版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2026屆安徽省六安市數(shù)學(xué)九上期末預(yù)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.已知的直徑是8,直線與有兩個交點,則圓心到直線的距離滿足()A. B. C. D.2.單靠“死”記還不行,還得“活”用,姑且稱之為“先死后活”吧。讓學(xué)生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實感,篇幅可長可短,并要求運用積累的成語、名言警句等,定期檢查點評,選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即鞏固了所學(xué)的材料,又鍛煉了學(xué)生的寫作能力,同時還培養(yǎng)了學(xué)生的觀察能力、思維能力等等,達到“一石多鳥”的效果。如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其左視圖是(
)A. B. C. D.3.如圖,將繞點旋轉(zhuǎn)180°得到,設(shè)點的坐標(biāo)為,則點的坐標(biāo)為()A. B. C. D.4.下列事件中,是必然事件的是()A.?dāng)S一枚質(zhì)地均勻的骰子,向上一面的點數(shù)為偶數(shù)B.三角形的內(nèi)角和等于180°C.不透明袋子中裝有除色外無其它差別的9個白球,1個黑球,從中摸出一球為白球D.拋擲一枚質(zhì)地均勻的硬幣2次,出現(xiàn)1次“正面向上”,1次“反面向上”5.如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F(xiàn)是CD上的一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則下列結(jié)論中:①;②;③tan∠EAF=;④正確的是()A.①②③ B.①②④ C.①③④ D.②③④6.的絕對值是()A. B.2020 C. D.7.對于二次函數(shù)y=2(x+1)(x﹣3),下列說法正確的是()A.圖象過點(0,﹣3) B.圖象與x軸的交點為(1,0),(﹣3,0)C.此函數(shù)有最小值為﹣6 D.當(dāng)x<1時,y隨x的增大而減小8.將拋物線向左平移2個單位后,得到的拋物線的解析式是()A. B.C. D.9.如圖,在矩形ABCD中,對角線AC,BD相交于點O,點E,F(xiàn)分別是AO,AD的中點,若AB=6,BC=8,則△AEF的面積是()A.3 B.4 C.5 D.610.將二次函數(shù)y=2x2﹣4x+5的右邊進行配方,正確的結(jié)果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+3二、填空題(每小題3分,共24分)11.如圖,邊長為的正六邊形在足夠長的桌面上滾動(沒有滑動)一周,則它的中心點所經(jīng)過的路徑長為______.12.如圖,在中,,,把繞點順時針旋轉(zhuǎn)得到,若點恰好落在邊上處,則______°.13.分解因式:4x3﹣9x=_____.14.某種商品每件進價為20元,調(diào)查表明:在某段時間內(nèi)若以每件x元(20≤x≤30,且x為整數(shù))出售,可賣出(30﹣x)件.若使利潤最大,每件的售價應(yīng)為______元.15.如圖,,,△A2B2B3是全等的等邊三角形,點B,B1,B2,B3在同一條直線上,連接A2B交AB1于點P,交A1B1于點Q,則PB1∶QB1的值為___.16.已知x=1是方程x2﹣a=0的根,則a=__.17.拋物線y=﹣x2向上平移1個單位長度得到拋物線的解析式為_____.18.小強同學(xué)從﹣1,0,1,2,3,4這六個數(shù)中任選一個數(shù),滿足不等式x+1<2的概率是_____.三、解答題(共66分)19.(10分)如圖,直線y=x+2與拋物線y=ax2+bx+6相交于A(,)和B(4,m),直線AB交x軸于點E,點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.(1)求拋物線的解析式.(2)連結(jié)AC、BC,是否存在一點P,使△ABC的面積等于14?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.(3)若△PAC與△PDE相似,求點P的坐標(biāo).20.(6分)解方程:(1)x2﹣2x+1=0(2)2x2﹣3x+1=021.(6分)我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為的條件下生長最快的新品種.下圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(°C)隨時間x(小時)變化的函數(shù)圖象,其中段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度的時間有________小時;(2)當(dāng)時,大棚內(nèi)的溫度約為多少度?22.(8分)九年級(1)班的小華和小紅兩名學(xué)生10次數(shù)學(xué)測試成績?nèi)缦卤恚ū鞩)所示:小花708090807090801006080小紅908010060908090606090現(xiàn)根據(jù)上表數(shù)據(jù)進行統(tǒng)計得到下表(表Ⅱ):姓名平均成績中位數(shù)眾數(shù)小華80小紅8090(1)填空:根據(jù)表I的數(shù)據(jù)完成表Ⅱ中所缺的數(shù)據(jù);(2)老師計算了小紅的方差請你計算小華的方差并說明哪名學(xué)生的成績較為穩(wěn)定.23.(8分)如圖,△ABC中,AB=8,AC=6.(1)請用尺規(guī)作圖的方法在AB上找點D,使得△ACD∽△ABC(保留作圖痕跡,不寫作法)(2)在(1)的條件下,求AD的長24.(8分)如圖,AB為⊙O的直徑,AC是弦,D為線段AB延長線上一點,過C,D作射線DP,若∠D=2∠CAD=45o.(1)證明:DP是⊙O的切線.(2)若CD=3,求BD的長.25.(10分)如圖,拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.(1)如圖1,求△BCD的面積;(2)如圖2,P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BD交PC于F,當(dāng)△CDF的面積與△BEF的面積相等時,求點E和點P的坐標(biāo).26.(10分)小明想要測量一棵樹DE的高度,他在A處測得樹頂端E的仰角為30°,他走下臺階到達C處,測得樹的頂端E的仰角是60°.已知A點離地面的高度AB=2米,∠BCA=30°,且B,C,D三點在同一直線上.求樹DE的高度;
參考答案一、選擇題(每小題3分,共30分)1、B【分析】先求出圓的半徑,再根據(jù)直線與圓的位置關(guān)系與d和r的大小關(guān)系即可得出結(jié)論.【詳解】解:∵的直徑是8∴的半徑是4∵直線與有兩個交點∴0≤d<4(注:當(dāng)直線過圓心O時,d=0)故選B.此題考查的是根據(jù)圓與直線的位置關(guān)系求圓心到直線的距離的取值范圍,掌握直線與圓的位置關(guān)系與d和r的大小關(guān)系是解決此題的關(guān)鍵.2、B【解析】根據(jù)左視圖的定義“在側(cè)面內(nèi),從左往右觀察物體得到的視圖”判斷即可.【詳解】根據(jù)左視圖的定義,從左往右觀察,兩個正方體得到的視圖是一個正方形,圓錐得到的視圖是一個三角形,由此只有B符合故選:B.本題考查了三視圖中的左視圖的定義,熟記定義是解題關(guān)鍵.另外,主視圖和俯視圖的定義也是常考點.3、D【分析】點與點關(guān)于點對稱,為點與點的中點,根據(jù)中點公式可以求得.【詳解】解:設(shè)點坐標(biāo)為點與點關(guān)于點對稱,為點與點的中點,即解得故選D本題考查了坐標(biāo)與圖形變換,得出點、點與點之間的關(guān)系是關(guān)鍵.4、B【分析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型.【詳解】解:A、擲一枚質(zhì)地均勻的骰子,向上一面的點數(shù)為偶數(shù)是隨機事件;B、三角形的內(nèi)角和等于180°是必然事件;C、不透明袋子中裝有除色外無其它差別的9個白球,1個黑球,從中摸出一球為白球是隨機事件;D、拋擲一枚質(zhì)地均勻的硬幣2次,出現(xiàn)1次“正面向上”,1次“反面向上”是隨機事件;故選:B.本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.5、A【解析】利用正方形的性質(zhì),得出∠DAN=∠EDC,CD=AD,∠C=∠ADF即可判定△ADF≌△DCE(ASA),再證明△ABM∽△FDM,即可解答①;根據(jù)題意可知:AF=DE=AE=,再根據(jù)三角函數(shù)即可得出③;作PH⊥AN于H.利用平行線的性質(zhì)求出AH=,即可解答②;利用相似三角形的判定定理,即可解答④【詳解】解:∵正方形ABCD的邊長為2,點E是BC的中點,∴AB=BC=CD=AD=2,∠ABC=∠C=∠ADF=90°,CE=BE=1,∵AF⊥DE,∴∠DAF+∠ADN=∠ADN+∠CDE=90°,∴∠DAN=∠EDC,在△ADF與△DCE中,,∴△ADF≌△DCE(ASA),∴DF=CE=1,∵AB∥DF,∴△ABM∽△FDM,∴,∴S△ABM=4S△FDM;故①正確;根據(jù)題意可知:AF=DE=AE=,∵×AD×DF=×AF×DN,∴DN=,∴EN=,AN=,∴tan∠EAF=,故③正確,作PH⊥AN于H.∵BE∥AD,∴,∴PA=,∵PH∥EN,∴,∴AH=,∴PH=∴PN=,故②正確,∵PN≠DN,∴∠DPN≠∠PDE,∴△PMN與△DPE不相似,故④錯誤.故選:A.此題考查三角函數(shù),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),正方形的性質(zhì)難度較大,解題關(guān)鍵在于綜合掌握各性質(zhì)6、B【分析】根據(jù)絕對值的定義直接解答.【詳解】解:根據(jù)絕對值的概念可知:|?2121|=2121,故選:B.本題考查了絕對值.解題的關(guān)鍵是掌握絕對值的概念,注意掌握一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);1的絕對值是1.7、D【分析】通過計算自變量x對應(yīng)的函數(shù)值可對A進行判斷;利用拋物線與x軸的交點問題,通過解方程2(x+1)(x﹣3)=0可對B進行判斷;把拋物線的解析式配成頂點式,然后根據(jù)二次函數(shù)的性質(zhì)對C、D進行判斷.【詳解】解:A、當(dāng)x=0時,y=2(x+1)(x﹣3)=﹣6,則函數(shù)圖象經(jīng)過點(0,﹣6),所以A選項錯誤;B、當(dāng)y=0時,2(x+1)(x﹣3)=0,解得x1=﹣1,x2=3,則拋物線與x軸的交點為(﹣1,0),(3,0),所以B選項錯誤;C、y=2(x+1)(x﹣3)=2(x﹣1)2﹣8,則函數(shù)有最小值為﹣8,所以D選項錯誤;D、拋物線的對稱軸為直線x=1,開口向上,則當(dāng)x<1時,y隨x的增大而減小,所以D選項正確.故選:D.本題考查了二次函數(shù)的圖像和性質(zhì),函數(shù)的最值,增減性,與坐標(biāo)軸交點坐標(biāo)熟練掌握是解題的關(guān)鍵8、A【詳解】解:∵拋物線向左平移2個單位后的頂點坐標(biāo)為(﹣2,0),∴所得拋物線的解析式為.故選A.本題考查二次函數(shù)圖象與幾何變換,利用數(shù)形結(jié)合思想解題是關(guān)鍵.9、A【分析】因為四邊形ABCD是矩形,所以AD=BC=8,∠BAD=90°,,又因為點E,F(xiàn)分別是AO,AD的中點,所以EF為三角形AOD的中位線,推出,,AF:AD=1:2由此即可解決問題.【詳解】解:∵四邊形ABCD是矩形,AB=6,BC=8
∴,∵E,F(xiàn)分別是AO.AD中點,
∴,,AF:AD=1:2,∴△AEF的面積為3,
故選:A.本題考查了相似三角形的判定與性質(zhì)、三角形中位線定理、矩形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于基礎(chǔ)題,中考常考題型.10、C【解析】先提出二次項系數(shù),再加上一次項系數(shù)一半的平方,即得出頂點式的形式.【詳解】解:提出二次項系數(shù)得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+1.故選:C.本題考查二次函數(shù)的三種形式,一般式:y=ax2+bx+c,頂點式:y=a(x-h)2+k;兩根式:y=二、填空題(每小題3分,共24分)11、【分析】首先求得從B到B′時,圓心O的運動路線與點F運動的路線相同,即是的長,又由正六邊形的內(nèi)角為120°,求得所對
的圓心角為60°,根據(jù)弧長公式計算即可.【詳解】解:∵正六邊形的內(nèi)角為120°,∴∠BAF=120°,∴∠FAF′=60°,∴∴正六邊形在桌子上滾動(沒有滑動)一周,則它的中心O點所經(jīng)過的路徑長為:
故答案為:
本題考查的是正六邊形的性質(zhì)及正六邊形中心的運動軌跡長,找到其運動軌跡是解決本題的關(guān)鍵.12、100【分析】作AC與DE的交點為點O,則∠AOD=∠EOC,根據(jù)旋轉(zhuǎn)的性質(zhì),CD=CB,即∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°,再由AB=AC可得∠B=∠ACB=70°即A=40°,再根據(jù)三角和定理即可得∠AOD=180°-40°-40°=100°,即可解答.【詳解】如圖,作AC交DE為O則∠AOD=∠EOC根據(jù)旋轉(zhuǎn)的性質(zhì),CD=CB,∠CDB=∠B=∠EDC=70°,∠B=70°,則∠ADE=180°-2∠B=40°AB=AC∠B=∠ACB=70°∴∠A=40°∠AOD=180°-∠A-∠ADO∠AOD=180°-40°-40°=100°∠AOD=∠EOC∠1=100°本題考查旋轉(zhuǎn)的性質(zhì),解題突破口是作AC與DE的交點為點O,即∠AOD=∠EOC.13、x(2x+3)(2x﹣3)【分析】先提取公因式x,再利用平方差公式分解因式即可.【詳解】原式=x(4x2﹣9)=x(2x+3)(2x﹣3),故答案為:x(2x+3)(2x﹣3)本題考查了提公因式法與公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.14、3【解析】試題分析:設(shè)最大利潤為w元,則w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴當(dāng)x=3時,二次函數(shù)有最大值3,故答案為3.考點:3.二次函數(shù)的應(yīng)用;3.銷售問題.15、【分析】根據(jù)題意說明PB1∥A2B3,A1B1∥A2B2,從而說明△BB1P∽△BA2B3,△BB1Q∽△BB2A2,再得到PB1和A2B3的關(guān)系以及QB1和A2B2的關(guān)系,根據(jù)A2B3=A2B2,得到PB1和QB1的比值.【詳解】解:∵△ABB1,△A1B1B2,△A2B2B3是全等的等邊三角形,∴∠BB1P=∠B3,∠A1B1B2=∠A2B2B3,∴PB1∥A2B3,A1B1∥A2B2,∴△BB1P∽△BA2B3,△BB1Q∽△BB2A2,∴,,∴,,∵,∴PB1∶QB1=A2B3∶A2B2=2:3.故答案為:.本題考查了相似三角形的判定和性質(zhì),等邊三角形的性質(zhì),平行線的判定,正確的識別圖形是解題的關(guān)鍵.16、1【分析】把x=1代入方程x2﹣a=0得1﹣a=0,然后解關(guān)于a的方程即可.【詳解】解:把x=1代入方程x2﹣a=0得1﹣a=0,解得a=1.故答案為1.本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.17、y=﹣+1【分析】直接根據(jù)平移規(guī)律作答即可.【詳解】解:拋物線y=﹣x2向上平移1個單位長度得到拋物線的解析式為y=﹣x2+1,故答案為:y=﹣x2+1.本題考查了函數(shù)圖像的平移.要求熟練掌握平移的規(guī)律:左加右減,上加下減,并用規(guī)律求解析式.18、【分析】首先解不等式得x<1,然后找出這六個數(shù)中符合條件的個數(shù),再利用概率公式求解.【詳解】解:∵x+1<2∴x<1∴在﹣1,0,1,2,3,4這六個數(shù)中,滿足不等式x+1<2的有﹣1、0這兩個,∴滿足不等式x+1<2的概率是,故答案為:.本題考查求概率,熟練掌握概率公式是解題的關(guān)鍵.三、解答題(共66分)19、(1)y=2x2﹣8x+6;(2)不存在一點P,使△ABC的面積等于14;(3)點P的坐標(biāo)為(3,5)或(,).【分析】(1)由B(4,m)在直線y=x+2上,可求得m的值,已知拋物線圖象上的A、B兩點坐標(biāo),可將其代入拋物線的解析式中,通過待定系數(shù)法即可求得解析式;(2)設(shè)出P點橫坐標(biāo),根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標(biāo),進而得到關(guān)于PC的長度與P點橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)三角形面積公式列出方程,即可解答;(3)根據(jù)△PAC與△PDE相似,可得△PAC為直角三角形,根據(jù)直角頂點的不同,有3種情形,分類討論,即可分別求解.【詳解】(1)∵B(4,m)在直線y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,),B(4,6)在拋物線y=ax2+bx+6上,∴,解得,∴拋物線的解析式為y=2x2﹣8x+6;(2)設(shè)動點P的坐標(biāo)為(n,n+2),則C點的坐標(biāo)為(n,2n2﹣8n+6),∵點P是線段AB上異于A、B的動點,∴,∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4,假設(shè)△ABC的面積等于14,則PC?(xB﹣xA)=14,∴,即:2n2﹣9n+12=0,∵△=(-9)2﹣4×2×12<0,∴一元二次方程無實數(shù)解,∴假設(shè)不成立,即:不存在一點P,使△ABC的面積等于14;(3)∵PC⊥x軸,∴∠PDE=90°,∵△PAC與△PDE相似,∴△PAC也是直角三角形,①當(dāng)P為直角頂點,則∠APC=90°由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;②若點A為直角頂點,則∠PAC=90°.如圖1,過點A(,)作AN⊥x軸于點N,則ON=,AN=.過點A作AM⊥直線AB,交x軸于點M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設(shè)直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=2x2﹣8x+6②聯(lián)立①②式,解得:或(與點A重合,舍去),∴C(3,0),即點C、M點重合.當(dāng)x=3時,y=x+2=5,∴P1(3,5);③若點C為直角頂點,則∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴拋物線的對稱軸為直線x=2.如圖2,作點A(,)關(guān)于對稱軸x=2的對稱點C,則點C在拋物線上,且C(,).當(dāng)x=時,y=x+2=.∴P2(,).∵點P1(3,5)、P2(,)均在線段AB上,∴綜上所述,若△PAC與△PDE相似,點P的坐標(biāo)為(3,5)或(,).本題主要考查二次函數(shù)的圖象和性質(zhì)與三角形的綜合問題,掌握二次函數(shù)的待定系數(shù)法,平面直角坐標(biāo)系中,三角形的面積公式,相似三角形的判定和性質(zhì)定理,以及分類討論和數(shù)形結(jié)合思想,是解題的關(guān)鍵.20、(1)x1=x2=1;(2)x1=1,x2=【分析】(1)利用配方法解一元二次方程即可得出答案;(2)利用十字相乘法解一元二次方程即可得出答案.【詳解】解:(1)x2﹣2x+1=0(x-1)2=0∴x1=x2=1(2)2x2﹣3x+1=0(2x-1)(x-1)=0∴x1=1,x2=本題考查的是解一元二次方程,解一元二次方程主要有以下幾種解法:直接開方法、配方法、公式法和因式分解法.21、(1)8;(2).【分析】找出臨界點即可.【詳解】(1)8;∵點在雙曲線上,
∴,
∴解得:.
當(dāng)時,,
所以當(dāng)時,大棚內(nèi)的溫度約為.理解臨界點的含義是解題的關(guān)鍵.22、(1)見解析;(2)小華的方差是120,小華成績穩(wěn)定.【分析】(1)由表格可知,小華10次數(shù)學(xué)測試中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根據(jù)加權(quán)平均數(shù)的公式計算小華的平均成績,將小紅10次數(shù)學(xué)測試的成績從小到大排列,可求出中位數(shù),根據(jù)李華的10個數(shù)據(jù)里的各數(shù)出現(xiàn)的次數(shù),可求出測試成績的眾數(shù);
(2)先根據(jù)方差公式分別求出兩位同學(xué)10次數(shù)學(xué)測試成績的方差,再比較大小,其中較小者成績較為穩(wěn)定.【詳解】(1)解:(1)小華的平均成績?yōu)椋海?0×1+70×2+1×4+90×2+100×1)=1,
將小紅10次數(shù)學(xué)測試的成績從小到大排列為:60,60,60,1,1,90,90,90,90,100,第五個與第六個數(shù)據(jù)為1,90,所以中位數(shù)為=85,
小華的10個數(shù)據(jù)里1分出現(xiàn)了4次,次數(shù)最多,所以測試成績的眾數(shù)為1.
填表如下:姓
名平均成績中位數(shù)眾數(shù)小華11小紅85(2)小華同學(xué)成績的方差:S2=[102+02+102+02+102+102+02+202+202+02]
=(100+100+100+100+400+400)
=120,
小紅同學(xué)成績的方差為200,
∵120<200,
∴小華同學(xué)的成績較為穩(wěn)定.本題考查平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.23、(1)見圖(2)AD=.【解析】(1)圖形見詳解,(2)根據(jù)相似列比例式即可求解.【詳解】解:(1)見下圖(2)∵△ACD∽△ABC,∴AC:AB=AD:AC,∵AB=8,AC=6,∴AD=.本題考查了尺規(guī)作圖和相似三角形的性質(zhì),中等難度,熟悉尺規(guī)作圖步驟和相似三角形的性質(zhì)是解題關(guān)鍵.24、(1)見解析;(2)【分析】(1)連接OC,根據(jù)等腰三角形的性質(zhì),三角形的內(nèi)角和與外角的性質(zhì),證得∠OCD=90°,即可證得DP是⊙O的切線;(2)根據(jù)等腰直角三角形的性質(zhì)得OB=OC=CD=3,而∠OCD=90o,最后利用勾股定理進行計算即可.【詳解】(1)證明:連接OC,
∵OA=OC,
∴∠CAD=∠ACO,
∴∠COD=2∠CAD=45°,
∵∠D=2∠CAD=45o,∴∠OCD=180°-45°-45°=90°,
∴OC⊥CD,∴DP是⊙O的切線;(2)由(1)可知∠CDO=∠COD=45o∴OB=OC=CD=3∵∠OCD=90o∴,∴BD=OD-OB=本題考查了切線的性質(zhì),等腰三角形的判定與性質(zhì),勾股定理,熟練掌握切線的性質(zhì)是解題的關(guān)鍵.25、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分別求出點C,頂點D,點A,B的坐標(biāo),如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 出入院護理應(yīng)急預(yù)案
- 2025年辦公室裝修工程合同
- 在線課程質(zhì)量標(biāo)準(zhǔn)
- 弧菌屬氣單胞菌屬和鄰單胞菌屬教育課件
- 2026 年中職康復(fù)技術(shù)(肢體康復(fù))試題及答案
- 二建全國題目及答案
- 城市軌道交通給排水系統(tǒng)及檢修課件 第20講 技術(shù)要求
- 2025年海南省公需課學(xué)習(xí)-生態(tài)環(huán)境損害賠償制度改革方案解析685
- 2025年安全生產(chǎn)知識問答題及答案(共70題)
- 云藝??嫉袼苷骖}及答案
- 2025年居家養(yǎng)老助餐合同協(xié)議
- 石材行業(yè)合同范本
- 生產(chǎn)性采購管理制度(3篇)
- 2026年遠(yuǎn)程超聲診斷系統(tǒng)服務(wù)合同
- 中醫(yī)藥轉(zhuǎn)化研究中的專利布局策略
- COPD巨噬細(xì)胞精準(zhǔn)調(diào)控策略
- 網(wǎng)店代發(fā)合作合同范本
- 心源性休克的液體復(fù)蘇挑戰(zhàn)與個體化方案
- 九師聯(lián)盟2026屆高三上學(xué)期12月聯(lián)考英語(第4次質(zhì)量檢測)(含答案)
- 2022年《內(nèi)蒙古自治區(qū)建設(shè)工程費用定額》取費說明
- 淺孔留礦法采礦方法設(shè)計
評論
0/150
提交評論