版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2026屆山西省太原師范院附屬中學九年級數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.某廠2017年產值3500萬元,2019年增加到5300萬元.設平均每年增長率為,則下面所列方程正確的是()A. B.C. D.2.小華同學某體育項目7次測試成績如下(單位:分):9,7,1,8,1,9,1.這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別為()A.8,1 B.1,9 C.8,9 D.9,13.下列成語所描述的是隨機事件的是()A.竹籃打水 B.瓜熟蒂落 C.??菔癄€ D.不期而遇4.拋擲一枚均勻的骰子,所得的點數(shù)能被3整除的概率為()A. B. C. D.5.如圖,已知a∥b∥c,直線AC,DF與a、b、c相交,且AB=6,BC=4,DF=8,則DE=(
)A.12 B. C. D.36.反比例函數(shù)y=kx(k≠0)的圖象經過點(2,-4),若點(4,n)在反比例函數(shù)的圖象上,則n等于A.﹣8 B.﹣4 C.﹣18 D.﹣7.如圖,OA、OB是⊙O的半徑,C是⊙O上一點.若∠OAC=16°,∠OBC=54°,則∠AOB的大小是()A.70° B.72° C.74° D.76°8.如圖,Rt△ABC中,AB=9,BC=6,∠B=90°,將△ABC折疊,使A點與BC的中點D重合,折痕為PQ,則△PQD的面積為()A. B. C. D.9.如圖,熱氣球的探測器顯示,從熱氣球A看一棟高樓頂部B的仰角為300,看這棟高樓底部C的俯角為600,熱氣球A與高樓的水平距離為120m,這棟高樓BC的高度為()A.40m B.80m C.120m D.160m10.如圖,AB∥CD,E,F(xiàn)分別為AC,BD的中點,若AB=5,CD=3,則EF的長是()A.4 B.3 C.2 D.1二、填空題(每小題3分,共24分)11.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點,若CD=5cm,則EF=_______cm.12.⊙O的半徑為10cm,點P到圓心O的距離為12cm,則點P和⊙O的位置關系是_____.13.如圖,在等腰直角△ABC中,∠C=90°,將△ABC繞頂點A逆時針旋轉80°后得到△AB′C′,則∠CAB′的度數(shù)為_____.14.將方程化成一般形式是______________.15.如果在比例尺1:100000的濱海區(qū)地圖上,招寶山風景區(qū)與鄭氏十七房的距離約是19cm,則它們之間的實際距離約為_____千米.16.如圖,在平面直角坐標系中,點在拋物線上運動,過點作軸于點,以為對角線作矩形連結則對角線的最小值為.17.若,則=_____.18.我國古代數(shù)學著作《九章算術》中記載了一個問題:“今有邑方不知大小,各開中門,出北門三十步有木,出西門七百五十步見木,問:邑方幾何?”.其大意是:如圖,一座正方形城池,A為北門中點,從點A往正北方向走30步到B處有一樹木,C為西門中點,從點C往正西方向走750步到D處正好看到B處的樹木,則正方形城池的邊長為_____步.三、解答題(共66分)19.(10分)測量計算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點處觀測旗桿頂點A的仰角為50°,觀測旗桿底部B點的仰角為45°(參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2).(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.20.(6分)如圖,拋物線y=ax2+bx+4與x軸的兩個交點分別為A(-4,0)、B(2,0),與y軸交于點C,頂點為D.E(1,2)為線段BC的中點,BC的垂直平分線與x軸、y軸分別交于F、G.(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;(2)在直線EF上求一點H,使△CDH的周長最小,并求出最小周長;(3)若點K在x軸上方的拋物線上運動,當K運動到什么位置時,△EFK的面積最大?并求出最大面積.21.(6分)(1)計算:.(2)如圖,正方形紙板在投影面上的正投影為,其中邊與投影面平行,與投影面不平行.若正方形的邊長為厘米,,求其投影的面積.22.(8分)如圖,是的直徑,直線與相切于點.過點作的垂線,垂足為,線段與相交于點.(1)求證:是的平分線;(2)若,求的長.23.(8分)(問題呈現(xiàn))阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,點M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=DB+BA.下面是運用“截長法”證明CD=DB+BA的部分證明過程.證明:如圖2,在CD上截取CG=AB,連接MA、MB、MC和MG.∵M是的中點,∴MA=MC①又∵∠A=∠C②∴△MAB≌△MCG③∴MB=MG又∵MD⊥BC∴BD=DG∴AB+BD=CG+DG即CD=DB+BA根據(jù)證明過程,分別寫出下列步驟的理由:①,②,③;(理解運用)如圖1,AB、BC是⊙O的兩條弦,AB=4,BC=6,點M是的中點,MD⊥BC于點D,則BD=;(變式探究)如圖3,若點M是的中點,(問題呈現(xiàn))中的其他條件不變,判斷CD、DB、BA之間存在怎樣的數(shù)量關系?并加以證明.(實踐應用)根據(jù)你對阿基米德折弦定理的理解完成下列問題:如圖4,BC是⊙O的直徑,點A圓上一定點,點D圓上一動點,且滿足∠DAC=45°,若AB=6,⊙O的半徑為5,求AD長.24.(8分)解方程組:.25.(10分)某校九年級學生參加了中考體育考試.為了了解該校九年級(1)班同學的中考體育成績情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制出以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:分組分數(shù)段(分)頻數(shù)A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值為;(2)該班學生中考體育成績的中位數(shù)落在組;(在A、B、C、D、E中選出正確答案填在橫線上)(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.26.(10分)甲、乙、丙三個球迷決定通過抓鬮來決定誰得到僅有的一張球票.他們準備了三張紙片,其中一張上畫了個五星,另兩張空白,團成外觀一致的三個紙團.抓中畫有五角星紙片的人才能得到球票.剛要抓鬮,甲問:“誰先抓?先抓的人會不會抓中的機會比別人大?”你認為他的懷疑有沒有道理?談談你的想法并用列表或畫樹狀圖方法說明原因.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】由題意設每年的增長率為x,那么第一年的產值為3500(1+x)萬元,第二年的產值3500(1+x)(1+x)萬元,然后根據(jù)今年上升到5300萬元即可列出方程.【詳解】解:設每年的增長率為x,依題意得3500(1+x)(1+x)=5300,即.故選:D.本題考查列出解決問題的方程,解題的關鍵是正確理解“利潤每月平均增長率為x”的含義以及找到題目中的等量關系.2、D【解析】試題分析:把這組數(shù)據(jù)從小到大排列:7,8,9,9,1,1,1,最中間的數(shù)是9,則中位數(shù)是9;1出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是1;故選D.考點:眾數(shù);中位數(shù).3、D【分析】根據(jù)事件發(fā)生的可能性大小判斷.【詳解】解:A、竹籃打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、??菔癄€,是不可能事件;D、不期而遇,是隨機事件;故選:D.本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.4、B【解析】拋擲一枚骰子有1、2、3、4、5、6種可能,其中所得的點數(shù)能被3整除的有3、6這兩種,∴所得的點數(shù)能被3整除的概率為,故選B.【點睛】本題考查了簡單的概率計算,熟記概率的計算公式是解題的關鍵.5、C【解析】解:∵a∥b∥c,∴,∵AB=6,BC=4,DF=8,∴,∴DE=.故選C.本題考查了平行線分線段成比例定理,熟練掌握定理內容是關鍵:三條平行線截兩條直線,所得的對應線段成比例.6、D【解析】利用反比例函數(shù)圖象上點的坐標特征得到4n=1×(-4),然后解關于n的方程即可.【詳解】∵點(1,-4)和點(4,n)在反比例函數(shù)y=kx∴4n=1×(-4),∴n=-1.故選D.本題考查了反比例函數(shù)圖象上點的坐標特征:反比例函數(shù)y=kx(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k7、D【解析】連接OC,根據(jù)等腰三角形的性質得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB的度數(shù),然后根據(jù)同圓中同弧所對的圓周角等于圓心角的一半求解.【詳解】解:連接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故選:D本題考查的是等腰三角形的性質及同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半,掌握相關性質定理是本題的解題關鍵.8、D【分析】由折疊的性質可得AQ=QD,AP=PD,由勾股定理可求AQ的長,由銳角三角函數(shù)分別求出AP,HQ的長,即可求解.【詳解】解:過點D作DN⊥AC于N,∵點D是BC中點,∴BD=3,∵將△ABC折疊,∴AQ=QD,AP=PD,∵AB=9,BC=6,∠B=90°,∴AC=,∵sin∠C==,∴DN=,∵cos∠C=,∴CN=,∴AN=,∵PD2=PN2+DN2,∴AP2=(﹣AP)2+,∴AP=,∵QD2=DB2+QB2,∴AQ2=(9﹣AQ)2+9,∴AQ=5,∵sin∠A==,∴HQ==∵∴△PQD的面積=△APQ的面積=××=,故選:D.本題考查了翻折變換,勾股定理,三角形面積公式,銳角三角函數(shù),求出HQ的長是本題的關鍵.9、D【分析】過A作AD⊥BC,垂足為D,在直角△ABD與直角△ACD中,根據(jù)三角函數(shù)的定義求得BD和CD,再根據(jù)BC=BD+CD即可求解.【詳解】解:過A作AD⊥BC,垂足為D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD?tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD?tan60°=120×=120m,∴BC=BD+CD=m.故選D.本題考查解直角三角形的應用-仰角俯角問題.10、D【詳解】連接DE并延長交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中點,∴DE=EH.∴△DCE≌△HAE(AAS).∴DE=HE,DC=AH.∵F是BD中點,∴EF是△DHB的中位線.∴EF=BH.∴BH=AB﹣AH=AB﹣DC=2.∴EF=2.故選D.二、填空題(每小題3分,共24分)11、1【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,∴AB=2CD=2×1=10cm,又∵EF是△ABC的中位線,∴EF=×10=1cm.故答案為1.考點:三角形中位線定理;直角三角形斜邊上的中線.12、點P在⊙O外【分析】根據(jù)點與圓心的距離d,則d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.【詳解】解:∵⊙O的半徑r=10cm,點P到圓心O的距離OP=12cm,∴OP>r,∴點P在⊙O外,故答案為點P在⊙O外.本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內.13、125°【分析】根據(jù)等腰直角三角形的性質得到∠CAB=45°,根據(jù)旋轉的性質得到∠BAB′=80°,結合圖形計算即可.【詳解】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,由旋轉的性質可知,∠BAB′=80°,∴∠CAB′=∠CAB+∠BAB′=125°,故答案為:125°.本題考查旋轉的性質,關鍵在于熟練掌握基礎性質.14、【分析】先將括號乘開,再進行合并即可得出答案.【詳解】x2-6x+4+x+1=0,.故答案為:.本題考查了一次二次方程的化簡,注意變號是解決本題的關鍵.15、1.【分析】根據(jù)比例尺=圖上距離∶實際距離,列比例式即可求得它們之間的實際距離.要注意統(tǒng)一單位.【詳解】解:設它們之間的實際距離為xcm,1∶100000=1∶x,解得x=100000.100000cm=1千米.所以它們之間的實際距離為1千米.故答案為1.本題考查了比例線段.熟練運用比例尺進行計算,注意單位的轉換.16、1【分析】先利用配方法得到拋物線的頂點坐標為(1,1),再根據(jù)矩形的性質得BD=AC,由于AC的長等于點A的縱坐標,所以當點A在拋物線的頂點時,點A到x軸的距離最小,最小值為1,從而得到BD的最小值.【詳解】∵y=x2-2x+2=(x-1)2+1,
∴拋物線的頂點坐標為(1,1),
∵四邊形ABCD為矩形,
∴BD=AC,
而AC⊥x軸,
∴AC的長等于點A的縱坐標,
當點A在拋物線的頂點時,點A到x軸的距離最小,最小值為1,
∴對角線BD的最小值為1.
故答案為1.17、【解析】=.18、1.【分析】設正方形城池的邊長為步,根據(jù)比例性質求.【詳解】解:設正方形城池的邊長為步,即正方形城池的邊長為1步.故答案為1.本題考查了相似三角形的應用:構建三角形相似,利用相似比計算對應的線段長.三、解答題(共66分)19、(1)20米;(2)25米.【分析】(1)∠BDC=45°,可得DC=BC=20m,;(2)設DC=BC=xm,可得tan50°=≈1.2,解得x的值即可得建筑物BC的高.【詳解】解:(1)∵∠BDC=45°,∴DC=BC=20m,答:建筑物BC的高度為20m;(2)設DC=BC=xm,根據(jù)題意可得:tan50°=≈1.2,解得:x=25,答:建筑物BC的高度為25m.本題考查解直角三角形的應用.20、(1)頂點D的坐標為(-1,)(2)H(,)(2)K(-,)【分析】(1)將A、B的坐標代入拋物線的解析式中,即可求出待定系數(shù)的值,進而可用配方法求出其頂點D的坐標;
(2)根據(jù)拋物線的解析式可求出C點的坐標,由于CD是定長,若△CDH的周長最小,那么CH+DH的值最小,由于EF垂直平分線段BC,那么B、C關于直線EF對稱,所以BD與EF的交點即為所求的H點;易求得直線BC的解析式,關鍵是求出直線EF的解析式;由于E是BC的中點,根據(jù)B、C的坐標即可求出E點的坐標;可證△CEG∽△COB,根據(jù)相似三角形所得的比例線段即可求出CG、OG的長,由此可求出G點坐標,進而可用待定系數(shù)法求出直線EF的解析式,由此得解;
(2)過K作x軸的垂線,交直線EF于N;設出K點的橫坐標,根據(jù)拋物線和直線EF的解析式,即可表示出K、N的縱坐標,也就能得到KN的長,以KN為底,F(xiàn)、E橫坐標差的絕對值為高,可求出△KEF的面積,由此可得到關于△KEF的面積與K點橫坐標的函數(shù)關系式,根據(jù)所得函數(shù)的性質即可求出其面積的最大值及對應的K點坐標.【詳解】(1)由題意,得解得,b=-1.所以拋物線的解析式為,頂點D的坐標為(-1,).(2)設拋物線的對稱軸與x軸交于點M.因為EF垂直平分BC,即C關于直線EG的對稱點為B,連結BD交于EF于一點,則這一點為所求點H,使DH+CH最小,即最小為DH+CH=DH+HB=BD=.而.∴△CDH的周長最小值為CD+DR+CH=.設直線BD的解析式為y=k1x+b,則解得,b1=2.所以直線BD的解析式為y=x+2.由于BC=2,CE=BC∕2=,Rt△CEG∽△COB,得CE:CO=CG:CB,所以CG=2.3,GO=1.3.G(0,1.3).同理可求得直線EF的解析式為y=x+.聯(lián)立直線BD與EF的方程,解得使△CDH的周長最小的點H(,).(2)設K(t,),xF<t<xE.過K作x軸的垂線交EF于N.則KN=yK-yN=-(t+)=.所以S△EFK=S△KFN+S△KNE=KN(t+2)+KN(1-t)=2KN=-t2-2t+3=-(t+)2+.即當t=-時,△EFK的面積最大,最大面積為,此時K(-,).本題是二次函數(shù)的綜合類試題,考查了二次函數(shù)解析式的確定、軸對稱的性質、相似三角形的判定和性質、三角形面積的求法、二次函數(shù)的應用等知識,難度較大.21、(1);(2).【分析】(1)代入特殊角的三角函數(shù)值,根據(jù)實數(shù)的混合運算法則計算即可;(2)作BE⊥CC1于點E,利用等腰直角三角形的性質求得的長即可求得BC的正投影的長,即可求得答案.【詳解】(1);(2)過點B作BE⊥CC1于點E,在中,,,∴,∵⊥,⊥,且BE⊥CC1,∴四邊形為矩形,∴,∵,∴.本題主要考查了平行投影的性質,特殊角的三角函數(shù)值,等腰直角三角形的性質,本題理解并掌握正投影的特征是解題的關鍵:正投影是在平行投影中,投影線垂直于投影面產生的投影.22、(1)見解析;(2)【分析】(1)連接OC,可證得OC∥AD,根據(jù)平行線性質及等腰三角形性質,可得∠DAC=∠CAO,即得AC平分∠DAB;(2)連接,連接交于點,通過構造直角三角形,利用勾股定理和相似三角形求得,再求得,即可求得答案.【詳解】(1)證明:如圖,連接,∵與相切于點,∴,∵,∴,∴,∴,∴,∵,∴,∴,∴是的平分線;(2)解:如圖,連接,連接交于點,∵是的直徑,∴,∵,∴,∵,∴,∴,為線段中點,∵,,∴,∴,即:,∴,∵,∴,∴,∵為直徑中點,為線段中點,∴.本題考查了切線的性質、角平分線的性質、相似三角形的判定、勾股定理、三角形中位線的性質等多方面的知識,是一道綜合題型,考查學生各知識點的綜合運用能力.23、(問題呈現(xiàn))相等的弧所對的弦相等;同弧所對的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)1;(變式探究)DB=CD+BA;證明見解析;(實踐應用)1或.【分析】(問題呈現(xiàn))根據(jù)圓的性質即可求解;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,即可求解;(變式探究)證明△MAB≌△MGB(SAS),則MA=MG,MC=MG,又DM⊥BC,則DC=DG,即可求解;(實踐應用)已知∠D1AC=45°,過點D1作D1G1⊥AC于點G1,則CG1′+AB=AG1,所以AG1=(6+2)=1.如圖∠D2AC=45°,同理易得AD2=.【詳解】(問題呈現(xiàn))①相等的弧所對的弦相等②同弧所對的圓周角相等③有兩組邊及其夾角分別對應相等的兩個三角形全等故答案為:相等的弧所對的弦相等;同弧所定義的圓周角相等;有兩組邊及其夾角分別對應相等的兩個三角形全等;(理解運用)CD=DB+BA,即CD=6﹣CD+AB,即CD=6﹣CD+4,解得:CD=5,BD=BC﹣CD=6﹣5=1,故答案為:1;(變式探究)DB=CD+BA.證明:在DB上截去BG=BA,連接MA、MB、MC、MG,∵M是弧AC的中點,∴AM=MC,∠MBA=∠MBG.又MB=MB∴△MAB≌△MGB(SAS)∴MA=MG∴MC=MG,又DM⊥BC,∴DC=DG,AB+DC=BG+DG,即DB=CD+BA;(實踐應
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鄂爾多斯市勝豐種業(yè)有限公司科研助理招聘備考題庫有答案詳解
- 3D打印生物支架在老年皮膚再生中的老化應對策略
- 2025年九江一中招聘備考題庫及1套參考答案詳解
- 中國信達山東分公司2026年校園招聘備考題庫及1套完整答案詳解
- 小學教育課程中人工智能的引入與跨學科融合的創(chuàng)新實踐教學研究課題報告
- 2025年重慶醫(yī)科大學基礎醫(yī)學院關于公開遴選系主任10人的備考題庫及完整答案詳解一套
- 2025年上海當代藝術博物館公開招聘工作人員備考題庫及1套參考答案詳解
- 2025年貴州赤水國家糧食儲備庫面向社會公開招聘8人備考題庫及完整答案詳解1套
- 2025年漣源市市直醫(yī)療衛(wèi)生機構公開招聘專業(yè)技術人員69人備考題庫參考答案詳解
- 2025年蘇州交投新基建科技有限公司公開招聘備考題庫及一套答案詳解
- 英語試卷+答案黑龍江省哈三中2025-2026學年上學期高二學年12月月考(12.11-12.12)
- 中華聯(lián)合財產保險股份有限公司2026年校園招聘備考題庫及一套完整答案詳解
- 詩經中的愛情課件
- 2025年煙花爆竹經營單位安全管理人員考試試題及答案
- 2025天津大學管理崗位集中招聘15人參考筆試試題及答案解析
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試參考題庫及答案解析
- TCAMET02002-2019城市軌道交通預埋槽道及套筒技術規(guī)范
- 基于邏輯經驗主義對命題的分析
- 中文介紹邁克爾杰克遜
- 安徽綠沃循環(huán)能源科技有限公司12000t-a鋰離子電池高值資源化回收利用項目(重新報批)環(huán)境影響報告書
- 廈深鐵路福建段某標段工程投標施工組織設計
評論
0/150
提交評論