版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省哈爾濱市第35中學2026屆數(shù)學九上期末教學質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,AD是半圓的直徑,點C是弧BD的中點,∠BAD=70°,則∠ADC等于()A.50° B.55° C.65° D.70°2.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=23.如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°得到△DEC,連接AD,若∠BAC=26°,則∠ADE的度數(shù)為()A.13° B.19° C.26° D.29°4.如圖,BA=BC,∠ABC=80°,將△BDC繞點B逆時針旋轉(zhuǎn)至△BEA處,點E,A分別是點D,C旋轉(zhuǎn)后的對應(yīng)點,連接DE,則∠BED為()A.50° B.55° C.60° D.65°5.如圖,菱形的邊的垂直平分線交于點,交于點,連接.當時,則()A. B. C. D.6.如圖,下列四個三角形中,與相似的是()A. B. C. D.7.如圖,在中,,,,點為上任意一點,連結(jié),以,為鄰邊作平行四邊形,連結(jié),則的最小值為()A. B. C. D.8.將拋物線向右平移2個單位,則所得拋物線的表達式為()A. B.C. D.9.從一組數(shù)據(jù)1,2,2,3中任意取走一個數(shù),剩下三個數(shù)不變的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差10.若一次函數(shù)y=ax+b(a≠0)的圖像與x軸交點坐標為(2,0),則拋物線y=ax2+bx+c的對稱軸為()A.直線x=1 B.直線x=-1 C.直線x=2 D.直線x=-211.如圖,已知,且,則()A. B. C. D.12.在如圖所示的平面直角坐標系中,△OA1B1是邊長為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,再作△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,)二、填空題(每題4分,共24分)13.把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊與的交點,將三角板繞點按順時針方向旋轉(zhuǎn)到圖2的位置,若,則點所走過的路程是_________.14.將一元二次方程用配方法化成的形式為________________.15.對于任何實數(shù),,,,我們都規(guī)定符號的意義是,按照這個規(guī)定請你計算:當時,的值為________.16.一只小狗自由自在地在如圖所示的某個正方形場地跑動,然后隨意停在圖中陰影部分的概率是__.17.一元二次方程配方后得,則的值是__________.18.如圖,正方形內(nèi)接于,正方形的邊長為,若在這個圓面上隨意拋一粒豆子,則豆子落在正方形內(nèi)的概率是_____________.三、解答題(共78分)19.(8分)如圖,若b是正數(shù).直線l:y=b與y軸交于點A,直線a:y=x﹣b與y軸交于點B;拋物線L:y=﹣x2+bx的頂點為C,且L與x軸右交點為D.(1)若AB=6,求b的值,并求此時L的對稱軸與a的交點坐標;(2)當點C在l下方時,求點C與l距離的最大值;(3)設(shè)x0≠0,點(x0,y1),(x0,y2),(x0,y3)分別在l,a和L上,且y3是y1,y2的平均數(shù),求點(x0,0)與點D間的距離;(4)在L和a所圍成的封閉圖形的邊界上,把橫、縱坐標都是整數(shù)的點稱為“美點”,分別直接寫出b=2019和b=2019.5時“美點”的個數(shù).20.(8分)如圖1,拋物線y=﹣x2+bx+c交x軸于點A(-4,0)和點B,交y軸于點C(0,4).(1)求拋物線的函數(shù)表達式;(2)如圖2,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,當△ADC面積有最大值時,在拋物線對稱軸上找一點M,使DM+AM的值最小,求出此時M的坐標;(3)點Q在直線AC上的運動過程中,是否存在點Q,使△BQC為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.21.(8分)如圖,已知AB為⊙O的直徑,點C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點,并且EF與⊙O相切于點D.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.22.(10分)如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點P,連接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半徑;(2)求圖中陰影部分的面積.23.(10分)已知△OAB在平面直角坐標系中的位置如圖所示.請解答以下問題:(1)按要求作圖:先將△ABO繞原點O逆時針旋轉(zhuǎn)90°得△OA1B1,再以原點O為位似中心,將△OA1B1在原點異側(cè)按位似比2:1進行放大得到△OA2B2;(2)直接寫出點A1的坐標,點A2的坐標.24.(10分)如圖,在平面直角坐標系中,點B的坐標是(2,2),將線段OB繞點O順時針旋轉(zhuǎn)120°,點B的對應(yīng)點是點B1.(1)①求點B繞點O旋轉(zhuǎn)到點B1所經(jīng)過的路程長;②在圖中畫出1,并直接寫出點B1的坐標是;(2)有7個球除了編號不同外,其他均相同,李南和王易設(shè)計了如下的一個規(guī)則:裝入不透明的甲袋,裝入不透明的乙袋,李南從甲袋中,王易從乙袋中,各自隨機地摸出一個球(不放回),把李南摸出的球的編號作為橫坐標x,把王易摸出的球的編號作為縱坐標y,用列表法或畫樹狀圖法表示出(x,y)的所有可能出現(xiàn)的結(jié)果;(3)李南和王易各取一次小球所確定的點(x,y)落在1上的概率是.25.(12分)假期期間,甲、乙兩位同學到某影城看電影,影城有《我和我的祖國》(記為)、《中國機長》(記為)、《攀登者》(記為)三部電影,甲、乙兩位同學分別從中任選一部觀看,每部被選中的可能性相同.用樹狀圖或列表法求甲、乙兩位同學選擇同一部電影的概率.26.隨著人民生活水平的不斷提高,某市家庭轎車的擁有量逐年增加,據(jù)統(tǒng)計,該市2017年底擁有家庭轎車64萬輛,2019年底家庭轎車的擁有量達到100萬輛.(1)求2017年底至2019年底該市汽車擁有量的年平均增長率;(2)該市交通部門為控制汽車擁有量的增長速度,要求到2020年底全市汽車擁有量不超過118萬輛,預(yù)計2020年報廢的汽車數(shù)量是2019年底汽車擁有量的8%,求2019年底至2020年底該市汽車擁有量的年增長率要控制在什么范圍才能達到要求.
參考答案一、選擇題(每題4分,共48分)1、B【解析】連接BD,根據(jù)直徑所對的圓周角為直角可得∠ABD=90°,即可求得∠ADB=20°,再由圓內(nèi)接四邊形的對角互補可得∠C=110°,因,即可得BC=DC,根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理可得∠BDC=∠DBC=35°,由此即可得∠ADC=∠ADB+∠BDC=55°.【詳解】解:連接BD,∵AD是半圓O的直徑,∴∠ABD=90°,∵∠BAD=70°,∴∠C=110°,∠ADB=20°,∵,∴BC=DC,∴∠BDC=∠DBC=35°,∴∠ADC=∠ADB+∠BDC=55°.故選B.本題考查了圓周角定理、圓內(nèi)接四邊形的對角互補、等腰三角形的性質(zhì)及三角形的內(nèi)角和定理等知識,熟練運用相關(guān)知識是解決問題的關(guān)鍵.2、C【解析】一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是1;(1)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、不是方程,故本選項錯誤;B、方程含有兩個未知數(shù),故本選項錯誤;C、符合一元二次方程的定義,故本選項正確;D、不是整式方程,故本選項錯誤.故選:C.本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.3、B【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,∠CDE=∠BAC,再判斷出△ACD是等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)求出∠CDA=45°,根據(jù)∠ADE=∠CDA﹣∠CDE,即可求解.【詳解】∵Rt△ABC繞其直角頂點C按順時針方向旋轉(zhuǎn)90°后得到Rt△DEC,∴AC=CD,∠CDE=∠BAC=26°,∴△ACD是等腰直角三角形,∴∠CDA=45°,∴∠ADE=∠CDA﹣∠CDE=45°﹣26°=19°.故選:B.本題主要考查旋轉(zhuǎn)的性質(zhì)和等腰直角三角形的判定和性質(zhì)定理,掌握等腰直角三角形的性質(zhì),是解題的關(guān)鍵,4、A【分析】首先根據(jù)旋轉(zhuǎn)的性質(zhì),得出∠CBD=∠ABE,BD=BE;其次結(jié)合圖形,由等量代換,得∠EBD=∠ABC;最后根據(jù)等腰三角形的性質(zhì),得出∠BED=∠BDE,利用三角形內(nèi)角和定理求解即可.【詳解】∵△BDC繞點B逆時針旋轉(zhuǎn)至△BEA處,點E,A分別是點D,C旋轉(zhuǎn)后的對應(yīng)點,∴∠CBD=∠ABE,BD=BE,∵∠ABC=∠CBD+∠ABD,∠EBD=∠ABE+∠ABD,∠ABC=80°,∴∠EBD=∠ABC=80°,∵BD=BE,∴∠BED=∠BDE=(180°-∠EBD)=(180°-80°)=50°,故選:A.本題主要考查了旋轉(zhuǎn)的性質(zhì)、等腰三角形的性質(zhì),以及三角形內(nèi)角和定理.解題的關(guān)鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)得出旋轉(zhuǎn)前后的對應(yīng)角、對應(yīng)邊分別相等,利用等腰三角形的性質(zhì)得出“等邊對等角”,再結(jié)合三角形內(nèi)角和定理,即可得解.5、B【分析】連接BF,根據(jù)菱形的對角線平分一組對角線可得∠BAC=50°,根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AF=BF,根據(jù)等邊對等角可得∠FBA=∠FAB,再根據(jù)菱形的鄰角互補求出∠ABC,然后求出∠CBF,最后根據(jù)菱形的對稱性可得∠CDF=∠CBF.【詳解】解:如圖,連接BF,
在菱形ABCD中,∠BAC=∠BAD=×100°=50°,
∵EF是AB的垂直平分線,
∴AF=BF,
∴∠FBA=∠FAB=50°,
∵菱形ABCD的對邊AD∥BC,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠CBF=∠ABC-∠ABF=80°-50°=30°,
由菱形的對稱性,∠CDF=∠CBF=30°.
故選:B.本題考查了菱形的性質(zhì),線段垂直平分線上的點到兩端點的距離相等的性質(zhì),等邊對等角的性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵.6、C【分析】△ABC是等腰三角形,底角是75°,則頂角是30°,結(jié)合各選項是否符合相似的條件即可.【詳解】由題圖可知,,所以∠B=∠C=75°,所以.根據(jù)兩邊成比例且夾角相等的兩個三角形相似知,與相似的是項中的三角形故選:C.此題主要考查等腰三角形的性質(zhì),三角形內(nèi)角和定理和相似三角形的判定的理解和掌握,此題難度不大,但綜合性較強.7、A【分析】設(shè)PQ與AC交于點O,作⊥于,首先求出,當P與重合時,PQ的值最小,PQ的最小值=2.【詳解】設(shè)與AC交于點O,作⊥于,如圖所示:
在Rt△ABC中,∠BAC=90,∠ACB=45,
∴,∵四邊形PAQC是平行四邊形,
∴,∵⊥,∠ACB=45,∴,當與重合時,OP的值最小,則PQ的值最小,
∴PQ的最小值故選:A.本題考查了勾股定理的運用、平行四邊形的性質(zhì)以及垂線段最短的性質(zhì),利用垂線段最短求線段的最小值是解題的關(guān)鍵.8、D【分析】根據(jù)“左加右減,上加下減”的規(guī)律直接求得.【詳解】因為拋物線y=3x2?1向右平移2個單位,得:y=3(x?2)2?1,故所得拋物線的表達式為y=3(x?2)2?1.故選:D.本題考查平移的規(guī)律,解題的關(guān)鍵是掌握拋物線平移的規(guī)律.9、C【分析】根據(jù)中位數(shù)的定義求解可得.【詳解】原來這組數(shù)據(jù)的中位數(shù)為=2,無論去掉哪個數(shù)據(jù),剩余三個數(shù)的中位數(shù)仍然是2,故選:C.此題考查數(shù)據(jù)平均數(shù)、眾數(shù)、中位數(shù)方差的計算方法,掌握正確的計算方法才能解答.10、A【分析】先將(2,0)代入一次函數(shù)解析式y(tǒng)=ax+b,得到2a+b=0,即b=-2a,再根據(jù)拋物線y=ax2+bx+c的對稱軸為直線x=即可求解.【詳解】解:∵一次函數(shù)y=ax+b(a≠0)的圖象與x軸的交點坐標為(2,0),
∴2a+b=0,即b=-2a,
∴拋物線y=ax2+bx+c的對稱軸為直線x=.
故選:A.本題考查了一次函數(shù)圖象上點的坐標特征及二次函數(shù)的性質(zhì),難度適中.用到的知識點:
點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式,二次函數(shù)y=ax2+bx+c的對稱軸為直線x=.11、D【分析】根據(jù)相似三角形的面積比等于相似比的平方即可解決問題.【詳解】解:∵,∴,∵,∴,故選:D.此題考查相似三角形的性質(zhì),解題的關(guān)鍵是熟練掌握相似三角形的性質(zhì)解決問題,記住相似三角形的面積比等于相似比的平方.12、C【解析】試題分析:∵△OA1B1是邊長為2的等邊三角形,∴A1的坐標為(1,),B1的坐標為(2,0),∵△B2A2B1與△OA1B1關(guān)于點B1成中心對稱,∴點A2與點A1關(guān)于點B1成中心對稱,∵2×2﹣1=3,2×0﹣=﹣,∴點A2的坐標是(3,﹣),∵△B2A3B3與△B2A2B1關(guān)于點B2成中心對稱,∴點A3與點A2關(guān)于點B2成中心對稱,∵2×4﹣3=5,2×0﹣(﹣)=,∴點A3的坐標是(5,),∵△B3A4B4與△B3A3B2關(guān)于點B3成中心對稱,∴點A4與點A3關(guān)于點B3成中心對稱,∵2×6﹣5=7,2×0﹣=﹣,∴點A4的坐標是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的橫坐標是2n﹣1,A2n+1的橫坐標是2(2n+1)﹣1=4n+1,∵當n為奇數(shù)時,An的縱坐標是,當n為偶數(shù)時,An的縱坐標是﹣,∴頂點A2n+1的縱坐標是,∴△B2nA2n+1B2n+1(n是正整數(shù))的頂點A2n+1的坐標是(4n+1,).故選C.考點:坐標與圖形變化-旋轉(zhuǎn).二、填空題(每題4分,共24分)13、【分析】兩塊三角板的邊與的交點所走過的路程,需分類討論,由圖①的點運動到圖②的點,由圖②的點運動到圖③的點,總路程為,分別求解即可.【詳解】如圖,兩塊三角板的邊與的交點所走過的路程,分兩步走:(1)由圖①的點運動到圖②的點,此時:AC⊥DE,點C到直線DE的距離最短,所以CF最短,則PF最長,根據(jù)題意,,,在中,∴;(2)由圖②的點運動到圖③的點,過G作GH⊥DC于H,如下圖,∵,且GH⊥DC,∴是等腰直角三角形,∴,設(shè),則,∴,∴,解得:,即,點所走過的路程:,故答案為:本題是一道需要把旋轉(zhuǎn)角的概念和解直角三角形相結(jié)合求解的綜合題,考查學生綜合運用數(shù)學知識的能力.正確確定點所走過的路程是解答本題的關(guān)鍵.14、【分析】把方程常數(shù)項移到右邊,兩邊加上1,變形得到結(jié)果,即可得到答案.【詳解】解:由方程,變形得:,配方得:,即;故答案為.此題考查了解一元二次方程——配方法,熟練掌握完全平方公式是解本題的關(guān)鍵.15、1【分析】先解變形為,再根據(jù),把轉(zhuǎn)化為普通運算,然后把代入計算即可.【詳解】∵,∴,∵,∴=(x+1)(x-1)-3x(x-2)=
x2-1-3x2+6x=-2x2+6x-1=-2(x2-3x)-1=-2×(-1)-1=1.故答案為1.本題考查了信息遷移,整式的混合運算及添括號法則,16、.【分析】根據(jù)概率公式求概率即可.【詳解】圖上共有16個方格,黑色方格為7個,小狗最終停在黑色方格上的概率是.故答案為:.此題考查的是求概率問題,掌握概率公式是解決此題的關(guān)鍵.17、1【分析】將原方程進行配方,然后求解即可.【詳解】解:∴-m+1=nm+n=1故答案為:1本題考查配方法,掌握配方步驟正確計算是本題的解題關(guān)鍵.18、【分析】在這個圓面上隨意拋一粒豆子,落在圓內(nèi)每一個地方是均等的,因此計算出正方形和圓的面積,利用幾何概率的計算方法解答即可.【詳解】解:因為正方形的邊長為2cm,則對角線的長為cm,所以⊙O的半徑為cm,直徑為2cm,⊙O的面積為2πcm2;正方形的面積為4cm2因為豆子落在圓內(nèi)每一個地方是均等的,所以P(豆子落在正方形ABCD內(nèi))=.故答案為:.此題主要考查幾何概率的意義:一般地,如果試驗的基本事件為n,隨機事件A所包含的基本事件數(shù)為m,我們就用來描述事件A出現(xiàn)的可能性大小,稱它為事件A的概率,記作P(A),即有
P(A)=.三、解答題(共78分)19、(1)L的對稱軸x=1.5,L的對稱軸與a的交點為(1.5,﹣1.5);(2)1;(1);(4)b=2019時“美點”的個數(shù)為4040個,b=2019.5時“美點”的個數(shù)為1010個.【分析】(1)當x=0時,y=x﹣b=﹣b,所以B(0,﹣b),而AB=6,而A(0,b),則b﹣(﹣b)=6,b=1.所以L:y=﹣x2+1x,對稱軸x=1.5,當x=1.5時,y=x﹣1=﹣1.5,于是得到結(jié)論.(2)由y=﹣(x﹣)2+,得到L的頂點C(,),由于點C在l下方,于是得到結(jié)論;(1)由題意得到y(tǒng)1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,得到右交點D(b,0).于是得到結(jié)論;(4)①當b=2019時,拋物線解析式L:y=﹣x2+2019x直線解析式a:y=x﹣2019,美點”總計4040個點,②當b=2019.5時,拋物線解析式L:y=﹣x2+2019.5x,直線解析式a:y=x﹣2019.5,“美點”共有1010個.【詳解】解:(1)當x=0時,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=6,而A(0,b),∴b﹣(﹣b)=6,∴b=1.∴L:y=﹣x2+1x,∴L的對稱軸x=1.5,當x=1.5時,y=x﹣1=﹣1.5,∴L的對稱軸與a的交點為(1.5,﹣1.5);(2)y=﹣(x﹣)2+∴L的頂點C(,),∵點C在l下方,∴C與l的距離b﹣=﹣(b﹣2)2+1≤1,∴點C與1距離的最大值為1;(1)由題意得y1=,即y1+y2=2y1,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0≠0,取x0=b﹣,對于L,當y=0時,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交點D(b,0).∴點(x0,0)與點D間的距離b﹣(b﹣)=;(4)①當b=2019時,拋物線解析式L:y=﹣x2+2019x,直線解析式a:y=x﹣2019聯(lián)立上述兩個解析式可得:x1=﹣1,x2=2019,∴可知每一個整數(shù)x的值都對應(yīng)的一個整數(shù)y值,且﹣1和2019之間(包括﹣1和﹣2019)共有2021個整數(shù);∵另外要知道所圍成的封閉圖形邊界分兩部分:線段和拋物線,∴線段和拋物線上各有2021個整數(shù)點,∴總計4042個點,∵這兩段圖象交點有2個點重復,∴美點”的個數(shù):4042﹣2=4040(個);②當b=2019.5時,拋物線解析式L:y=﹣x2+2019.5x,直線解析式a:y=x﹣2019.5,聯(lián)立上述兩個解析式可得:x1=﹣1,x2=2019.5,∴當x取整數(shù)時,在一次函數(shù)y=x﹣2019.5上,y取不到整數(shù)值,因此在該圖象上“美點”為0,在二次函數(shù)y=x2+2019.5x圖象上,當x為偶數(shù)時,函數(shù)值y可取整數(shù),可知﹣1到2019.5之間有1010個偶數(shù),因此“美點”共有1010個.故b=2019時“美點”的個數(shù)為4040個,b=2019.5時“美點”的個數(shù)為1010個.本題考查了二次函數(shù),熟練運用二次函數(shù)的性質(zhì)以及待定系數(shù)法求函數(shù)解析式是解題的關(guān)鍵.20、(1);(2)點M的坐標為M(,5);(3)存在,Q(,)或(,)或(-3,1)或().【分析】(1)將A(-4,0)、C(0,4)代入y=﹣x2+bx+c中即可得;(2)直線AC的解析式為:,表達出DQ的長度,及△ADC的面積,根據(jù)二次函數(shù)的性質(zhì)得出△ADC面積的最大值,從而得出D點坐標,作點D關(guān)于對稱軸對稱的點,確定點M,使DM+AM的值最??;(3)△BQC為等腰三角形,則表達出三邊,并對三邊進行分類討論,計算得出Q點的坐標即可.【詳解】解:(1)將A(-4,0)、C(0,4)代入y=﹣x2+bx+c中得,解得,∴,(2)直線AC的解析式為:設(shè)Q(m,m+4),則D(m,)DQ=()-(m+4)=當m=-2時,面積有最大值此時點D的坐標為D(-2,6),D點關(guān)于對稱軸對稱的點D1(-1,6)直線AD1的解析式為:當時,所以,點M的坐標為M(,5)(3)∵,∴設(shè)Q(t,t+4),由得,,∴B(1,0),∴,△BQC為等腰三角形①當BC=QC時,則,∴此時,∴Q(,)或(,);②當BQ=QC時,則,解得,∴Q();③當BQ=BC時,則,解得t=-3,∴Q(-3,1);綜上所述,若△BQC為等腰三角形,則Q(,)或(,)或(-3,1)或().本題考查二次函數(shù)與最短路徑,面積最大值,動點存在性等幾何的綜合應(yīng)用,難度較大,解題的關(guān)鍵是能夠靈活運用二次函數(shù)的性質(zhì)及幾何知識.21、(1)見解析:(2)CE=1.【分析】(1)連接AD,如圖,先證明得到∠1=∠2,再根據(jù)圓周角定理得到∠ADB=90°,根據(jù)切線的性質(zhì)得到OD⊥EF,然后證明∠1=∠4得到結(jié)論;(2)連接BC交OD于F,如圖,根據(jù)圓周角定理得到∠ACB=90°,再根據(jù)垂徑定理,由得到OD⊥BC,則CF=BF,所以O(shè)F=AC=,從而得到DF=1,然后證明四邊形CEDF為矩形得CE=1.【詳解】(1)證明:連接AD,如圖,∵CD=BD,∴,∴∠1=∠2,∵AB為直徑,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF為切線,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:連接BC交OD于F,如圖,∵AB為直徑,∴∠ACB=90°,∵,∴OD⊥BC,∴CF=BF,∴OF=AC=,∴DF=﹣=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四邊形CEDF為矩形,∴CE=DF=1.本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.也考查了圓周角定理和勾股定理.22、(1);(2)π﹣.【分析】(1)根據(jù)垂徑定理得CE的長,再根據(jù)已知DE平分AO得CO=AO=OE,根據(jù)勾股定理列方程求解.(2)先求出扇形的圓心角,再根據(jù)扇形面積和三角形的面積公式計算即可.【詳解】解:(1)連接OF,∵直徑AB⊥DE,∴CE=DE=1.∵DE平分AO,∴CO=AO=OE.設(shè)CO=x,則OE=2x.由勾股定理得:12+x2=(2x)2.x=.∴OE=2x=.即⊙O的半徑為.(2)在Rt△DCP中,∵∠DPC=45°,∴∠D=90°﹣45°=45°.∴∠EOF=2∠D=90°.∴S扇形OEF==π.∵∠EOF=2∠D=90°,OE=OF=SRt△OEF==.∴S陰影=S扇形OEF﹣SRt△OEF=π﹣.本題考查了垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.也考查了扇形的面積公式、圓周角定理和含30度的直角三角形三邊的關(guān)系.23、(1)見解析;(2)點A1的坐標為:(﹣1,3),點A2的坐標為:(2,﹣6).【解析】(1)直接利用位似圖形的性質(zhì)得出對應(yīng)點位置進而得出答案;(2)利用(1)中所畫圖形進而得出答案.【詳解】(1)如圖所示:△OA1B1,△OA2B2,即為所求;(2)點A1的坐標為:(﹣1,3),點A2的坐標為:(2,﹣6).此題主要考查了位似變換以及旋轉(zhuǎn)變換,正確得出對應(yīng)點位置是解題關(guān)鍵.24、(1)①;②見解析,B1的坐標是(0,﹣4);(2)見詳解;(3)【分析】(1)①根據(jù)勾股定理算出OB的長,再根據(jù)弧長公式算出線段OB繞著O點旋轉(zhuǎn)到B1所經(jīng)過的路徑長;②由①得∠BOH=30°,結(jié)合圖象得到旋轉(zhuǎn)后的B1的坐標;(2)利用樹狀圖得到所有可能的結(jié)果;(3)計算各點到原點的距離,可判斷點落在1上的結(jié)果,即可求出概率.【詳解】解:(1)①作BH⊥x軸于點H,∵點B的坐標是(2,2),∴BH=2,OH=2,∴OB==4,∴B繞點O旋轉(zhuǎn)到點B1所經(jīng)過的路程長==;②如圖,1為所作,過B作BH⊥x軸,∵tan∠BOH=,∴∠BOH=30°,又∵∠BOB1=120°,∴∠HOB1=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025東方電氣(德陽)電動機技術(shù)有限責任公司社會招聘1人筆試歷年備考題庫附帶答案詳解
- 2026年物流管理與供應(yīng)鏈優(yōu)化訓練題目庫
- 2026年教育心理學理論與實踐教學策略與方法應(yīng)用論述題
- 2026年嵌入式系統(tǒng)開發(fā)物聯(lián)網(wǎng)設(shè)備調(diào)試與配置題庫
- 2026年城市交通規(guī)劃師初級綜合知識測試題
- 2026年市場營銷策略分析考試練習題含答案
- 2026年創(chuàng)新思維與問題解決能力考核題
- 2026年軟件測試工程師考試軟件測試案例與實踐題庫
- 2026年法律實務(wù)律師實務(wù)高級筆試模擬題集
- 2026年語言教學語言點解析與運用試題
- 2026國家國防科技工業(yè)局所屬事業(yè)單位第一批招聘62人備考題庫及答案詳解一套
- 2026年湖南工業(yè)職業(yè)技術(shù)學院高職單招職業(yè)適應(yīng)性測試備考題庫含答案解析
- 2026年益陽醫(yī)學高等??茖W校單招職業(yè)技能筆試參考題庫含答案解析
- 2026年廣東省韶鑄集團有限公司(韶關(guān)鑄鍛總廠)招聘備考題庫有答案詳解
- 中央經(jīng)濟工作會議解讀:職業(yè)教育發(fā)展強化
- 兒科肺炎的常見并發(fā)癥及護理措施
- 貴州省遵義市2023-2024學年七年級上學期期末英語試題(含答案)
- 光伏支架維護施工方案
- 2026年各地名校高三語文聯(lián)考試題匯編之語言文字運用含答案
- 2025 AHA心肺復蘇與心血管急救指南
- 婦科盆底功能障礙康復新進展
評論
0/150
提交評論