2026屆廣西北部灣經濟區(qū)四市同城九年級數學第一學期期末學業(yè)水平測試模擬試題含解析_第1頁
2026屆廣西北部灣經濟區(qū)四市同城九年級數學第一學期期末學業(yè)水平測試模擬試題含解析_第2頁
2026屆廣西北部灣經濟區(qū)四市同城九年級數學第一學期期末學業(yè)水平測試模擬試題含解析_第3頁
2026屆廣西北部灣經濟區(qū)四市同城九年級數學第一學期期末學業(yè)水平測試模擬試題含解析_第4頁
2026屆廣西北部灣經濟區(qū)四市同城九年級數學第一學期期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆廣西北部灣經濟區(qū)四市同城九年級數學第一學期期末學業(yè)水平測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.“2020年的6月21日是晴天”這個事件是()A.確定事件 B.不可能事件 C.必然事件 D.不確定事件2.拋物線y=ax2+bx+c(a≠0)的圖象如圖,則下列結論中正確的是()A.ab<0 B.a+b+2c﹣2>0 C.b2﹣4ac<0 D.2a﹣b>03.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,若旋轉角為20°,則∠1為()A.110° B.120° C.150° D.160°4.如圖,A、B、C三點在⊙O上,且∠AOB=80°,則∠ACB等于A.100° B.80° C.50° D.40°5.從數據,﹣6,1.2,π,中任取一數,則該數為無理數的概率為()A. B. C. D.6.如圖,BD是⊙O的直徑,點A、C在⊙O上,,∠AOB=60°,則∠BDC的度數是()A.60° B.45° C.35° D.30°7.如圖,在矩形ABCD中,對角線AC,BD交與點O.已知∠AOB=60°,AC=16,則圖中長度為8的線段有()A.2條 B.4條C.5條 D.6條8.如圖,AB是⊙O的弦,OC⊥AB于點H,若∠AOC=60°,OH=1,則弦AB的長為()A.2 B. C.2 D.49.如圖,矩形ABCD的頂點D在反比例函數(x<0)的圖象上,頂點B,C在x軸上,對角線AC的延長線交y軸于點E,連接BE,若△BCE的面積是6,則k的值為()A.﹣6 B.﹣8 C.﹣9 D.﹣1210.如圖,在⊙O,點A、B、C在⊙O上,若∠OAB=54°,則∠C()A.54° B.27° C.36° D.46°11.如圖,拋物線=與軸交于點,其對稱軸為直線,結合圖象分析下列結論:①;②;③>0;④當時,隨的增大而增大;⑤≤(m為實數),其中正確的結論有()A.2個 B.3個 C.4個 D.5個12.如圖,小彬收集了三張除正面圖案外完全相同的卡片,其中兩張印有中國國際進口博覽會的標志,另外一張印有進博會吉祥物“進寶”.現將三張卡片背面朝上放置,攪勻后從中一次性隨機抽取兩張,則抽到的兩張卡片圖案不相同的概率為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,一條公路的轉彎處是一段圓弧AB,點O是這段弧所在圓的圓心,AB=40m,點C是的中點,且CD=10m,則這段彎路所在圓的半徑為__________m.14.如圖,網格中的四個格點組成菱形ABCD,則tan∠DBC的值為___________.15.函數是關于反比例函數,則它的圖象不經過______的象限.16.關于x的一元二次方程kx2+3x﹣1=0有實數根,則k的取值范圍是_____.17.如圖,正方形OABC與正方形ODEF是位似圖,點O為位似中心,位似比為2:3,點A的坐標為(0,2),則點E的坐標是____.18.在中,已知cm,cm,P是BC的中點,以點P為圓心,3cm為半徑畫☉P,則點A與☉P的位置關系是____________.三、解答題(共78分)19.(8分)如圖,已知、兩點的坐標分別為,,直線與反比例函數的圖象相交于點和點.(1)求直線與反比例函數的解析式;(2)求的度數;(3)將繞點順時針方向旋轉角(為銳角),得到,當為多少度時,并求此時線段的長度.20.(8分)如圖,拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.(1)如圖1,求△BCD的面積;(2)如圖2,P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BD交PC于F,當△CDF的面積與△BEF的面積相等時,求點E和點P的坐標.21.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點,過點D作DH⊥AC于點H.(1)求證:BD=CD;(2)連結OD若四邊形AODE為菱形,BC=8,求DH的長.22.(10分)如圖,在平行四邊形中,連接對角線,延長至點,使,連接,分別交,于點,.(1)求證:;(2)若,求的長.23.(10分)用一塊邊長為的正方形薄鋼片制作成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖①),然后把四邊折合起來(如圖②).若做成的盒子的底面積為時,求截去的小正方形的邊長.24.(10分)為了從小華和小亮兩人中選拔一人參加射擊比賽,現對他們的射擊水平進行測試,兩人在相同條件下各射擊6次,命中的環(huán)數如下(單位:環(huán)):小華:7,8,7,8,9,9;小亮:5,8,7,8,1,1.(1)填寫下表:平均數(環(huán))中位數(環(huán))方差(環(huán)2)小華8小亮83(2)根據以上信息,你認為教練會選擇誰參加比賽,理由是什么?(3)若小亮再射擊2次,分別命中7環(huán)和9環(huán),則小亮這8次射擊成績的方差.(填“變大”、“變小”、“不變”)25.(12分)如圖,中,,以為直徑作,交于點,交的延長線于點,連接,.(1)求證:是的中點;(2)若,求的長.26.如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點D.連接AD,BD.求四邊形ABCD的面積.

參考答案一、選擇題(每題4分,共48分)1、D【分析】在一定條件下,可能發(fā)生也可能不發(fā)生的事件,稱為隨機事件.【詳解】“2020年的6月21日是晴天”這個事件是隨機事件,屬于不確定事件,故選:D.本題主要考查了必然事件、不可能事件、隨機事件的概念.事先能肯定它一定會發(fā)生的事件稱為必然事件,事先能肯定它一定不會發(fā)生的事件稱為不可能事件,必然事件和不可能事件都是確定的.2、D【解析】利用拋物線開口方向得到a>0,利用拋物線的對稱軸在y軸的左側得到b>0,則可對A選項進行判斷;利用x=1時,y=2得到a+b=2﹣c,則a+b+2c﹣2=c<0,于是可對B選項進行判斷;利用拋物線與x軸有2個交點可對C選項進行判斷;利用﹣1<﹣<0可對D選項進行判斷.【詳解】∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的左側,∴a、b同號,即b>0,∴ab>0,故A選項錯誤;∵拋物線與y軸的交點在x軸下方,∴c<0,∵x=1時,y=2,∴a+b+c=2,∴a+b+2c﹣2=2+c﹣2=c<0,故B選項錯誤;∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,故C選項錯誤;∵﹣1<﹣<0,而a>0,∴﹣2a<﹣b,即2a﹣b>0,所以D選項正確.故選:D.本題主要考查二次函數解析式的系數的幾何意義,掌握二次函數解析式的系數與圖象的開口方向,對稱軸,圖象與坐標軸的交點的位置關系,是解題的關鍵.3、A【解析】設C′D′與BC交于點E,如圖所示:∵旋轉角為20°,∴∠DAD′=20°,∴∠BAD′=90°?∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°?70°?90°?90°=11°,∴∠1=∠BED′=110°.故選A.4、D【解析】試題分析:∵∠ACB和∠AOB是⊙O中同弧所對的圓周角和圓心角,且∠AOB=80°,∴∠ACB=∠AOB=40°.故選D.5、B【分析】從題中可以知道,共有5個數,只需求出5個數中為無理數的個數就可以得到答案.【詳解】從,-6,1.2,π,中可以知道

π和為無理數.其余都為有理數.

故從數據,-6,1.2,π,中任取一數,則該數為無理數的概率為,

故選:B.此題考查概率的計算方法,無理數的識別.解題關鍵在于掌握:概率=所求情況數與總情況數之比.6、D【解析】試題分析:直接根據圓周角定理求解.連結OC,如圖,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故選D.考點:圓周角定理.7、D【詳解】解:∵在矩形ABCD中,AC=16,∴AO=BO=CO=DO=×16=1.∵AO=BO,∠AOB=60°,∴AB=AO=1,∴CD=AB=1,∴共有6條線段為1.故選D.8、A【分析】在Rt△AOH中,由∠AOC=60°,解直角三角形求得AH=,然后利用垂徑定理解答即可.【詳解】解:∵OC⊥AB于H,∴AH=BH,在Rt△AOH中,∠AOC=60°,OH=1,∴AH=OH=,∴AB=2AH=2故選:A.本題考查了垂徑定理以及解直角三角形,難度不大,掌握相關性質定理是解題關鍵.9、D【分析】先設D(a,b),得出CO=-a,CD=AB=b,k=ab,再根據△BCE的面積是6,得出BC×OE=12,最后根據AB∥OE,BC?EO=AB?CO,求得ab的值即可.【詳解】設D(a,b),則CO=﹣a,CD=AB=b,∵矩形ABCD的頂點D在反比例函數(x<0)的圖象上,∴k=ab,∵△BCE的面積是6,∴×BC×OE=6,即BC×OE=12,∵AB∥OE,∴,即BC?EO=AB?CO,∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故選D.考點:反比例函數系數k的幾何意義;矩形的性質;平行線分線段成比例;數形結合.10、C【分析】先利用等腰三角形的性質和三角形內角和計算出∠AOB的度數,然后利用圓周角解答即可.【詳解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案為C.本題考查了三角形內角和和圓周角定理,其中發(fā)現并正確利用圓周角定理是解題的關鍵.11、B【分析】根據題意和函數圖象中的數據,利用二次函數的性質可以判斷各個小題中的結論是否正確,從而可以解答本題.【詳解】∵拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0),其對稱軸為直線,∴拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0)和(2,0),且=,∴a=b,由圖象知:a<0,c>0,b<0,∴abc>0,故結論①正確;∵拋物線y=ax2+bx+c(a≠0)與x軸交于點(-3,0),∴9a-3b+c=0,∵a=b,∴c=-6a,∴3a+c=-3a>0,故結論②正確;∵當時,y=>0,∴<0,故結論③錯誤;當x<時,y隨x的增大而增大,當<x<0時,y隨x的增大而減小,故結論④錯誤;∵a=b,∴≤可換成≤,∵a<0,∴可得≥-1,即4m2+4m+1≥0(2m+1)2≥0,故結論⑤正確;綜上:正確的結論有①②⑤,故選:B.本題考查了二次函數圖象與系數的關系,二次函數的性質,掌握知識點是解題關鍵.12、D【分析】根據題意列出相應的表格,得到所有等可能出現的情況數,進而找出滿足題意的情況數,即可求出所求的概率.【詳解】設印有中國國際進口博覽會的標志為“”,印有進博會吉祥物“進寶”為,由題列表為所有的等可能的情況共有種,抽到的兩卡片圖案不相同的等可能情況共有種,,故選:D.本題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.二、填空題(每題4分,共24分)13、25m【分析】根據垂徑定理可得△BOD為直角三角形,且BD=AB,之后利用勾股定理進一步求解即可.【詳解】∵點C是的中點,∴OC平分AB,∴∠BOD=90°,BD=AB=20m,設OB=x,則:OD=(x-10)m,∴,解得:,∴OB=25m,故答案為:25m.本題主要考查了垂徑定理與勾股定理的綜合運用,熟練掌握相關概念是解題關鍵.14、3【解析】試題分析:如圖,連接AC與BD相交于點O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點:3.菱形的性質;3.解直角三角形;3.網格型.15、第一、三象限【解析】試題解析:函數是關于的反比例函數,解得:比例系數它的圖象在第二、四象限,不經過第一、三象限.故答案為第一、三象限.16、k?-94【解析】利用判別式,根據不等式即可解決問題.【詳解】∵關于x的一元二次方程kx2+3x﹣1=1有實數根,∴△≥1且k≠1,∴9+4k≥1,∴k?-94,且故答案為k?-94且本題考查根的判別式,一元二次方程ax2+bx+c=1(a≠1)的根與△=b2﹣4ac有如下關系:①當△>1時,方程有兩個不相等的兩個實數根;②當△=1時,方程有兩個相等的兩個實數根;③當△<1時,方程無實數根.上面的結論反過來也成立.17、(3,3)【分析】根據位似圖形的比求出OD的長即可解題.【詳解】解:∵正方形OABC與正方形ODEF是位似圖,位似比為2:3,∴OA:OD=2:3,∵點A的坐標為(0,2),即OA=2,∴OD=3,DE=EF=3,故點E的坐標是(3,3).本題考查了位似圖形,屬于簡單題,根據位似圖形的性質求出對應邊長是解題關鍵.18、點A在圓P內【分析】求出AP的長,然后根據點與圓的位置關系判斷即可.【詳解】∵AB=AC,P是BC的中點,∴AP⊥BC,BP=3cm,∴AP=cm,∵,∴點A在圓P內.故答案為:點A在圓P內.本題考查了等腰三角形的性質,勾股定理,點與圓的位置關系,關鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內.三、解答題(共78分)19、(1)直線AB的解析式為,反比例函數的解析式為;(2)∠ACO=30°;(3)當為60°時,OC'⊥AB,AB'=1.【分析】(1)設直線AB的解析式為y=kx+b(k≠0),將A與B坐標代入求出k與b的值,確定出直線AB的解析式,將D坐標代入直線AB解析式中求出n的值,確定出D的坐標,將D坐標代入反比例解析式中求出m的值,即可確定出反比例解析式;(2)聯立兩函數解析式求出C坐標,過C作CH垂直于x軸,在直角三角形OCH中,由OH與HC的長求出tan∠COH的值,利用特殊角的三角函數值求出∠COH的度數,在三角形AOB中,由OA與OB的長求出tan∠ABO的值,進而求出∠ABO的度數,由∠ABO-∠COH即可求出∠ACO的度數;(3)過點B1作B′G⊥x軸于點G,先求得∠OCB=30°,進而求得α=∠COC′=60°,根據旋轉的性質,得出∠BOB′=α=60°,解直角三角形求得B′的坐標,然后根據勾股定理即可求得AB′的長.【詳解】解:(1)設直線AB的解析式為y=kx+b(k≠0),將A(0,1),B(-1,0)代入得:解得,故直線AB解析式為y=x+1,將D(2,n)代入直線AB解析式得:n=2+1=6,則D(2,6),將D坐標代入中,得:m=12,則反比例解析式為;(2)聯立兩函數解析式得:解得解得:或,則C坐標為(-6,-2),過點C作CH⊥x軸于點H,在Rt△OHC中,CH=,OH=3,∵tan∠COH=,∴∠COH=30°,∵tan∠ABO=,∴∠ABO=60°,∴∠ACO=∠ABO-∠COH=30°;(3)過點B′作B′G⊥x軸于點G,∵OC′⊥AB,∠ACO=30°,∴∠COC′=60°,∴α=60°.∴∠BOB′=60°,∴∠OB′G=30°,∵OB′=OB=1,∴OG=OB′=2,B′G=2,∴B′(-2,2),∴AB′==1.此題考查了一次函數與反比例函數的交點問題,涉及的知識有:待定系數法確定函數解析式,一次函數與x軸的交點,坐標與圖形性質,勾股定理,以及銳角三角函數定義,熟練掌握待定系數法是解本題的關鍵.20、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分別求出點C,頂點D,點A,B的坐標,如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,證明△BCD是直角三角形,即可由三角形的面積公式求出其面積;(2)先求出直線BD的解析式,設P(a,a2﹣2a﹣3),用含a的代數式表示出直線PC的解析式,聯立兩解析式求出含a的代數式的點F的坐標,過點C作x軸的平行線,交BD于點H,則yH=﹣3,由△CDF與△BEF的面積相等,列出方程,求出a的值,即可寫出E,P的坐標.【詳解】(1)在y=x2﹣2x﹣3中,當x=0時,y=﹣3,∴C(0,﹣3),當x=﹣=1時,y=﹣4,∴頂點D(1,﹣4),當y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角形,∴S△BCD=DC?BC=×3=3;(2)設直線BD的解析式為y=kx+b,將B(3,0),D(1,﹣4)代入,得,解得,k=2,b=﹣6,∴yBD=2x﹣6,設P(a,a2﹣2a﹣3),直線PC的解析式為y=mx﹣3,將P(a,a2﹣2a﹣3)代入,得am=a2﹣2a﹣3,∵a≠0,∴解得,m=a﹣2,∴yPC=(a﹣2)x﹣3,當y=0時,x=,∴E(,0),聯立,解得,,∴F(,),如圖2,過點C作x軸的平行線,交BD于點H,則yH=﹣3,∴H(,﹣3),∴S△CDF=CH?(yF﹣yD),S△BEF=BE?(﹣yF),∴當△CDF與△BEF的面積相等時,CH?(yF﹣yD)=BE?(﹣yF),即×(+4)=(﹣3)(﹣),解得,a1=4(舍去),a2=,∴E(5,0),P(,﹣).此題主要考查二次函數與幾何綜合,解題的關鍵是熟知二次函數的圖像與性質、一次函數的性質及三角形面積的求解.21、(1)見解析;(2)DH=2.【分析】(1)連接AD,根據直徑所對的圓周角是直角,即可求出∠ADB=90°,從而得出AD⊥BC,最后根據三線合一即可證出結論;(2)連接OE,根據菱形的性質可得OA=OE=AE,從而證出△AOE是等邊三角形,從而得出∠A=60°,然后根據等邊三角形的判定即可證出△ABC是等邊三角形,從而求出∠C,根據(1)的結論即可求出CD,最后根據銳角三角函數即可求出DH.【詳解】(1)證明:如圖,連接AD.∵AB是直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD.(2)解:如圖,連接OE.∵四邊形AODE是菱形,∴OA=OE=AE,∴△AOE是等邊三角形,∴∠A=60°,∵AB=AC,∴△ABC是等邊三角形,∴∠C=60°,∵CD=BD=,∴DH=CD?sinC=2.此題考查的是圓周角定理推論、等腰三角形的性質、菱形的性質、等邊三角形的判定及性質和解直角三角形,掌握直徑所對的圓周角是直角、三線合一、菱形的性質、等邊三角形的判定及性質和利用銳角三角函數解直角三角形是解決此題的關鍵.22、(1)見解析;(1)1【分析】(1)由平行四邊形的性質,得,,進而得,,結合,即可得到結論;(2)易證,進而得,即可求解.【詳解】(1)四邊形是平行四邊形,,,,,又∵,,(ASA),;(1)四邊形是平行四邊形,,,,即,∴FG=1.本題主要考查平行四邊形的性質和三角形全等的判定和性質以及相似三角形的判定和性質定理,掌握上述定理,是解題的關鍵.23、截去的小正方形長為【分析】根據題意設截去的小正方形長為,并由題意列方程與解出方程即可.【詳解】解:設截去的小正方形長為,依題意列方程解得:(舍去)答:截去的小正方形長為.本題主要考查正方形的性質和一元二次方程的應用,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論