廬江縣2026屆數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第1頁
廬江縣2026屆數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第2頁
廬江縣2026屆數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第3頁
廬江縣2026屆數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第4頁
廬江縣2026屆數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

廬江縣2026屆數(shù)學(xué)九年級第一學(xué)期期末調(diào)研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,、分別與相切于、兩點,點為上一點,連接,,若,則的度數(shù)為()A. B. C. D.2.函數(shù)y=(k<0),當(dāng)x<0時,該函數(shù)圖像在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如圖,圓錐的底面半徑OB=6cm,高OC=8cm.則這個圓錐的側(cè)面積是()A.30cm2 B.30πcm2 C.60πcm2 D.120cm24.甲袋中裝有形狀、大小與質(zhì)地都相同的紅球3個,乙袋中裝有形狀、大小與質(zhì)地都相同的紅球2個,黃球1個,下列事件為隨機事件的是()A.從甲袋中隨機摸出1個球,是黃球B.從甲袋中隨機摸出1個球,是紅球C.從乙袋中隨機摸出1個球,是紅球或黃球D.從乙袋中隨機摸出1個球,是黃球5.如圖,在中,,垂足為點,一直角三角板的直角頂點與點重合,這塊三角板饒點旋轉(zhuǎn),兩條直角邊始終與邊分別相交于,則在運動過程中,與的關(guān)系是()A.一定相似 B.一定全等 C.不一定相似 D.無法判斷6.若一組數(shù)據(jù)為3,5,4,5,6,則這組數(shù)據(jù)的眾數(shù)是()A.3 B.4 C.5 D.67.如圖,邊長為a,b的長方形的周長為14,面積為10,則a3b+ab3的值為()A.35 B.70 C.140 D.2908.如圖,是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(﹣3,0),下列說法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是拋物線上兩點,則y1=y(tǒng)2;④4a+2b+c<0,其中說法正確的()A.①② B.①②③ C.①②④ D.②③④9.下列成語所描述的事件是不可能事件的是()A.日行千里 B.守株待兔 C.水漲船高 D.水中撈月10.如圖,PA、PB、CD分別切⊙O于點A、B、E,CD分別交PA、PB于點C、D.下列關(guān)系:①PA=PB;②∠ACO=∠DCO;③∠BOE和∠BDE互補;④△PCD的周長是線段PB長度的2倍.則其中說法正確的有()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.函數(shù)的自變量的取值范圍是.12.若方程的兩根,則的值為__________.13.從長度分別是,,,的四根木條中,抽出其中三根能組成三角形的概率是______.14.如圖,點的坐標(biāo)分別為,若將線段平移至,則的值為_____.15.cos30°=__________16.在中,,,,圓在內(nèi)自由移動.若的半徑為1,則圓心在內(nèi)所能到達的區(qū)域的面積為______.17.在Rt△ABC中,∠C=90°,AC=6,BC=8(如圖),點D是邊AB上一點,把△ABC繞著點D旋轉(zhuǎn)90°得到,邊與邊AB相交于點E,如果AD=BE,那么AD長為____.18.如圖,半圓的半徑為4,初始狀態(tài)下其直徑平行于直線.現(xiàn)讓半圓沿直線進行無滑動滾動,直到半圓的直徑與直線重合為止.在這個滾動過程中,圓心運動路徑的長度等于_________.三、解答題(共66分)19.(10分)如圖,已知點在的直徑延長線上,點為上,過作,與的延長線相交于,為的切線,,.(1)求證:;(2)求的長;(3)若的平分線與交于點,為的內(nèi)心,求的長.20.(6分)甲乙兩人參加一個幸運挑戰(zhàn)活動,活動規(guī)則是:一個布袋里裝有3個只有顏色不同的球,其中2個紅球,1個白球.甲從布袋中摸出一個球,記下顏色后放回,攪勻,乙再摸出一個球,若顏色相同,則挑戰(zhàn)成功.(1)用列表法或樹狀圖法,表示所有可能出現(xiàn)的結(jié)果.(2)求兩人挑戰(zhàn)成功的概率.21.(6分)開學(xué)初,某文具店銷售一款書包,每個成本是50元,銷售期間發(fā)現(xiàn):銷售單價時100元時,每天的銷售量是50個,而銷售單價每降低2元,每天就可多售出10個,當(dāng)銷售單價為多少元時,每天的銷售利潤達到4000元?要求銷售單價不低于成本,且商家盡量讓利給顧客.22.(8分)某居民小區(qū)要在一塊一邊靠墻的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為32m的柵欄圍成(如圖所示).如果墻長16m,滿足條件的花園面積能達到120m2嗎?若能,求出此時BC的值;若不能,說明理由.23.(8分)已知二次函數(shù)的圖像是經(jīng)過、兩點的一條拋物線.(1)求這個函數(shù)的表達式,并在方格紙中畫出它的大致圖像;(2)點為拋物線上一點,若的面積為,求出此時點的坐標(biāo).24.(8分)如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.(1)求∠CFA度數(shù);(2)求證:AD∥BC.25.(10分)已知拋物線y=-x2+bx+c與直線y=-4x+m相交于第一象限內(nèi)不同的兩點A(5,n),B(3,9),求此拋物線的解析式.26.(10分)如圖,在?ABCD中,AB=4,BC=8,∠ABC=60°.點P是邊BC上一動點,作△PAB的外接圓⊙O交BD于E.(1)如圖1,當(dāng)PB=3時,求PA的長以及⊙O的半徑;(2)如圖2,當(dāng)∠APB=2∠PBE時,求證:AE平分∠PAD;(3)當(dāng)AE與△ABD的某一條邊垂直時,求所有滿足條件的⊙O的半徑.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】先利用切線的性質(zhì)得∠OAP=∠OBP=90°,再利用四邊形的內(nèi)角和計算出∠AOB的度數(shù),然后根據(jù)圓周角定理計算∠ACB的度數(shù).【詳解】解:連接、,∵、分別與相切于、兩點,∴,,∴.∴,∴.故選C.本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理.2、B【解析】首先根據(jù)反比例函數(shù)的比例系數(shù)確定圖象的大體位置,然后根據(jù)自變量的取值范圍確定具體位置【詳解】∵比例系數(shù)k<0,∴其圖象位于二、四象限,∵x<0∴反比例函數(shù)的圖象位于第二象限,故選B.此題考查反比例函數(shù)的性質(zhì),根據(jù)反比例函數(shù)判斷象限是解題關(guān)鍵3、C【詳解】解:由勾股定理計算出圓錐的母線長=,圓錐漏斗的側(cè)面積=.故選C.考點:圓錐的計算4、D【解析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】A.從甲袋中隨機摸出1個球,是黃球是不可能事件;B.從甲袋中隨機摸出1個球,是紅球是必然事件;C.從乙袋中隨機摸出1個球,是紅球或黃球是必然事件;D.從乙袋中隨機摸出1個球,是黃球是隨機事件.故選:D.本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、A【分析】根據(jù)已知條件可得出,,再結(jié)合三角形的內(nèi)角和定理可得出,從而可判定兩三角形一定相似.【詳解】解:由已知條件可得,,∵,∴,∵,∴,繼而可得出,∴.故選:A.本題考查的知識點是相似三角形的判定定理,靈活利用三角形內(nèi)角和定理以及余角定理是解此題的關(guān)鍵.6、C【分析】根據(jù)眾數(shù)的定義即可求解.【詳解】一組數(shù)據(jù)為3,5,4,5,6中,5出現(xiàn)的次數(shù)最多,∴這組數(shù)據(jù)的眾數(shù)為5;

故選:C.本題考查了眾數(shù)的概念,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意一組數(shù)據(jù)的眾數(shù)可能不只一個.7、D【分析】由題意得,將所求式子化簡后,代入即可得.【詳解】由題意得:,即又代入可得:原式故選:D.本題考查了長方形的周長和面積公式、多項式的因式分解、以及完全平方公式,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.8、B【分析】根據(jù)題意和函數(shù)圖象,利用二次函數(shù)的性質(zhì)可以判斷各個小題中的結(jié)論是否正確,從而可以解答本題.【詳解】由圖象可得,,,,則,故①正確;∵該函數(shù)的對稱軸是,∴,得,故②正確;∵,,∴若(﹣5,y1),(3,y2)是拋物線上兩點,則,故③正確;∵該函數(shù)的對稱軸是,過點(﹣3,0),∴和時的函數(shù)值相等,都大于0,∴,故④錯誤;故正確是①②③,故選:B.本題考查了二次函數(shù)的性質(zhì),掌握二次函數(shù)的圖像和性質(zhì)是解題的關(guān)鍵.9、D【分析】事先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.【詳解】解:A、日行千里是隨機事件,故本選項錯誤;B、守株待兔是隨機事件,故本選項錯誤;C、水漲船高是必然事件,故本選項錯誤;D、水中撈月是不可能事件,故本選項正確.故選:D.此題考查是不可能事件的判斷,掌握不可能事件的定義是解決此題的關(guān)鍵.10、D【詳解】根據(jù)切線長定理可知PA=PB,故①正確;同理可知CA=CE,可知CO為∠ACE的角平分線,所以∠ACO=∠DCO,故②正確;同理可知DE=BD,由切線的性質(zhì)可知∠OBD=∠OED=90°,可根據(jù)四邊形的內(nèi)角和為360°知∠BOE+∠BDE=180°,即∠BOE和∠BDE互補,故③正確;根據(jù)切線長定理可得CE=CA,BD=DE,而△PCD的周長=PC+CD+PD=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=2PB,故④正確.故選D.二、填空題(每小題3分,共24分)11、x≠1【解析】該題考查分式方程的有關(guān)概念根據(jù)分式的分母不為0可得X-1≠0,即x≠1那么函數(shù)y=的自變量的取值范圍是x≠112、1【分析】根據(jù)根與系數(shù)的關(guān)系求出,代入即可求解.【詳解】∵是方程的兩根∴=-=4,==1∴===4+1=1,故答案為:1.此題主要考查根與系數(shù)的關(guān)系,解題的關(guān)鍵是熟知=-,=的運用.13、【分析】四根木條中,抽出其中三根的組合有4種,計算出能組成三角形的組合,利用概率公式進行求解即可.【詳解】解:能組成三角形的組合有:4,8,10;4,10,12;8,10,12三種情況,故抽出其中三根能組成三角形的概率是.本題考查了列舉法求概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,構(gòu)成三角形的基本要求為兩小邊之和大于最大邊.14、1【分析】由圖可得到點B的縱坐標(biāo)是如何變化的,讓A的縱坐標(biāo)也做相應(yīng)變化即可得到b的值;看點A的橫坐標(biāo)是如何變化的,讓B的橫坐標(biāo)也做相應(yīng)變化即可得到a的值,相加即可得到所求.【詳解】由題意可知:a=0+(3-1)=1;b=0+(1-1)=1;

∴a+b=1.故答案為:1.此題考查坐標(biāo)與圖形的變化-平移,解題的關(guān)鍵是得到各點的平移規(guī)律.15、【分析】直接利用特殊角的三角函數(shù)值進而得出答案.【詳解】cos30°=.故答案為.本題主要考查了特殊角的三角函數(shù)值,準(zhǔn)確記憶特殊角的三角函數(shù)值是解題的關(guān)鍵.16、24【分析】根據(jù)題意做圖,圓心在內(nèi)所能到達的區(qū)域為△EFG,先求出AB的長,延長BE交AC于H點,作HM⊥AB于M,根據(jù)圓的性質(zhì)可知BH平分∠ABC,故CH=HM,設(shè)CH=x=HM,根據(jù)Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K點,利用△BEK∽△BHC,求出BK的長,即可求出EF的長,再根據(jù)△EFG∽△BCA求出FG,即可求出△EFG的面積.【詳解】如圖,由題意點O所能到達的區(qū)域是△EFG,連接BE,延長BE交AC于H點,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根據(jù)圓的性質(zhì)可知BH平分∠ABC∴故CH=HM,設(shè)CH=x=HM,則AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,F(xiàn)G∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圓心在內(nèi)所能到達的區(qū)域的面積為FG×EF=×8×6=24,故答案為24.此題主要考查相似三角形的判定與性質(zhì)綜合,解題的關(guān)鍵是熟知勾股定理、相似三角形的判定與性質(zhì).17、.【解析】在Rt△ABC中,

由旋轉(zhuǎn)的性質(zhì),設(shè)AD=A′D=BE=x,則DE=2x-10,

∵△ABC繞AB邊上的點D順時針旋轉(zhuǎn)90°得到△A′B′C′,

∴∠A′=∠A,∠A′DE=∠C=90°,

∴∽△BCA,∴,∵=10-x,∴,∴x=,故答案為.18、【分析】由圖可知,圓心運動路徑的長度主要分兩部分求解,從初始狀態(tài)到垂直狀態(tài),圓心一直在一條直線上;從垂直狀態(tài)到重合狀態(tài),圓心運動軌跡是圓周,計算兩部分結(jié)果,相加即可.【詳解】由題意知:半圓的半徑為4,∴從初始狀態(tài)到垂直狀態(tài),圓心運動路徑的長度=.∴從垂直狀態(tài)到重合狀態(tài),圓心運動路徑的長度=.即圓心運動路徑的總長度=.故答案為.本題主要考查了弧長公式和圓周公式,正確掌握弧長公式和圓周公式是解題的關(guān)鍵.三、解答題(共66分)19、(1)見解析;(2);(3)【分析】(1)利用同角的余角相等得出∠E=∠ECD,從而得出結(jié)論;(2)利用直角△OCD和直角△ADE中的勾股定理列出方程解得BD的長;(3)連接,,,根據(jù)平分求出,利用同弧所對的圓周角相等得出,從而得出,即FP=FB.【詳解】解:(1)證明:連接,∵是的切線,∴,∴,∵,∴,∵,∴,∴,∴.(2)∵,∴,∵,∴由勾股定理可得,,∵,∴由勾股定理可得,,∵,∴,∴或(舍去).(3)連接,,,∵平分,∴,∴,∵為直徑,,∴,∵為的內(nèi)心,∴,,∵,∴,∴,∴,∴.本題屬于圓的綜合題,考查了圓周角的性質(zhì),勾股定理,等腰三角形的判定,內(nèi)心的概念,需要綜合多個條件進行推導(dǎo).20、(1)見解析;(2).【分析】用列表法列舉出所有等可能出現(xiàn)的結(jié)果,從中找出顏色相同的結(jié)果數(shù),進而求出概率.【詳解】解:(1)用列表法表示所有可能出現(xiàn)的結(jié)果如下:(2)共有9種等可能出現(xiàn)的結(jié)果,其中顏色相同的有5種,∴P(顏色相同)=,答:獲勝的概率為.考查列表法或樹狀圖法求等可能事件發(fā)生的概率,使用此方法一定注意每一種結(jié)果出現(xiàn)的可能性是均等的,即為等可能事件.21、銷售單價為70元時,每天的銷售利潤達到4000元,且商家盡量讓利顧客.【分析】根據(jù)“單件利潤×銷售量=總利潤”可列一元二次方程求解,結(jié)合題意取舍可得【詳解】解:設(shè)銷售單價為x元時,每天的銷售利潤達到4000元,由題意得,(x﹣50)[50+5(100﹣x)]=4000,解得x1=70,x2=90,因為晨光文具店銷售單價不低于成本,且商家盡量讓利顧客,所以x2=90不符合題意舍去,故x=70,答:銷售單價為70元時,每天的銷售利潤達到4000元,且商家盡量讓利顧客.本題主要考查一元二次方程的應(yīng)用,理解題意確定相等關(guān)系,并據(jù)此列出方程是解題的關(guān)鍵.22、花園的面積能達到20m2,此時BC的值為2m.【分析】設(shè)AB=xm,則BC=(32﹣2x)m,根據(jù)矩形的面積公式結(jié)合花園面積為20m2,即可得出關(guān)于x的一元二次方程,解之即可得出x的值,結(jié)合墻的長度可確定x的值,進而可得出BC的長度.【詳解】設(shè)AB=xm,則BC=(32﹣2x)m,依題意,得:x(32﹣2x)=20,整理,得:x2﹣16x+60=0,解得:x1=6,x2=1.∵32﹣2x≤16,∴x≥8,∴x=1,32﹣2x=2.答:花園的面積能達到20m2,此時BC的值為2m.本題考查了一元二次方程的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出一元二次方程是解答本題的關(guān)鍵.23、(1),圖畫見解析;(2)或.【分析】(1)利用交點式直接寫出函數(shù)的表達式,再用五點法作出函數(shù)的圖象;(2)先求得AB的長,再利用三角形面積法求得點P的縱坐標(biāo),即可求得答案.【詳解】(1)由題意知:..∵頂點坐標(biāo)為:-1012303430描點、連線作圖如下:(2)設(shè)點P的縱坐標(biāo)為,,∴.∴或,將代入,得:,此時方程無解.將代入,得:,解得:;或.本題主要考查了待定系數(shù)法求函數(shù)的解析式以及利用三角形面積法求點的坐標(biāo)的應(yīng)用,求函數(shù)圖象上的點的坐標(biāo)的問題一般要轉(zhuǎn)化為求線段的長的問題.24、(1)75°(2)見解析【解析】(1)由等邊三角形的性質(zhì)可得∠ACB=60°,BC=AC,由旋轉(zhuǎn)的性質(zhì)可得CF=BC,∠BCF=90°,由等腰三角形的性質(zhì)可求解;(2)由“SAS”可證△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可證AD∥BC.【詳解】解:(1)∵△ABC是等邊三角形∴∠ACB=60°,BC=AC∵等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等邊三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),等腰三角形的性質(zhì),平行線的判定,熟練運用旋轉(zhuǎn)的性質(zhì)是本題關(guān)鍵.25、y=-x2+4x+2.【分析】根據(jù)點B的坐標(biāo)可求出m的值,寫出一次函數(shù)的解析式,并求出點A的坐標(biāo),最后利用點A、B兩點的坐標(biāo)求拋物線的解析式.【詳解】(1)∵直線y=﹣4x+m過點B(3,9),∴9=﹣4×3+m,解得:m=1,∴直線的解析式為y=﹣4x+1.∵點A(5,n)在直線y=﹣4x+1上,∴n=﹣4×5+1=1,∴點A(5,1),將點A(5,1)、B(3,9)代入y=﹣x2+bx+c中,得:,解得:,∴此拋物線的解析式為y=﹣x2+4x+2.本題考查了利用待定系數(shù)法求二次函數(shù)的解析式,熟練掌握待定系數(shù)法是解題的關(guān)鍵.26、(1)PA的長為,⊙O的半徑為;(2)見解析;(3)⊙O的半徑為2或或【分析】(1)過點A作BP的垂線,作直徑AM,先在Rt△ABH中求出BH,AH的長,再在Rt△AHP中用勾股定理求出AP的長,在Rt△AMP中通過銳角三角函數(shù)求出直徑AM的長,即求出半徑的值;(2)證∠APB=∠PAD=2∠PAE,即可推出結(jié)論;(3)分三種情況:當(dāng)AE⊥BD時,AB是⊙O的直徑,可直接求出半徑;當(dāng)AE⊥AD時,連接OB,OE,延長AE交BC于F,通過證△BFE∽△DAE,求出BE的長,再證△OBE是等邊三角形,即得到半徑的值;當(dāng)AE⊥AB時,過點D作BC的垂線,通過證△BPE∽△BND,求出PE,AE的長,再利用勾股定理求出直徑BE的長,即可得到半徑的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論