版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AIinretailfortheagenticera:Aspirationtoaction
September2025
AIinretailfortheagenticera:Aspirationtoaction
Tableofcontents
Foreword04
Introduction05
Industrylandscape05
KeythemesdrivingAIadoptionintheretailspace05
EmergingtechsupplycatalystsenablingAIadoption06
EvolutionofAIinretail07
Industry-leadingillustrations10
AI-ledinnovationsshapingtheretailindustry11
KeyprinciplesofsuccessfulAIimplementation12
Approachandexecutionframework13
Wayforwardandstrategicimplications15
Connectwithus16
03
AIinretailfortheagenticera:Aspirationtoaction
Foreword
AsIndia’sretailsectorapproachesUS$2trillionby2030,the
roleoftechnology,particularlyartificialintelligence(AI),isnolongerperipheral.Technologyhasafoundationalrolenow.ForChiefExperienceOfficersandtechnologyleaders,thismomentpresentsastrategicinflexionpoint:theshiftfromdigital
enablementtoagentictransformation.
Thisreportoffersaforward-lookinglensintohowAIis
redefiningtherulesofengagement,operationsandinnovationacrosstheretailvaluechain.Fromintelligentagentsthat
autonomouslymanagecustomerjourneystoAI-powered
platformsthataccelerateproductdesignandsupplychainresponsiveness,theusecasesoutlinedhereareaspirationalyetactionable.
Forbusinessleaders,theimperativeisclear:AImustbe
embeddedintothecoreofenterprisestrategy.Thismeans
investinginscalabledatainfrastructure,nurturingcross-
functionalcollaborationandadoptingatest-and-learnmindsettodrivecontinuousinnovation.Fortechnologyleaders,the
challengeliesinarchitectingresilient,cloud-nativeecosystemsthatsupportreal-timeintelligence,whileensuringresponsibleAIpracticesthatupholdtransparency,fairnessandprivacy.
Thisreportofferspracticalinsightstohelpleadershipteamsmovebeyondpilotsandexperiments,towardsscalable
executionandrealimpact.WhetheryouareaChiefExecutiveOfficershapinglong-termstrategy,aChiefTechnologyOfficerbuildingplatformcapabilitiesoraChiefDigitalOfficerleading
omnichanneltransformation;thisreportservesasastrategicguidefornavigatingtheevolvingretaillandscape
AIisacatalystforreimaginingretailandthetimetoleadthere-imaginationisnow!
AnandRamanathan
PartnerandConsumerIndustryLeaderDeloitteIndia
PraveenGovindu
Partner
DeloitteIndia
MoumitaSarker
Partner
DeloitteIndia
04
AIinretailfortheagenticera:Aspirationtoaction
05
Introduction
India’sretailsectorisoneofthemostdynamicintheworld.Itiscurrentlyvaluedat≈US$1trillionandcontributestoover10percentofthecountry,sGrossDomesticProduct(GDP),whileemployingnearly8percentoftheworkforce.1Thissectoris
projectedtoalmostdoubletoUS$1.9trillionby2030,2drivenbyrisingincomes,urbanisationandevolvingconsumer
preferences.Therapidtransformationispoweredbyrobustdomesticconsumptionalongsideasurgeindigitaladoption,premiumisationandtherapidriseofe-commerceacrossbothurbanandemergingmarkets.
Between2020and2024,India’sretailande-commerce
sectorshavesignificantlyincreasedinvestmentsinartificial
intelligence(AI)toenhancecustomerexperiences,optimise
operationsanddrivesalesgrowth.Theretailsectorisenteringatransformativeeradefinedbytechnology-driven,sustainableandhyper-personalisedconsumerexperiences.
Industrylandscape
AI-driventransformation,evolvingconsumerhabitsand
structuralshiftsareunlockingnewgrowthavenuesforIndia’sretailsector.Demographics,technologyandpolicychangesarereshapinghowandwhereconsumersshop,drivingthenext
phaseofretailevolution.
KeythemesdrivingAIadoptionintheretailspace
Riseofthechannel-agnosticshopper
Consumerbehaviourisshiftingawayfromsingle-channel
interactions.Today’sconsumerischannel-agnostic,expectingseamlessexperiencesandhandoffsacrossofflineandonlinetouchpoints.Inresponse,retailersareincreasinglyturningtoAI-poweredsolutionstointelligentlyintegratejourneys,hyper-personaliseengagementandoptimiseoperationsacrossthefullspectrumofchannels.
Digitalisationande-commerceboom
E-commerceisprojectedtoreachINR27trillionby2030,3
drivenbydigitalaccess,easeofpaymentsandimmersive
experiences.Quickcommerceandsocialcommercearegaining
Indianretailmarketbychannel(inUS$billion)
~1,930
~1,010
8%
80%
12%
17%
12%
71%
20232030
GeneralTradeModerntradeE-commerceSource:FICCIMassmerize2025report
traction,especiallyinsmallercities.Consumersnowexpect
convenience,speedandpersonalisationacrossplatforms.4AIisplayingakeyrolebyhelpingbrandspredictpreferences,
personaliseoffersandautomatecustomerservicetomakeshoppingsmarterandfaster
Urbanisationandchangingfamilydynamics
India’surbanpopulationisexpectedtoreach40percentby2030,5withoverhalfofthehouseholdsbeingnuclear.Thisshiftisexpandingthebaseoffirst-timeusersofbrandedandconvenience-ledproducts.Retailersmustadapttoevolvingurbanlifestylesandconsumptionpatterns.6
Growthofomnichannelretailing
Retailersaremovingtowardsintegratedomnichannelmodelstomeetevolvingconsumerexpectations.Shoppersdemandseamlesstransitionsacrossonline,appandin-storejourneys.Thisshiftenhancescustomersatisfaction,loyaltyand
repeatpurchases.7AIisenablingretailerstotrackcustomerbehaviouracrosschannels,personaliseinteractionsinrealtimeandoptimiseinventoryanddeliverysystems.
1
/news/industry/india-set-to-become-3rd-largest-economy-by-2030-driven-by-demographic-dividend
-report/99460554
2
/news/economy/indicators/india-poised-to-become-third-largest-consumer-market-wef/articleshow/67450935.cms
3Deloittereport
4FICCImasmerizereport
5
.in/PressReleaseIframePage.aspx?PRID=2042542
6FICCImassmerizereport
7FICCImassmerizereport
AIinretailfortheagenticera:Aspirationtoaction
06
Growingdemandforcustomisedandsustainableproducts
Consumersincreasinglyseekpersonalised,region-specificandsustainableofferings.ThisisdrivingStockKeepingUnit(SKU)proliferationandtheneedforefficientinventorymanagement.MillennialsandGenZareleadingdemandforvalue-aligned,
expressiveandlimited-editionproducts.8
Premiumisationleadinggrowth
Risingincomesandglobalexposureareaccelerating
premiumisationacrossconsumersegments.Super-rich
householdsareexpectedtogrow5xby2030,withrising
demandevenintier2–4cities.Onlineplatformsareenablingaccesstopremiumandglobal-qualityproducts.9
EmergingtechnologiesinAI
RetailersareadoptingAIandanalyticstoenhancecustomer
experienceandoperationalefficiencyacrossretailvaluechain.Technologiessuchasvirtualtrials,self-checkoutsandsmart
inventorysystemsarebecomingmainstream.10
Increasingspendingpowerofcustomers
Themiddle-incomesegmentisgrowingrapidly,fuelling
discretionaryandaspirationalspendingonfashion,electronicsandbeauty.GenZ,withprojectedspendingofUS$250Bby
2025,11isreshapingconsumptiontrends.Theirdigitalfluencyandevolvingpreferencesdemandagilebrandstrategies.12
EmergingtechsupplycatalystsenablingAIadoption
AdvancesinLargeLanguageModels(LLMs)13
BreakthroughsinLLMshavegivenAImuchdeeper
contextualunderstandingandlanguagefluency,enabling
morehuman-likeinteractions.RetailerscandeployadvancedgenerativeAI(GenAI)chatbotswhoseconversational
abilitiesmakethemeffectivesmart-shoppingassistantsandcustomerserviceagents.Withsupportfor18+languages,
thesemodelscanengagediversecustomerbasesseamlessly.Byofferingmorenatural,personaliseddialogueswith
customers;theseimprovedmodelsareacceleratingAIuseinsalesandsupport.
Decliningcomputecostsandcloud-nativeAIservices
Reducedcomputingcostsandtheubiquityofcloud-nativeAIservicesareloweringbarrierstoadoptingscalableAI.
ThepriceofusingadvancedAImodelshasreduced,for
example,somegenerativelanguagemodelApplication
programminginterface(API)costshavedropped
significantlyinthepastyear,makingexperimentationfarmoreaffordable.Meanwhile,majorcloudprovidersnowofferscalable,pay-as-you-goAIplatforms,allowingevenmid-tierretailerstoimplementAIsolutionswithoutheavyupfrontinfrastructureinvestments.14
8FICCImassmerizereport
9FICCImassmerizereport
10FICCImassmerizereport
11
/gen-zs-collective-spending-power-reaches-860-billion-snap-inc-and-bcgs-india-first-report/
12FICCImassmerizereport
13TheLatestAdvancementsinLargeLanguageModels:Cap,Medium,July2025
14Indiaofferscomputeatone-fifthofglobalpricesforAI,MoneyControl
AIinretailfortheagenticera:Aspirationtoaction
07
Improveddatainfrastructureandintegration
Companieshaveinvestedinrobustdatainfrastructurethat
enablesAIatscale.Moderndataplatformsandintegration
toolsbreakdownsilostoprovideasingle,high-qualityview
ofcustomersandinventoryacrosschannels.Thisstrongdatafoundation,withenterprisedatalakes,real-timedatapipelinesandbetterdatagovernance,ensuresAImodelscanbefedrich,unifieddatasets;improvingtheiraccuracyandimpactinretailusecases.15
Open-sourceAItoolsandpre-trainedmodels
Theopen-sourceAIecosystemhasmadecutting-edge
modelsandtoolswidelyaccessible.Pre-trainedmodels
haverapidlyimprovedandisnowclosingtheperformance
gapwithproprietaryAIsystems.Businessesareembracingtheseopensolutionsfortheirflexibilityandlowercosts.Withhigh-performingmodelsandlibrariesavailableforfreeoratlowcost,evensmallerretailerscanimplementadvancedAIcapabilities,democratisinginnovationacrosstheindustry.16
Growthofedgecomputingandreal-timeprocessing
Retailersarelikelytoincreasetheuseofedgecomputing
torunAIalgorithmsinrealtimeatstoresanddistributioncentres.Processingdatalocally(forexample,adigitalmenu
carddynamicallypresentinghyper-personaliseddiscountsandproductofferingstailoredtoeachconsumerpersona,analysingvideofromin-storecamerasforautomated
checkoutorshelfanalytics)minimiseslatencyandcloud
bandwidthuse,enablinginstantinsightsontheshopfloor.
CompanieshavealreadyadoptedAI-poweredcomputer
visionsystemscombiningcameraswithedgeAIprocessing.
Suchedgeinfrastructuremakeslarge-scale,real-timeretailAIdeploymentspracticalandresilient,fromsmartstorestosupplychainoptimisations.17
AI-focusedhardwareinnovations
SpecialisedAIhardware,fromadvancedGraphicsProcessingUnits(GPUs)tocustomAIaccelerators,isdramatically
boostingtheperformanceandefficiencyofAIworkloads.
Ongoingchipinnovationsmeanmodelscanbetrainedtorunfasterandmorecost-effectivelythanever.Forexample,newpurpose-builtchipswilldeliverhigherthroughputwithlowercostperinferencecomparedwithprior-generationhardware.Inretail,thistranslatesintocapabilitiessuchasreal-time
computervisionforautomatedcheckoutsystemsorhigh-speedrecommendationenginesthatpersonaliseoffers
instantlyduringonlineshoppingsessions.ThesehardwaregainsaremakingcomputationallyintensiveAIapplicationseconomicallyviableatscaleforretailers,furtherpropellingAIadoption.
EvolutionofAIinretail
HowAladvancementsareenablingtheshiftsinretailindustry
Drivenby…
?Alinretailhasevolvedfromstatistical
analysisforcampaignsandproductlaunchestoadvancedmachinelearningforchurn
prediction,customersegmentation,anddemandforecasting.
?Deeplearningapplicationsnowsupportvisualrecognitionandvirtualtry-ons,enhancingcustomerinteraction.
?TheemergenceofGenerativeAland
AgenticAlisdrivingashifttowardshyper-personalizedcontent,productdesign,andautomated,agent-ledprocessmanagement.
?Theseadvancementsimprovecustomer
experience,operationalefficiency,and
enabledata-drivendecision-makingacrossretailfunctions.
Statistics
Descriptiveanddiagnostic
Machinelearning
Predictiveandprescriptive
Deeplearning
Computervision
GenerativeAI
Hyperpersonalisation,Contentcreation
AgenticAI
Automatedprocessmanagement
15Low-costIndiaseenaspotentialregionalhubindatacentreboom,FinancialTimes
16TheGapBetweenOpenandClosedAIModelsMightBeShrinking.Here’sWhyThatMatters,Time
17TheRiseofEdgeComputinginRetail:TransformingStoreOperationsandCustomerExperience,Medium
AIinretailfortheagenticera:Aspirationtoaction
08
AIadoptioninretailhasevolvedfrombasicanalyticsto
advancedmachinelearninganddeeplearningapplications,
enhancingbothcustomerengagementandoperational
efficiency.TheemergenceofGenAIandAgenticAIisnow
drivinginnovativeproductdesignandautonomousprocess
management,thustransformingtheretailvaluechain.IndiasAIspendingisalsosettotriple,risingfromUS$78billionin
FY23toUS$2022billionbyFY27E,growingat3035percentannually.Thissurgereflectsthecountry’srisingadoptionofAIacrosssectors.
WhyshouldretailcompaniesinvestinAI18,19,20
AIisemergingasacriticalenablerforvaluerealisationinretail.ByinvestinginAI,companiescanunlockmeasurableimprovementsacrossthreedimensions:Efficiency,
ExperienceandIntelligence.
India'sspendingonAI,2023–27(US$billion)
20–22
+30–35%
7–8
FY23FY27E
Source:AttractingAIDataCentreInfrastructureInvestmentinIndia
Efficiency–Doingmorewithless
2
3
4
5
6
7
8
9
1Automateprocessestoreducemanualinterventionandstreamlineworkflows
Optimisecostsacrossoperations,logisticsandback-endfunctions
Driveconsistencybystandardisingoutcomesandreducingvariability
ReduceFull-TimeEquivalents(FTEs)throughautomation,enablingredeploymentofstafftohigher-valuetasks
Removewastebyimprovingresourceutilisationandminimisinginefficiencies
Improvespeedincoreprocessessuchassupplychain,merchandisingandreporting
Profitabilityandmarginimprovementbyloweringselling,generalandadministrativeexpensesandcostofgoodssoldaspercentageofrevenue
Qualityimprovementbyreducingerrorscausedbyhumanintervention
Leadtimereduction,e.g.fastermonth-endfinancialreporting
18DeloitteAnalysis
19VoiceAImovesbeyondscriptsasIndianfirmstapmultilingualbots,EconomicTimes
20TheAIAdoptionRealityCheck:FirmswithAIStrategiesareTwiceasLikelytoseeAI-drivenRevenueGrowth;ThoseWithoutRiskFallingBehind,ThomsonReuters
AIinretailfortheagenticera:Aspirationtoaction
09
Experience–Creatingfit-for-purposeinteractions
Personalisecontenttodelivertargetedoffersandrecommendations
1
Enhancequalityandoutcomesofcustomerinteractions,ensuringsatisfaction
2
Amplifycreativityinmarketingcampaignsandproductinnovation
3
Simplifyinteractionsacrossdigitalandphysicaltouchpointsforseamlessjourneys
4
Differentiateservicestostandoutincompetitivemarkets
5
Consumerandchannelcentricity,supportedbyreal-timecustomersupport
6
EmployeeengagementthroughAI-botsprovidingquickqueryresolution
7
Newdigitalproductsandservices,suchasdynamicadpricingtailoredtotimeslots
8
Intelligence–Strengtheningdata-drivendecisionmaking
Generatenewinsightsbyminingenterpriseandconsumerdata
1
Improveadaptabilitybyrespondingswiftlytoshiftingmarketconditions
2
Improvedecision-makingwithpredictiveandprescriptiveanalytics
3
AugmentworkforceskillsbyequippingemployeeswithAI-driventools
4
Future-prooftechnologiesbuiltonpivotal,fit-for-purposearchitectures
5
Businessmodelagilitywithfastertime-to-marketfornewofferings
6
Work,workforceandworkplaceofthefuture,leveragingvirtual,automatedandaugmentedworkforces.
7
AIinretailfortheagenticera:Aspirationtoaction
10
Industry-leadingillustrations
ThewidespreaduseofAIisrapidlyreshapingIndia’sretailsectorenablingbusinessestodeliverpersonalisedconsumer
experiences,optimiseoperationsandscalewithagility.LeadingplayersacrosscategoriesareapplyingAIindifferentiatedwaystostrengthencompetitivenessandresilience.BelowareafewcasestudiesthatillustratehowIndia’sretailecosystemismovingbeyondpilot-stageexperimentationtoscaledAI-driventransformation.
LeadingAIstartup
?BuildingLLMsforIndianlanguages,enablinginclusive,localisedconsumerengagement21
?Partneringwithretailerstolaunchvoice-basedAIassistants,improvingaccessibilityandcustomerserviceacrossdiversedemographics
Leadingretailconglomerate
?DeployingAI-poweredcustomeranalyticstopersonaliseoffersandoptimiseassortmentacrossitsmulti-formatstorenetwork22
?UsingAI-drivensupplychainoptimisationtoimproveinventoryturnoverandstreamlinedistributionacrosschannels
Leadingglobale-commercemarketplace
?LaunchedaGenAI-poweredconversationalassistantwithinitsapptoenhancetheonlineshoppingjourney
?Theassistantoffersreal-timeanswers,productsuggestionsandinsights,suchasreviewsandtrends,tohelpcustomersmakeinformeddecisions23
Leadingonlinefooddeliveryaggregator
?UsingAIalgorithmstodeliverpersonalisedmealrecommendations,analysingpastorders,preferencesandlocationtoenhancecustomerexperienceandboostengagement24
?Adedicatedin-appAIchatbotforpremiumsubscribersassistswithfoodandbeveragequeries,offeringtailoredsuggestionsandhelpingusersdecidetheirnextorder
21NetscribesArtificialIntelligenceinRetail&E-commerceReport
22NetscribesArtificialIntelligenceinRetail&E-commerceReport
23NetscribesArtificialIntelligenceinRetail&E-commerceReport
24NetscribesArtificialIntelligenceinRetail&E-commerceReport
AIinretailfortheagenticera:Aspirationtoaction
11
AI-ledinnovationshapingtheretailindustry
Usecasesacrossthevaluechain
BrandandmarketingProductdesignOperationalexcellence
AIshoppingconcierge
Postpurchaseservice
agent
Marketingcontentgeneration
Consumerinsightsgeneration
VOCsentiment&themeidentification
Marketingmixmodel
Recommendation
engine
Churnprediction&feedbackanalysis
Designvalidationagent
Rapidprototyping
agent
Productdesign/Image
generator
Retailoperations
Salesforceagent
Staffingadvisoragent
Automatedstafftraining
Storelayoutsimulation
Salesscriptgeneration
Storeperformanceanalytics
Smartstore
Locationintelligencefornextstore
AgenticAIuse-cases
Inventoryassortment
Forecasting
Productpricing
AIuse-cases
Merchandising
Assortmentstrategy
agent
Allocationautomation
agent
Qualitycheckagent
Competitorintelligencesummarisation
Knowledgemanagement
SOPgenerator
Newproductdevelopment
Featureanalytics
SKUrationalisation
GenAIuse-cases
Workflowautomation
P2Pprocessautomation
Efficiencymonitoring
Trainingmaterial
generator
FAQautomation
Investorsummarypackgenerator
HR–Employee
retentionprediction
Frauddetection
Routeplanningandoptimisation
AI-driveninnovation,fueledbyreal-timecontentgenerationthroughGenAI,theemergenceofintelligentagentsand
acceleratedresponsetimes,hascatalysedashiftintheretailindustry.Theseadvancementshavesignificantlyenhancedtheomnichannelcustomerexperience,enabledacceleratedproductturnoverandfacilitatedautomatedissueresolutionthroughagent-ledprocesses,collectivelydrivingrevenue
growthandoperationalefficiency.
1.Hyper-personalisedmarketingcontentgenerationformicro-segments
GenAIhassignificantlyacceleratedandstreamlinedthecreationofhyper-personalisedmarketingcontent.
Thisadvancementenablesmarketerstoengagemicro-segmentswithmoreprecise,tailoredandimpactful
communications.AsindustryconfidenceinGenAIgrows,itsadoptioncontributestohighercampaignconversionrates,ultimatelydrivingsales.
2.Aidedpurchases–ChatbottoAIagentjourney
AIagentshavebolsteredautomation,markinga
progressionfrombasicchatbotstoAI-drivenagents.Whiletraditionalchatbotsprimarilyrespondtoqueriesand
sharedinformation,modernAIagentsactivelysupporttheentirepurchasejourney,ensuringaseamlessanduninterruptedexperience.
Theseagentsengagewithcustomersthrough
intelligentinteraction,offeringpersonalisedproduct
recommendations,targetedpromotionsandfacilitatingtransactioncompletions.Thisevolutionhasmadethe
omnichannelexperiencemoreintegratedandresponsive,directlycontributingtoincreasedsalesandcustomer
satisfaction.
AIinretailfortheagenticera:Aspirationtoaction
12
3.ImprovingcustomerexperiencethroughenhancedresponsespeedenabledbyAIagents
TheadoptionofAIagentshassignificantlyimproved
responsetimesforcustomerfeedbackanddispute
resolution.Usingenterprise-wideknowledgesearch,
theseagentsprovideaone-stopsolutionforswiftlyandaccuratelyaddressingcustomerconcerns.
AIagentsarecapableofindependentlyengagingwith
customers,understandingqueries,identifyingappropriateresolutions,executingnecessaryactionsandclosingthe
loop,minimisingtheneedforhumaninterventionandreducingresponsedelays.
4.Acceleratingfasterproductturn-around
Consumerstodayexhibitlowtoleranceforextended
waitingtimesfornewproducts,drivenbytheriseofquickcommerce.Inresponse,retailersareusingAItoaccelerateproductturnovercyclesthroughatwo-stepapproach:
identifyingemergingmarkettrendsandexpeditingsupplytostores.
Forinstance,fashionretailersutiliseAI-poweredinsightsandtrend-spottingtoolsthatanalysedatafromfashionblogs,socialmedia,magazinesandcustomerfeedback.
Theseinsightssupportdesignersinshorteningdesign
cyclesandrunningsimulations.Concurrently,integrated
supplychainsemploymachinelearning-basedoptimisationalgorithmsandadvanceddemandforecastingtoensure
fasterinventoryreplenishment.
5.Next-genAI-poweredbusinessinsights
Sourcesincludinginternalsales,customerfeedback,competitiveintelligenceandweb-basedinformation
intoaunifiedplatform.ByusingGenAIandintelligent
agents,itdeliversproactive,actionableinsightsatbusinessleaders’fingertipsandoffersaninteractivelayerfor
deeperanalysis.
Byacceleratingtheinsight-to-actioncycle,thisplatform
empowersbusinessleaderstomakefaster,moreinformeddecisions,usheringinaneweraofdata-drivenbusiness
intelligence.
6.AI-Drivendeadstockliquidationagent
AnautonomousAIagentmonitorsSKUvelocityand
inventoryageinginrealtime,triggeringproactive
liquidationstrategiessuchasmicro-bundling,segmenteddiscountingandchannelre-routing.Itcontinuouslylearnsfrompastoutcomestooptimisefutureactions.Thisinturnacceleratesliquidationcycles,improvesmarginrecovery,reducesinventory-relatedworkingcapitalandsupports
Environment,SustainabilityandGovernance(ESG)goalsbyminimisingwaste.
7.DigitalTwinformerchandisingassortmentsimulation
AI-poweredDigitalTwinssimulateeachstore’slayout,
capacity,demographicsandSKUhistory,enabling
merchandiserstotestassortmentchanges.Reinforcementlearningrecommendsoptimal,store-specificmixesto
maximiseGrossMarginReturnonInvestment(GMROI)andsell-through.
Thisimprovessell-through,reducesend-seasonredistributioncosts,boostsGMROIandenhancescustomersatisfactionwithlocalisedassortments.
KeyprinciplesforsuccessfulAIimplementation
AIisgainingtractionacrosssectors,butchallengessuchasinfrastructuregaps,talentshortagesandinternalresistancestillhinderfull-scaleadoption.
BarrierstodevelopinganddeployingGenAI
+10pts+6pts-10pts
38%
28%
32%
36%
26%
22%25%
21%20%17%17%17%15%15%19%14%
26%27%26%27%24%
18%
Worries
about
complying
with
regulations
Difficulty
managing
risks
Implementation
challenges
Lackof
technical
talentand
skills
Lackofa
governance
model
Difficulty
identifying
usecases
Lackofan
adoption
strategy
Trouble
choosingthe
right
technologies
Cultural
resistance
from
employees
Not
havingthe
rightcomp
infrastructure/
data
Lackof
executive
commitment
and/or
funding
Q1Q4
Source:StateofGenAIreport
AIinretailfortheagenticera:Aspirationtoaction
13
Whenitcomestotheretailindustry,thespecificchallengesthattheyfaceinAIimplementationsare:
1.Dataqualityandintegration:AIsystemsrelyheavily
onclean,consistentandwell-integrateddata.Inretail,
dataoftencomesfrommultiplesources,suchasPoint
ofSale(POS)systems,e-commerceplatforms,CustomerRelationshipManagement(CRM)tools,supplychain
databasesandsocialmedia.Thesesystemsmaynotspeakthesamelanguage,leadingtofragmentedinsights.25
2.Dataprivacyandsecurity:Asretailerscollectvast
amountsofcustomerdatatoenhancepersonalisation,
theyfaceincreasingscrutinyoverhowthatdataisstored,processedandprotected.WithIndia’sevolvingdata
protectionregulations(e.g.DigitalPersonalDataProtectionAct),complianceisbecomingmorecomplex.26
3.Highimplementationcosts:AIadoptionrequiressignificantinvestmentininfrastructure(cloudcomputing,datalakes),
so
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/Z 17626.35-2025電磁兼容試驗(yàn)和測(cè)量技術(shù)第35部分:HPEM模擬器概述
- 2026年海洋非物質(zhì)文化遺產(chǎn)保護(hù)合同
- 2026年網(wǎng)絡(luò)安全文化建設(shè)服務(wù)合同
- 2026年醫(yī)院古金星模型館共建合同
- 2025年瀏陽(yáng)市金陽(yáng)醫(yī)院第三批公開(kāi)招聘編外合同制人員備考題庫(kù)及一套完整答案詳解
- 2025年上海大學(xué)上海市科創(chuàng)教育研究院招聘行政專員備考題庫(kù)完整參考答案詳解
- 吉林省水利水電勘測(cè)設(shè)計(jì)研究院2026年校園招聘29人備考題庫(kù)及一套完整答案詳解
- 銀聯(lián)企業(yè)服務(wù)(上海)有限公司2026年度招聘?jìng)淇碱}庫(kù)及完整答案詳解一套
- 國(guó)家知識(shí)產(chǎn)權(quán)局專利局專利審查協(xié)作廣東中心2026年度專利審查員公開(kāi)招聘?jìng)淇碱}庫(kù)完整參考答案詳解
- 2025年關(guān)于為山東鐵路檢察機(jī)關(guān)公開(kāi)招聘聘用制書(shū)記員的備考題庫(kù)附答案詳解
- 非開(kāi)挖頂管合同范本
- 專家講座的協(xié)議書(shū)
- 雨課堂學(xué)堂在線學(xué)堂云民族學(xué)導(dǎo)論專題中央民族大學(xué)單元測(cè)試考核答案
- 2026元旦班級(jí)聯(lián)歡晚會(huì)活動(dòng)主題班會(huì):星光閃耀迎新夜 課件
- 2025年內(nèi)蒙古行政執(zhí)法人員資格認(rèn)證考試題庫(kù)真題庫(kù)及答案
- 急性胰腺炎重癥患者白蛋白輸注方案
- 中國(guó)-東盟貿(mào)易投資合作進(jìn)展報(bào)告2024-2025-深圳大學(xué)
- 特種設(shè)備安全管理制度匯編
- 異形展臺(tái)施工方案設(shè)計(jì)
- 績(jī)效管理數(shù)字化應(yīng)用指南2025
- 施工員證考試題型及答案
評(píng)論
0/150
提交評(píng)論