版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省隨州市廣水市廣才中學2026屆數(shù)學九年級第一學期期末統(tǒng)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.在下面的計算程序中,若輸入的值為1,則輸出結果為().A.2 B.6 C.42 D.122.同時擲兩個質地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為()A. B. C. D.3.某公司一月份繳稅40萬元,由于公司的業(yè)績逐月穩(wěn)步上升,假設每月的繳稅增長率相同,第一季度共繳稅145.6萬元,該公司這季度繳稅的月平均增長率為多少?設公司這季度繳稅的月平均增長率為x,則下列所列方程正確的是()A. B.C. D.4.△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為()A. B. C. D.5.如圖,在正方形網(wǎng)格中,每個小正方形的邊長是個單位長度,以點為位似中心,在網(wǎng)格中畫,使與位似,且與的位似比為,則點的坐標可以為()A. B. C. D.6.近年來,移動支付已成為主要支付方式之一.為了解某校800名學生上個月A,B兩種移動支付方式的使用情況,從全校學生中隨機抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學生的支付金額分布情況如下:下面有四個推斷:①從全校學生中隨機抽取1人,該學生上個月僅使用A支付的概率為0.3;②從全校學生中隨機抽取1人,該學生上個月A,B兩種支付方式都使用的概率為0.45;③估計全校僅使用B支付的學生人數(shù)為200人;④這100名學生中,上個月僅使用A和僅使用B支付的學生支付金額的中位數(shù)為800元.其中合理推斷的序號是()A.①② B.①③ C.①④ D.②③7.如圖,一根6m長的繩子,一端拴在圍墻墻角的柱子上,另一端拴著一只小羊A(羊只能在草地上活動)那么小羊A在草地上的最大活動區(qū)域面積是()A.9πm2 B.πm2 C.15πm2 D.πm28.點在反比例函數(shù)y=的圖象上,則k的值是()A.1 B.3 C.﹣1 D.﹣39.如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F.P是⊙A上一點,且∠EPF=40°,則圖中陰影部分的面積是()A.4- B.4- C.8- D.8-10.一個凸多邊形共有20條對角線,它是()邊形A.6 B.7 C.8 D.911.已知關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是()A. B. C.且 D.且12.若是方程的兩根,則的值是()A. B. C. D.二、填空題(每題4分,共24分)13.若二次根式有意義,則x的取值范圍是▲.14.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,有下列6個結論:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正確的結論的有_______.15.在Rt△ABC中,兩直角邊的長分別為6和8,則這個三角形的外接圓的直徑長為__.16.如果將拋物線向上平移,使它經(jīng)過點那么所得新拋物線的解析式為____________.17.若圓弧所在圓的半徑為12,所對的圓心角為60°,則這條弧的長為_____.18.半徑為10cm的半圓圍成一個圓錐,則這個圓錐的高是__cm.三、解答題(共78分)19.(8分)如圖,是的弦,過的中點作,垂足為,過點作直線交的延長線于點,使得.(1)求證:是的切線;(2)若,,求的邊上的高.(3)在(2)的條件下,求的面積.20.(8分)我們定義:如果圓的兩條弦互相垂直,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如:如圖,已知的兩條弦,則、互為“十字弦”,是的“十字弦”,也是的“十字弦”.(1)若的半徑為5,一條弦,則弦的“十字弦”的最大值為______,最小值為______.(2)如圖1,若的弦恰好是的直徑,弦與相交于,連接,若,,,求證:、互為“十字弦”;(3)如圖2,若的半徑為5,一條弦,弦是的“十字弦”,連接,若,求弦的長.21.(8分)如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.(1)試說明四邊形EFCG是矩形;(2)當圓O與射線BD相切時,點E停止移動,在點E移動的過程中,①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;②求點G移動路線的長.22.(10分)(1)如圖1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的長.(2)如圖2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的長.23.(10分)如圖,矩形中,是邊上一動點,過點的反比例函數(shù)的圖象與邊相交于點.(1)點運動到邊的中點時,求反比例函數(shù)的表達式;(2)連接,求的值.24.(10分)如圖,已知拋物線經(jīng)過點和點,與軸交于點.(1)求此拋物線的解析式;(2)若點是直線下方的拋物線上一動點(不點,重合),過點作軸的平行線交直線于點,設點的橫坐標為.①用含的代數(shù)式表示線段的長;②連接,,求的面積最大時點的坐標;(3)設拋物線的對稱軸與交于點,點是拋物線的對稱軸上一點,為軸上一點,是否存在這樣的點和點,使得以點、、、為頂點的四邊形是菱形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.25.(12分)有三張正面分別標有數(shù)字:-1,1,2的卡片,它們除數(shù)字不同外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從中隨機抽出一張記下數(shù)字,放回洗勻后再從中隨機抽出一張記下數(shù)字.(1)請用列表或畫樹形圖的方法(只選其中一種),表示兩次抽出卡片上的數(shù)字的所有結果;(2)將第一次抽出的數(shù)字作為點的橫坐標x,第二次抽出的數(shù)字作為點的縱坐標y,求點(x,y)落在雙曲線上的概率.26.如圖1,在平面直角坐標系xOy中,已知△ABC,∠ABC=90°,頂點A在第一象限,B,C在x軸的正半軸上(C在B的右側),BC=2,AB=2,△ADC與△ABC關于AC所在的直線對稱.(1)當OB=2時,求點D的坐標;(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)程序框圖,計算,直至計算結果大于等于10即可.【詳解】當時,,繼續(xù)運行程序,當時,,繼續(xù)運行程序,當時,,輸出結果為42,故選C.本題考查利用程序框圖計算代數(shù)式的值,按照程序運算的規(guī)則進行計算是解題的關鍵.2、C【分析】首先列表,然后根據(jù)表格求得所有等可能的結果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.【詳解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36種等可能的結果,兩個骰子的點數(shù)相同的有6種情況,
∴兩個骰子的點數(shù)相同的概率為:故選:C此題考查了樹狀圖法與列表法求概率.注意樹狀圖法與列表法可以不重不漏的表示出所有等可能的結果.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比3、D【分析】根據(jù)題意,第二月獲得利潤萬元,第三月獲得利潤萬元,根據(jù)第一季度共獲利145.6萬元,即可得出關于的一元二次方程,此題得解.【詳解】設二、三月份利潤的月增長率為,則第二月獲得利潤萬元,第三月獲得利潤萬元,
依題意,得:.
故選:D.本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.求平均變化率的方法為:若變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關系為.4、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長;過C作CM⊥AB,交AB于點M,由垂徑定理可得M為AE的中點,在Rt△ACM中,根據(jù)勾股定理得AM的長,從而得到AE的長.【詳解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
過C作CM⊥AB,交AB于點M,如圖所示,
由垂徑定理可得M為AE的中點,
∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故選:C.本題考查的是垂徑定理,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.5、B【解析】利用位似性質和網(wǎng)格特點,延長CA到A1,使CA1=2CA,延長CB到B1,使CB1=2CB,則△A1B1C1滿足條件;或延長AC到A1,使CA1=2CA,延長BC到B1,使CB1=2CB,則△A1B1C1也滿足條件,然后寫出點B1的坐標.【詳解】解:由圖可知,點B的坐標為(3,-2),
如圖,以點C為位似中心,在網(wǎng)格中畫△A1B1C1,使△A1B1C1與△ABC位似,且△A1B1C1與△ABC的位似比為2:1,
則點B1的坐標為(4,0)或(-8,0),位于題目圖中網(wǎng)格點內(nèi)的是(4,0),
故選:B.本題考查了位似變換及坐標與圖形的知識,解題的關鍵是根據(jù)兩圖形的位似比畫出圖形,注意有兩種情況.6、B【分析】先把樣本中的僅使用A支付的概率,A,B兩種支付方式都使用的概率分別算出,再來估計總體該項的概率逐一進行判斷即可.【詳解】解:∵樣本中僅使用A支付的概率=,∴總體中僅使用A支付的概率為0.3.故①正確.∵樣本中兩種支付都使用的概率=0.4∴從全校學生中隨機抽取1人,該學生上個月A,B兩種支付方式都使用的概率為0.4;故②錯誤.估計全校僅使用B支付的學生人數(shù)為:800=200(人)故③正確.根據(jù)中位數(shù)的定義可知,僅用A支付和僅用B支付的中位數(shù)應在0至500之間,故④錯誤.故選B.本題考查了用樣本來估計總體的統(tǒng)計思想,理解樣本中各項所占百分比與總體中各項所占百分比相同是解題的關鍵.7、B【解析】小羊的最大活動區(qū)域是一個半徑為6、圓心角為90°和一個半徑為2、圓心角為60°的小扇形的面積和.所以根據(jù)扇形的面積公式即可求得小羊的最大活動范圍.【詳解】大扇形的圓心角是90度,半徑是6,如圖,所以面積==9πm2;小扇形的圓心角是180°-120°=60°,半徑是2m,則面積=π(m2),則小羊A在草地上的最大活動區(qū)域面積=9π+π=π(m2).故選B.本題考查了扇形的面積的計算,本題的關鍵是從圖中找到小羊的活動區(qū)域是由哪幾個圖形組成的,然后分別計算即可.8、B【解析】把P(﹣1,k)代入函數(shù)解析式即可求k的值.【詳解】把點P(﹣1,k)代入y=得到:k==1.故選:B.本題考查了反比例函數(shù)圖象上點的坐標特征,圖象上的點的坐標適合解析式是解題的關鍵.9、B【解析】試題解析:連接AD,
∵BC是切線,點D是切點,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF=,
S△ABC=AD?BC=×2×4=4,
∴S陰影部分=S△ABC-S扇形AEF=4-π.10、C【分析】根據(jù)多邊形的對角線的條數(shù)公式列式進行計算即可求解.【詳解】解:設該多邊形的邊數(shù)為n,由題意得:,解得:(舍去)故選:C.本題主要考查了多邊形的對角線公式,熟記公式是解題的關鍵.11、D【分析】根據(jù)二次項系數(shù)不等于0,且?>0列式求解即可.【詳解】由題意得k-1≠0,且4-4(k-1)>0,解得且.故選D.本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac與根的關系,熟練掌握根的判別式與根的關系式解答本題的關鍵.當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.12、D【解析】試題分析:x1+x2=-=6,故選D考點:根與系數(shù)的關系二、填空題(每題4分,共24分)13、.【分析】根據(jù)二次根式有意義的條件:被開方數(shù)大于等于0列出不等式求解.【詳解】根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,得.本題考查二次根式有意義的條件,牢記被開方數(shù)必須是非負數(shù).14、①④⑤⑥【分析】①由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)對稱軸位置確定b的符號,可對①作判斷;②令x=-1,則y=a-b+c,根據(jù)圖像可得:a-b+c<1,進而可對②作判斷;③根據(jù)對稱性可得:當x=2時,y>1,可對③對作判斷;④根據(jù)2a+b=1和c>1可對④作判斷;⑤根據(jù)圖像與x軸有兩個交點可對⑤作判斷;⑥根據(jù)對稱軸為:x=1可得:a=-b,進而可對⑥判作斷.【詳解】解:①∵該拋物線開口方向向下,∴a<1.∵拋物線對稱軸在y軸右側,∴a、b異號,∴b>1;∵拋物線與y軸交于正半軸,∴c>1,∴abc<1;故①正確;②∵令x=-1,則y=a-b+c<1,∴a+c<b,故②錯誤;③根據(jù)拋物線的對稱性知,當x=2時,y>1,即4a+2b+c>1;故③錯誤;④∵對稱軸方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正確;⑤∵拋物線與x軸有兩個交點,∴ax2+bx+c=1由兩個不相等的實數(shù)根,∴>1,故⑤正確.⑥由④可知:2a+b=1,故⑥正確.綜上所述,其中正確的結論的有:①④⑤⑥.故答案為:①④⑤⑥.主要考查圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸求2a與b的關系,以及二次函數(shù)與方程之間的轉換,二次函數(shù)最值的熟練運用.15、1.【分析】根據(jù)題意,寫出已知條件并畫出圖形,然后根據(jù)勾股定理即可求出AB,再根據(jù)圓周角為直角所對的弦是直徑即可得出結論.【詳解】如圖,已知:AC=8,BC=6,由勾股定理得:AB==1,∵∠ACB=90°,∴AB是⊙O的直徑,∴這個三角形的外接圓直徑是1;故答案為:1.此題考查的是求三角形的外接圓的直徑,掌握圓周角為直角所對的弦是直徑是解決此題的關鍵.16、【分析】設平移后的拋物線解析式為,把點A的坐標代入進行求值即可得到b的值.【詳解】解:設平移后的拋物線解析式為,把A(0,3)代入,得3=?1+b,解得b=4,則該函數(shù)解析式為.故答案為:.主要考查了函數(shù)圖象的平移,要求熟練掌握平移的規(guī)律:左加右減,上加下減.并用規(guī)律求函數(shù)解析式.會利用方程求拋物線與坐標軸的交點.17、4π【分析】直接利用弧長公式計算即可求解.【詳解】l==4π,故答案為:4π.本題考查弧長計算公式,解題的關鍵是掌握:弧長l=(n是弧所對應的圓心角度數(shù))18、【分析】由半圓的半徑可得出圓錐的母線及底面半徑的長度,利用勾股定理即可求出圓錐的高.【詳解】設底面圓的半徑為r.∵半徑為10cm的半圓圍成一個圓錐,∴圓錐的母線l=10cm,∴,解得:r=5(cm),∴圓錐的高h(cm).故答案為5.本題考查了圓錐的計算,利用勾股定理求出圓錐的高是解題的關鍵.三、解答題(共78分)19、(1)見解析;(2)4.5;(3)27【分析】(1)根據(jù)等腰三角形的性質可得,結合切線的判定方法可得結論;(2)過點作于點,連接,結合中點及等腰三角形的性質可得,利用勾股定理可得DF的長;(3)根據(jù)兩組對應角分別相等的兩個三角形相似可得,利用相似三角形對應線段成比例可求得EO長,由三角形面積公式求解即可.【詳解】(1)證明:∵,,∴,,∵,∴,∴,∴∵是圓的半徑,∴是的切線;(2)如圖,過點作于點,連接,∵點是的中點,,∴,,又∵,,,,∴,∴,(3)∵,∴,∵,,∴,∴,∴,由(2)得即,得,∴的面積是:.本題是圓與三角形的綜合題,涉及的知識點主要有切線的判定與性質、垂徑定理、勾股定理、相似三角形的判定和性質,明確題意,確定所求問題的條件是解題的關鍵.20、(1)10,6;(2)見解析;(3).【分析】(1)根據(jù)“十字弦”定義可得弦的“十字弦”為直徑時最大,當CD過A點或B點時最??;(2)根據(jù)線段長度得出對應邊成比例且有夾角相等,證明△ACH∽△DCA,由其性質得出對應角相等,結合90°的圓周角證出AH⊥CD,根據(jù)“十字弦”定義可得;(3)過O作OE⊥AB于點E,作OF⊥CD于點F,利用垂徑定理得出OE=3,由正切函數(shù)得出AH=DH,設DH=x,在Rt△ODF中,利用線段和差將邊長用x表示,根據(jù)勾股定理列方程求解.【詳解】解:(1)當CD為直徑時,CD最大,此時CD=10,∴弦的“十字弦”的最大值為10;當CD過A點時,CD長最小,即AM的長度,過O點作ON⊥AM,垂足為N,作OG⊥AB,垂足為G,則四邊形AGON為矩形,∴AN=OG,∵OG⊥AB,AB=8,∴AG=4,∵OA=5,∴由勾股定理得OG=3,∴AN=3,∵ON⊥AM,∴AM=6,即弦的“十字弦”的最小值是6.(2)證明:如圖,連接AD,∵,,,∴,∵∠C=∠C,∴△ACH∽△DCA,∴∠CAH=∠D,∵CD是直徑,∴∠CAD=90°,∴∠C+∠D=90°,∴∠C+∠CAH=90°,∴∠AHC=90°,∴AH⊥CD,∴、互為“十字弦”.(3)如圖,過O作OE⊥AB于點E,作OF⊥CD于點F,連接OA,OD,則四邊形OEHF是矩形,∴OE=FH,OF=EH,∴AE=4,∴由勾股定理得OE=3,∴FH=3,∵tan∠ADH=,∴tan60°=,設DH=,則AH=x,∴FD=3+x,OF=HE=4-x,在Rt△ODF中,由勾股定理得,OD2=OF2+FD2,∴(3+x)2+(4-x)2=52,解得,x=,∴FD=,∵OF⊥CD,∴CD=2DF=即CD=本題考查圓的相關性質,利用垂徑定理,相似三角形等知識是解決圓問題的常用手段,對結合學過的知識和方法的基礎上,用新的方法和思路來解決新題型或新定義的能力是解答此題的關鍵.21、(1)證明見解析;(2)①存在,矩形EFCG的面積最大值為12,最小值為;②.【解析】試題分析:(1)只要證到三個內(nèi)角等于90°即可.(2)①易證點D在⊙O上,根據(jù)圓周角定理可得∠FCE=∠FDE,從而證到△CFE∽△DAB,根據(jù)相似三角形的性質可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范圍就可求出S矩形ABCD的范圍.②根據(jù)圓周角定理和矩形的性質可證到∠GDC=∠FDE=定值,從而得到點G的移動的路線是線段,只需找到點G的起點與終點,求出該線段的長度即可.試題解析:解:(1)證明:如圖,∵CE為⊙O的直徑,∴∠CFE=∠CGE=90°.∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四邊形EFCG是矩形.(2)①存在.如答圖1,連接OD,∵四邊形ABCD是矩形,∴∠A=∠ADC=90°.∵點O是CE的中點,∴OD=OC.∴點D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.∵AD=1,AB=2,∴BD=5.∴.∴S矩形ABCD=2S△CFE=.∵四邊形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°Ⅰ.當點E在點A(E′)處時,點F在點B(F′)處,點G在點D(G′處,如答圖1所示.此時,CF=CB=1.Ⅱ.當點F在點D(F″)處時,直徑F″G″⊥BD,如答圖2所示,此時⊙O與射線BD相切,CF=CD=2.Ⅲ.當CF⊥BD時,CF最小,此時點F到達F″′,如答圖2所示.S△BCD=BC?CD=BD?CF″′.∴1×2=5×CF″′.∴CF″′=.∴≤CF≤1.∵S矩形ABCD=,∴,即.∴矩形EFCG的面積最大值為12,最小值為.②∵∠GDC=∠FDE=定值,點G的起點為D,終點為G″,∴點G的移動路線是線段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴,即,解得.∴點G移動路線的長為.考點:1.圓的綜合題;2.單動點問題;2.垂線段最短的性質;1.直角三角形斜邊上的中線的性質;5.矩形的判定和性質;6.圓周角定理;7.切線的性質;8.相似三角形的判定和性質;9.分類思想的應用.22、(1)AD=9;(2)AD=【分析】(1)連接BE,證明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;(2)連接BE,證明△ACD∽△BCE,得到,求出BE的長,得到AD的長.【詳解】解:(1)如圖1,連接BE,∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,又∵AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,∵AC=BC=6,∴AB=6,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt△BAE中,AB=6,AE=3,∴BE=9,∴AD=9;(2)如圖2,連接BE,在Rt△ACB中,∠ABC=∠CED=30°,tan30°=,∵∠ACB=∠DCE=90°,∴∠BCE=∠ACD,∴△ACD∽△BCE,∴,∵∠BAC=60°,∠CAE=30°,∴∠BAE=90°,又AB=6,AE=8,∴BE=10,∴AD=.考點:相似三角形的判定與性質;全等三角形的判定與性質;勾股定理.23、(1);(2).【分析】(1)先求出點F坐標,利用待定系數(shù)法求出反比例函數(shù)的表達式;(2)利用點F的的橫坐標為4,點的縱坐標為3,分別求得用k表示的BF、AE長,繼而求得CF、CE長,從而求得結論.【詳解】(1)是的中點,,點的坐標為,將點的坐標為代入得:∴,∴反比例函數(shù)的表達式;(2)點的橫坐標為4,代入,,,,點的縱坐標為3,代入,,即,,,所以.此題是反比例函數(shù)與幾何的綜合題,主要考查了待定系數(shù)法,矩形的性質,銳角三角函數(shù),掌握反比例函數(shù)的性質是解本題的關鍵.24、(1)y=x2﹣4x+1;(2)①用含m的代數(shù)式表示線段PD的長為﹣m2+1m;②△PBC的面積最大時點P的坐標為(,﹣);(1)存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形.點M的坐標為M1(2,1),M2(2,1﹣2),M1(2,1+2).【分析】(1)根據(jù)已知拋物線y=ax2+bx+1(a≠0)經(jīng)過點A(1,0)和點B(1,0)代入即可求解;
(2)①先確定直線BC解析式,根據(jù)過點P作y軸的平行線交直線BC于點D,即可用含m的帶上書表示出P和D的坐標進而求解;
②用含m的代數(shù)式表示出△PBC的面積,可得S是關于m的二次函數(shù),即可求解;
(1)根據(jù)(1)中所得二次函數(shù)圖象和對稱軸先得點E的坐標即可寫出點三個位置的點M的坐標.【詳解】(1)∵拋物線y=ax2+bx+1(a≠0)經(jīng)過點A(1,0)和點B(1,0),與y軸交于點C,∴,解得,∴拋物線解析式為y=x2﹣4x+1;(2)①設P(m,m2﹣4m+1),將點B(1,0)、C(0,1)代入得直線BC解析式為yBC=﹣x+1.∵過點P作y軸的平行線交直線BC于點D,∴D(m,﹣m+1),∴PD=(﹣m+1)﹣(m2﹣4m+1)=﹣m2+1m.答:用含m的代數(shù)式表示線段PD的長為﹣m2+1m.②S△PBC=S△CPD+S△BPD=OB?PD=﹣m2+m=﹣(m﹣)2+.∴當m=時,S有最大值.當m=時,m2﹣4m+1=﹣.∴P(,﹣).答:△PBC的面積最大時點P的坐標為(,﹣).(1)存在這樣的點M和點N,使得以點C、E、M、N為頂點的四邊形是菱形.
根據(jù)題意,點E(2,1),
∴EF=CF=2,
∴EC=2,
根據(jù)菱形的四條邊相等,
∴ME=EC=2,∴M(2,1-2)或(2,1+2)
當EM=EF=2時,M(2,1)∴點M的坐標為M1(2,1),M2(2,1﹣2),M1(2,1+2).本題考查了二次函數(shù)與方程、幾何知識的綜合應用,解這類問題關鍵是善于將函數(shù)問題轉化為方程問題,善于利用幾何圖形的有關性質、定理和二次函數(shù)的知識,并注意挖掘題目中的一些隱含條件.25、(1)所有結果:(-1,-1),(-1,1),(-1,2),(1,-1)(1,1),(1,2),(2,-1),(2,1),(2,2);(2).【分析】(1)畫出樹狀圖即可得解;(2)根據(jù)反比例函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 優(yōu)莎娜的制度
- 京東服務商制度
- 2026年蘇州市教育科學研究院長期公開招聘高層次人才備考題庫含答案詳解
- 2025至2030中國醫(yī)藥研發(fā)外包服務國際競爭力與離岸研發(fā)趨勢
- 2026年鹽城市體育局直屬事業(yè)單位公開招聘編外工作人員(體彩專管員)備考題庫及答案詳解參考
- 2026年水利部長江水利委員會事業(yè)單位公開招聘87人備考題庫(第二批)含答案詳解
- 中國歷史官場制度
- 2025至2030教育行業(yè)并購估值方法及交易結構設計研究報告
- 2025至2030中國肉禽行業(yè)兼并重組案例與集中度提升路徑研究報告
- 2026年長虹鎮(zhèn)衛(wèi)生院招聘護士1名備考題庫完整參考答案詳解
- 十米寬暗涵清淤施工方案
- 2025-2030中國啤酒行業(yè)分銷渠道變革與經(jīng)銷商管理體系優(yōu)化報告
- 污水管道土方量-計算表-絕對-
- 化學選修四原電池課件
- 中華民族的三次融合
- 2026屆湖南省長沙市一中化學高一第一學期期末檢測試題含解析
- 醫(yī)療護理文書的書寫和管理
- 2025年安防生產(chǎn)行業(yè)技能考試-安全防范系統(tǒng)安裝維護員歷年參考題庫含答案解析(5套共100道單選合輯)
- 屠宰場績效考核管理辦法
- 寄居蟹課件介紹
- 專業(yè)分包的試驗與檢驗管理
評論
0/150
提交評論