解析;(2),;(3)等腰直角三角形【分析】(1)軸,故B、C中只有一個(gè)點(diǎn)在拋物線上,算出AC的解析式,交y軸于點(diǎn),拋物線與y軸也交于點(diǎn),故C不符要求,由此解答即可;(2)把A、B點(diǎn)的坐標(biāo)代入解析式,由此解答即可;(3)由平移可得新的解析式,代入得出D點(diǎn)的坐標(biāo),再判斷三角形的形狀.【詳解】(1)∵軸,故B、C中只有一個(gè)點(diǎn)在拋物線上,∵,交y軸于點(diǎn).且拋物線與y軸也交于點(diǎn),故C不符要求.∴點(diǎn)A、B在拋物線上(2)代入A、B到.,∴(3)∴代入到,(舍),,∴∴,,∴,,∴.∴是等腰直角三角形【點(diǎn)睛】本題考查了與待定系數(shù)法求二次函數(shù)解析式及判斷點(diǎn)是否在圖像上,平移變換勾股定理等知識(shí),求解析式是解題的關(guān)鍵.10.A解析:(1);(2),當(dāng)時(shí),PN有最大值,最大值為.(3)滿足條件的點(diǎn)Q有兩個(gè),坐標(biāo)分別為:,.【分析】(1)將點(diǎn)A、B的坐標(biāo)代入解析式中求解即可;(2)由(1)求得點(diǎn)C坐標(biāo),利用待定系數(shù)法求得直線BC的解析式,然后用m表示出PN,再利用二次函數(shù)的性質(zhì)即可求解;(3)分三種情況:①AC=CQ;②AC=AQ;③CQ=AQ,分別求解即可.【詳解】解:(1)將,代入,得,解之,得.所以,拋物線的表達(dá)式為.(2)由,得.將點(diǎn)、代入,得,解之,得.所以,直線BC的表達(dá)式為:.由,得,.∴∵,∴.∴.∴..∵∴當(dāng)時(shí),PN有最大值,最大值為.(3)存在,理由如下:由點(diǎn),,知.①當(dāng)時(shí),過Q作軸于點(diǎn)E,易得,由,得,(舍)此時(shí),點(diǎn);②當(dāng)時(shí),則.在中,由勾股定理,得.解之,得或(舍)此時(shí),點(diǎn);③當(dāng)時(shí),由,得(舍).綜上知所述,可知滿足條件的點(diǎn)Q有兩個(gè),坐標(biāo)分別為:,.【點(diǎn)睛】本題是一道二次函數(shù)與幾何圖形的綜合題,解答的關(guān)鍵是認(rèn)真審題,找出相關(guān)條件,運(yùn)用待定系數(shù)法、數(shù)形結(jié)合法等解題方法確定解題思路,對(duì)相關(guān)信息進(jìn)行推理、探究、發(fā)現(xiàn)和計(jì)算.二、中考幾何壓軸題11.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由見解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位線得出,,即可得出數(shù)量關(guān)系,再利用三角形的中位線得出得出,最后用互余即可得出位置關(guān)系;(2)先判斷出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出結(jié)論;(3)方法1:先判斷出最大時(shí),的面積最大,進(jìn)而求出,,即可得出最大,最后用面積公式即可得出結(jié)論.方法2:先判斷出最大時(shí),的面積最大,而最大是,即可得出結(jié)論.【詳解】解:(1)點(diǎn),是,的中點(diǎn),,,點(diǎn),是,的中點(diǎn),,,,,,,,,,,,,,,故答案為:,;(2)是等腰直角三角形.由旋轉(zhuǎn)知,,,,,,,利用三角形的中位線得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如圖2,同(2)的方法得,是等腰直角三角形,最大時(shí),的面積最大,且在頂點(diǎn)上面,最大,連接,,在中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大時(shí),面積最大,點(diǎn)在的延長線上,,,.【點(diǎn)睛】此題屬于幾何變換綜合題,主要考查了三角形的中位線定理,等腰直角三角形的判定和性質(zhì),全等三角形的判斷和性質(zhì),直角三角形的性質(zhì)的綜合運(yùn)用;解(1)的關(guān)鍵是判斷出,,解(2)的關(guān)鍵是判斷出,解(3)的關(guān)鍵是判斷出最大時(shí),的面積最大.12.【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補(bǔ)全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個(gè)機(jī)器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時(shí)相解析:【觀察】①90;②105;【發(fā)現(xiàn)】①50;②y=,補(bǔ)全圖象見解析;【拓展】0<x≤12或48≤x≤72【分析】【觀察】①先據(jù)題意求出兩個(gè)機(jī)器人速度的關(guān)系,再確定第二次迎面相遇的位置,然后設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意列方程即可求出結(jié)果;②仿照①的解題思路和方法解答即可;【發(fā)現(xiàn)】①當(dāng)點(diǎn)第二次相遇地點(diǎn)剛好在點(diǎn)B時(shí),根據(jù)題意可列方程150﹣x=2x,解出的x的值即為a的值;②分0<x≤50與50<x<75兩種情況,分別求出正比例函數(shù)與一次函數(shù)的關(guān)系式,進(jìn)一步即可補(bǔ)全函數(shù)圖象;【拓展】分三種情況畫出圖形,然后根據(jù)題意得出相應(yīng)的分式方程,解方程即可得出y與x的關(guān)系,進(jìn)而可得關(guān)于x的不等式,解不等式即可得到結(jié)論.【詳解】解:【觀察】①∵相遇地點(diǎn)與點(diǎn)A之間的距離為30個(gè)單位長度,∴相遇地點(diǎn)與點(diǎn)B之間的距離為150﹣30=120個(gè)單位長度,設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為v=4v,∴機(jī)器人甲從相遇點(diǎn)到點(diǎn)B所用的時(shí)間為,機(jī)器人乙從相遇地點(diǎn)到點(diǎn)A再返回到點(diǎn)B所用時(shí)間為,而,∴機(jī)器人甲與機(jī)器人乙第二次迎面相遇時(shí),機(jī)器人乙從第一次相遇地點(diǎn)到點(diǎn)A,返回到點(diǎn)B,再返回向A時(shí)和機(jī)器人甲第二次迎面相遇,設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意得,30+150+150﹣m=4(m﹣30),解得:m=90,故答案為:90;②∵相遇地點(diǎn)與點(diǎn)A之間的距離為35個(gè)單位長度,∴相遇地點(diǎn)與點(diǎn)B之間的距離為150﹣35=115個(gè)單位長度,設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,∴機(jī)器人乙從相遇點(diǎn)到點(diǎn)A再到點(diǎn)B所用的時(shí)間為,機(jī)器人甲從相遇點(diǎn)到點(diǎn)B所用時(shí)間為,而,∴機(jī)器人甲與機(jī)器人乙第二次迎面相遇時(shí),機(jī)器人乙從第一次相遇地點(diǎn)到點(diǎn)A,返回到點(diǎn)B,再返回向A時(shí)和機(jī)器人甲第二次迎面相遇,設(shè)此時(shí)相遇點(diǎn)距點(diǎn)A為m個(gè)單位,根據(jù)題意得,35+150+150﹣m=(m﹣35),解得:m=105,故答案為:105;【發(fā)現(xiàn)】①當(dāng)?shù)诙蜗嘤龅攸c(diǎn)剛好在點(diǎn)B時(shí),設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,根據(jù)題意知,150﹣x=2x,∴x=50,即:a=50,故答案為:50;②當(dāng)0<x≤50時(shí),點(diǎn)P(50,150)在線段OP上,∴線段OP的表達(dá)式為y=3x,當(dāng)v<時(shí),即當(dāng)50<x<75,此時(shí),第二次相遇地點(diǎn)是機(jī)器人甲在到點(diǎn)B返回向點(diǎn)A時(shí),設(shè)機(jī)器人甲的速度為v,則機(jī)器人乙的速度為,根據(jù)題意知,x+y=(150﹣x+150﹣y),整理,得y=﹣3x+300,∴y與x的函數(shù)關(guān)系式是y=,補(bǔ)全圖象如圖2所示:【拓展】①如圖,由題意知,,∴y=5x,∵0<y≤60,∴0<x≤12;②如圖,∴,∴y=﹣5x+300,∵0≤y≤60,∴48≤x≤60,③如圖,由題意得,=,∴y=5x﹣300,∵0≤y≤60,∴60≤x≤72,∵0<x<75,∴48≤x≤72,綜上所述,相遇地點(diǎn)與點(diǎn)A之間的距離x的取值范圍是0<x≤12或48≤x≤72,故答案為:0<x≤12或48≤x≤72.【點(diǎn)睛】本題考查了一次函數(shù)的應(yīng)用、分式方程的應(yīng)用、兩點(diǎn)間的距離、一元一次方程和一元一次不等式的應(yīng)用,難度較大,正確理解題意、靈活應(yīng)用數(shù)形結(jié)合的思想是解題的關(guān)鍵.13.(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽R(shí)t△EBC,由相似三角形的性質(zhì)得出,則可得出結(jié)論;(2)過點(diǎn)G作GM⊥CD于點(diǎn)M,由(解析:(1)見解析(2)見解析(3)見解析【分析】(1)證得∠BEC=∠EAD,證明Rt△AED∽R(shí)t△EBC,由相似三角形的性質(zhì)得出,則可得出結(jié)論;(2)過點(diǎn)G作GM⊥CD于點(diǎn)M,由(1)可知,證得BC=GM,證明△BCH≌△GMH(AAS),可得出結(jié)論;(3)在EG上取點(diǎn)M,使∠BME=∠AFE,過點(diǎn)C作CN∥BM,交EG的延長線于點(diǎn)N,則∠N=∠BMG,證明△AEF∽△EBM,由相似三角形的性質(zhì)得出,證明△DEF∽△ECN,則,得出,則BM=CN,證明△BGM≌△CGN(AAS),由全等三角形的性質(zhì)可得出結(jié)論.【詳解】(1)∵∠C=∠D=∠AEB=90°,∴∠BEC+∠AED=∠AED+∠EAD=90°,∴∠BEC=∠EAD,∴Rt△AED∽R(shí)t△EBC,∴;(2)如圖1,過點(diǎn)G作GM⊥CD于點(diǎn)M,同(1)的理由可知:,∵,,∴,∴CB=GM,在△BCH和△GMH中,,∴△BCH≌△GMH(AAS),∴BH=GH;(3)證明:如圖2,在EG上取點(diǎn)M,使∠BME=∠AFE,過點(diǎn)C作CN∥BM,交EG的延長線于點(diǎn)N,則∠N=∠BMG,∵∠EAF+∠AFE+∠AEF=∠AEF+∠AEB+∠BEM=180°,∠EFA=∠AEB,∴∠EAF=∠BEM,∴△AEF∽△EBM,∴,∵∠AEB+∠DEC=180°,∠EFA+∠DFE=180°,而∠EFA=∠AEB,∴∠CED=∠EFD,∵∠BMG+∠BME=180°,∴∠N=∠EFD,∵∠EFD+∠EDF+∠FED=∠FED+∠DEC+∠CEN=180°,∴∠EDF=∠CEN,∴△DEF∽△ECN,∴,又∵,∴,∴BM=CN,在△BGM和△CGN中,,∴△BGM≌△CGN(AAS),∴BG=CG.【點(diǎn)睛】本題考查了直角三角形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),平行線的性質(zhì)等知識(shí),熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.14.(1)1,;(2),∠EAD=90°;(3)線段AD的長為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過證明△ABD≌△BCE,可得AD=EC,∠DAB=解析:(1)1,;(2),∠EAD=90°;(3)線段AD的長為(2+6).【分析】(1)由題意可得Rt△ABC和Rt△DBE均為等腰直角三角形,通過證明△ABD≌△BCE,可得AD=EC,∠DAB=∠BCE=45°,從而可得到結(jié)論;(2)通過證明△ABD∽△BCE,可得的值,∠BAD=∠ACB=60°,即可求∠EAD的度數(shù);(3)由直角三角形的性質(zhì)可證AM=BM=DE,即可求DE=4,由勾股定理可求CE的長,從而可求出AD的長.【詳解】(1)∵∠ABC=∠DBE=90°,∠ACB=∠BED=45°,∴∠CBE=∠ABD,∠CAB=45°∴AB=BC,BE=DE,∴△BCE≌△BAD∴AD=CE,∠BAD=∠BCE=45°∴=1,∠EAD=∠CAB+∠BAD=90°故答案為:1,(2),∠EAD=90°理由如下:∵∠ABC=∠DBE=90°,∠ACB=∠BED=60°∴∠ABD=∠EBC,∠BAC=∠BDE=30°∴在Rt△ABC中,tan∠ACB==tan60°=在Rt△DBE中,tan∠BED==tan60°=∴=又∵∠ABD=∠EBC∴△ABD∽△BCE∴==,∠BAD=∠ACB=60°∵∠BAC=30°∴∠EAD=∠BAD+∠BAC=60°+30°=90°,(3)如圖,由(2)知:==,∠EAD=90°∴AD=CE,在Rt△ABC中,∠BAC=30°,BC=4,∴AC=8,AB=4,∵∠EAD=∠EBD=90°,且點(diǎn)M是DE的中點(diǎn),∴AM=BM=DE,∵△ABM為直角三角形,∴AM2+BM2=AB2=(4)2=48,∴AM=BM=2,∴DE=4,設(shè)EC=x,則AD=x,AE=8-xRt△ADE中,AE2+AD2=DE2∴(8-x)2+(x)2=(4)2,解之得:x=2+2(負(fù)值舍去),∴EC=2+2,∴AD=CE=2+6,∴線段AD的長為(2+6),【點(diǎn)睛】本題是相似形綜合題,考查了相似三角形的判定和性質(zhì),勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì)等知識(shí).15.(1)120°,BD=AC;(2)不成立,理由詳見解析;(3)或.【分析】(1)過點(diǎn)D作DE⊥BC,通過線段之間的轉(zhuǎn)換得到AC與DE之間的關(guān)系,在直角三角形BDE中通過BD與DE的關(guān)系,得到BD解析:(1)120°,BD=AC;(2)不成立,理由詳見解析;(3)或.【分析】(1)過點(diǎn)D作DE⊥BC,通過線段之間的轉(zhuǎn)換得到AC與DE之間的關(guān)系,在直角三角形BDE中通過BD與DE的關(guān)系,得到BD,AC之間的關(guān)系.(2)類比(1)的解法,找線段之間的關(guān)系.(3)分情況進(jìn)行討論,畫出符合題意得圖形進(jìn)行求解.【詳解】解:(1)如圖3,過點(diǎn)D作DE⊥BC,垂足為E,設(shè)BC=m.在Rt△ABC中,∠BAC=30°,由BC=AB·tan30°,BC=AC·sin30°,得AC=2m,BC=m,∵AC=AD,∠CAD=2×30°=60°,∴△ACD為等邊三角形,∴∠ACD=60°,CD=AC=2m,∴∠BCD=60°×2=120°,在Rt△DEC中,∠DCE=180°-120°=60°,DC=2m,∴CE=CD·cos60°=m,DE=CE·tan60°=m,∴在Rt△BED中,BD==,∴==,故BD=AC.故答案為:120°;BD=AC.(2)不成立,理由如下:設(shè)BC=n,在Rt△ABC中,∠BAC=45°,∠ABC=90°,∴BC=AB=m,AC=BC=n,∵AC=AD,∠CAD=90°,∴△CAD為等腰直角三角形,∴∠ACD=45°,CD=AC=2n,∴∠BCD=2×45°=90°,在Rt△BCD中,BD==,∴==,,故BD=AC.答案為:90°;BD=AC.故結(jié)論不成立.(3)AP的長為或.;解答如下:∵PB=PC,∴點(diǎn)P在線段BC的垂直平分線上,∵∠BAC=∠BCP=90°,故A、B、C、P四點(diǎn)共圓,以線段BC的中點(diǎn)為圓心構(gòu)造⊙O,如圖4,圖5,分類討論如下:①當(dāng)點(diǎn)P在直線BC上方時(shí),如圖4,作PM⊥AC,垂足為M,設(shè)PM=x.∵PB=PC,∠BPC=90°,∴△PBC為等腰直角三角形,∴∠PBC=45°,∵∠PAC=∠PBC=45°,∴△AMP為等腰直角三角形,∴AM=PM=x,AP=PM=x,在Rt△ABC中,AB=2,AC=4,∴BC==,∴PC=BC·sin45°=,在Rt△PMC中,∵∠PMC=90°,PM=x,PC=,CM=4-x,∴,解得:,(舍),∴AP==;②當(dāng)點(diǎn)P在直線BC的下方時(shí),如圖5,作PN⊥AB的延長線,垂足為N,設(shè)PN=y.同上可得PB=,△PAN為等腰三角形,∴AN=PN=y,∴BN=y-2,在Rt△PNB中,∵∠PNB=90°,PN=y,BN=y-2,PB=,∴,解得:,(舍),∴AP==.故AP的長度為:或.【點(diǎn)睛】本題考查的是等邊三角形的判定和性質(zhì)、勾股定理、以及旋轉(zhuǎn)變換的性質(zhì),掌握類比思想解題是解決本題的關(guān)鍵.16.(1);(2)AP的最小值為;(3)存在,BD的最大值為6+6【分析】(1)連接AC、AF、DG、CF,證△ADG∽△ACF,根據(jù)線段比例關(guān)系可求;(2)以BC為斜邊作等腰直角三角形BOC,以解析:(1);(2)AP的最小值為;(3)存在,BD的最大值為6+6【分析】(1)連接AC、AF、DG、CF,證△ADG∽△ACF,根據(jù)線段比例關(guān)系可求;(2)以BC為斜邊作等腰直角三角形BOC,以O(shè)為圓心BO為半徑畫圓,則P的運(yùn)動(dòng)軌跡在矩形ABCD內(nèi)的劣弧BC上,連接AO交弧BC于點(diǎn)P,此時(shí)AP最小,根據(jù)給出數(shù)據(jù)求值即可;(3)以AB為斜邊向下做等腰直角三角形AEB,連接CE,根據(jù)△DAB∽△CAE,得出BD=CE,以AB為斜邊向上做等腰直角三角形AOB,以O(shè)為圓心OA為半徑畫圓,根據(jù)C點(diǎn)的軌跡求出CE最大值,即求出BD最大值.【詳解】解:(1)如圖①,連接AC、AF、DG、CF,在正方形ABCD和正方形AEFG中,AB=4,AE=2.5,∴AC=AB,AF=AE,AG=AE=2.5,AD=AB=4,∴,又∵∠DAG=∠DAC-∠GAC=45°-∠GAC,∠CAF=∠GAF-∠GAC=45°-∠GAC,∴∠DAG=∠CAF,∴△DGA∽△CFA,∴,故答案為;(2)如圖②,以BC為斜邊作等腰直角三角形BOC,以O(shè)為圓心BO為半徑畫圓,則∠BPC作為圓周角剛好是135°,∴P的運(yùn)動(dòng)軌跡在矩形ABCD內(nèi)的劣弧BC上,連接AO交弧BC于點(diǎn)P,此時(shí)AP最小,作OE垂直AB延長線于點(diǎn)E,∵△BOC為等腰直角三角形,BC=4,∴OB=OC=BC=×4=2,∠OBC=45°,∴∠OBE=90°-∠OBC=90°-45°=45°,又∵OE⊥AE,∴△BEO為等腰直角三角形,∴BE=OE=OB=×2=2,又∵AB=3,∴AE=AB+BE=3+2=5,∴,∵OP=OB=2,∴AP=AO-OP=-2,即AP的最小值為-2;(3)存在,如圖3,以AB為斜邊向下做等腰直角三角形AEB,連接CE,則∠EAB=45°,,∵AC=AD,∠ACD=90°,∴DAC=45°,,∴,∠DAB=∠CAE=45°,∴△DAB∽△CAE,∴,∴BD=CE,∴當(dāng)CE最大時(shí),BD取最大值,以AB為斜邊向上做等腰直角三角形AOB,以O(shè)為圓心OA為半徑畫圓,∵∠AOB=90°,∠ACB=45°,∴點(diǎn)C在優(yōu)弧AB上,由圖知當(dāng)C在OE延長線C'位置時(shí)C'E有最大值,此時(shí)C'E=OE+OC',∵AB=6,△AOB和△AEB都是以AB為斜邊的等腰直角三角形,∴四邊形AOBE為正方形,∴OE=AB=6,OC'=OA=AB=3,∴CE的最大值為6+3,∵BD=CE,∴BD的最大值為×(6+3)=6+6.【點(diǎn)睛】本題主要考查了圖形的變換,三角形相似,等腰直角三角形,正方形,圓周角,圓心角等知識(shí)點(diǎn),熟練掌握并靈活運(yùn)用這些知識(shí)點(diǎn)是解題的關(guān)鍵.17.(1)30°,6,4,7;(2)AG;(3)等邊,;(4)3,,6【分析】(1)由點(diǎn)H為AC中點(diǎn),可得AC=2AH,由折疊,點(diǎn)B與點(diǎn)H重合,與四邊形ABCD為矩形,可證GH為AC的垂直平分線,可解析:(1)30°,6,4,7;(2)AG;(3)等邊,;(4)3,,6【分析】(1)由點(diǎn)H為AC中點(diǎn),可得AC=2AH,由折疊,點(diǎn)B與點(diǎn)H重合,與四邊形ABCD為矩形,可證GH為AC的垂直平分線,可得AG=CG,∠GCH=∠GAH,可求∠ACB=30°,利用三角函數(shù)可求BC=,AG=4,BF=FC=,可求,與△ABG相似的三角形由7個(gè);(2)由EF為折痕,可證△AEH∽△AHG,可得即可;(3)由四邊形ABCD為矩形,點(diǎn)H為對(duì)角線AC中點(diǎn),可證△ABH為等邊三角形,再證△ABM∽△MHN,可得即可;(4)連結(jié)BD,當(dāng)點(diǎn)Q′在BD上時(shí),Q′D最小,先求BC=,AQ′=,可求Q′D最小=,當(dāng)BQ′⊥BD時(shí),△BDQ′面積最大∠CBQ′=60°,S△BDQ′最大=.【詳解】解(1)∵點(diǎn)H為AC中點(diǎn),∴AC=2AH,∵折疊,點(diǎn)B與點(diǎn)H重合,∴AB=AH=2,BG=HG,∠BAG=∠HAG=,∠B=∠AHG,∵四邊形ABCD為矩形,∴∠B=90°,∴∠AHG=∠B=90°,∴GH為AC的垂直平分線,∴AG=CG,∠GCH=∠GAH,∴∠BAG=∠HAG=∠GCH,∵∠BAH+∠BCH=180°-∠B=90°,∴3∠ACB=90°∴∠ACB=30°,∴∠BAG=∠HAG=∠GCH=30°,∴tan30°=,AB=2,∴BC=,∵tan∠BAG=tan30°=,∴BG=,∴AG=2BG=4,BF=FC=,∴GF=BF-BG=3-2=1,∴,∵AD∥BC,∴∠DAC=∠ACB=30°,∴∠BAG=∠HAG=∠GHF=∠HCF=∠GCH=∠EAH=∠DAC=∠BCA=30°,∵∠B=∠AHG=∠HFG=∠HFC=∠AEH=∠D=∠GHC=∠CBA=90°,∴△ABG∽△AHG∽△HFG∽△CFH∽△CHG∽△AEH∽△ADC∽△CBA,∴與△ABG相似的三角形由7個(gè),故答案為:30°;6;4;7;(2)∵EF為折痕,∴EH⊥AD,∵∠EAH=∠HAG=30°∠AHG=∠AEH=90°∴△AEH∽△AHG,∴,∴故答案為AG;(3)∵四邊形ABCD為矩形,點(diǎn)H為對(duì)角線AC中點(diǎn),∴AH=CH=BH,由圖2知AB=AH,∴AH=BH=AB,∴△ABH為等邊三角形,∴∠ABH=∠AHB=60°,∵∠AMN=∠ABH;∴∠AMN=∠ABH=∠AHB=60°,∴∠BAM+∠AMB=180°-∠ABH=120°,∠AMB+∠NMH=180°-∠AMN=120°,即∠BAM+∠AMB=∠AMB+∠NMH,∴∠BAM=∠NMH,∴△ABM∽△MHN,∴,∵AB=,MH=,∴,∴,故答案為:等邊;,(4)連結(jié)BD,當(dāng)點(diǎn)Q′在BD上時(shí),Q′D最小∵AB=2,AD=BC=6,∴BC=∵AQ′=Q′H=∴Q′D最小=當(dāng)BQ′⊥BD時(shí),△BDQ′面積最大∵tan∠DAC=,∴∠DAC=30°,∴∠CBQ′=90°-∠DBC=90°-30°=60°∴tan∠CBQ'=S△BDQ′最大=;故答案為;;6.【點(diǎn)睛】本題考查折疊性質(zhì),矩形性質(zhì),線段垂直平分線,銳角三角函數(shù),三角形相似判定與性質(zhì),等邊三角形判定與性質(zhì),兩圖形的最小距離,最大面積,掌握查折疊性質(zhì),矩形性質(zhì),線段垂直平分線,銳角三角函數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 通風(fēng)維護(hù)工崗前操作考核試卷含答案
- 飛機(jī)儀表電氣系統(tǒng)裝調(diào)工安全文明強(qiáng)化考核試卷含答案
- 退煮漂操作工安全實(shí)操競賽考核試卷含答案
- 制鞋工安全宣教強(qiáng)化考核試卷含答案
- 管模維修工安全培訓(xùn)競賽考核試卷含答案
- 銀行內(nèi)部控制管理制度
- 酒店員工崗位責(zé)任與協(xié)作制度
- 酒店客房鑰匙卡掛失補(bǔ)辦制度
- 超市消防安全演練制度
- 年產(chǎn)500萬支注射用紫杉醇聚合物膠束配套藥用輔料項(xiàng)目可行性研究報(bào)告模板-備案審批
- GB/T 31831-2025LED室內(nèi)照明應(yīng)用技術(shù)要求
- 2025年上交所金融筆試題目及答案
- 服務(wù)外包人員保密管理制度(3篇)
- 2026中國電信四川公用信息產(chǎn)業(yè)有限責(zé)任公司社會(huì)成熟人才招聘備考題庫及答案詳解(奪冠系列)
- 成都高新區(qū)桂溪街道公辦幼兒園招聘編外人員考試備考題庫及答案解析
- 2025年醫(yī)院病歷管理操作規(guī)范
- 汽車后市場培訓(xùn)課件
- 2026云南保山電力股份有限公司校園招聘50人筆試備考題庫及答案解析
- GB 4053.2-2025固定式金屬梯及平臺(tái)安全要求第2部分:斜梯
- 2026屆上海市長寧區(qū)市級(jí)名校高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2026年煙草公司筆試綜合試題及考點(diǎn)實(shí)操指引含答案
評(píng)論
0/150
提交評(píng)論