版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
(完整版)蘇教七年級(jí)下冊(cè)期末解答題壓軸數(shù)學(xué)必考知識(shí)點(diǎn)真題(比較難)一、解答題1.如圖所示,已知射線.點(diǎn)E、F在射線CB上,且滿足,OE平分(1)求的度數(shù);(2)若平行移動(dòng)AB,那么的值是否隨之發(fā)生變化?如果變化,找出變化規(guī)律.若不變,求出這個(gè)比值;(3)在平行移動(dòng)AB的過(guò)程中,是否存在某種情況,使?若存在,求出其度數(shù).若不存在,請(qǐng)說(shuō)明理由.2.(生活常識(shí))射到平面鏡上的光線(入射光線)和變向后的光線(反射光線)與平面鏡所夾的角相等.如圖1,MN是平面鏡,若入射光線AO與水平鏡面夾角為∠1,反射光線OB與水平鏡面夾角為∠2,則∠1=∠2.(現(xiàn)象解釋)如圖2,有兩塊平面鏡OM,ON,且OM⊥ON,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD.求證AB∥CD.(嘗試探究)如圖3,有兩塊平面鏡OM,ON,且∠MON=55,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD,光線AB與CD相交于點(diǎn)E,求∠BEC的大小.(深入思考)如圖4,有兩塊平面鏡OM,ON,且∠MONα,入射光線AB經(jīng)過(guò)兩次反射,得到反射光線CD,光線AB與CD所在的直線相交于點(diǎn)E,∠BED=β,α與β之間滿足的等量關(guān)系是.(直接寫(xiě)出結(jié)果)3.如圖,,點(diǎn)A、B分別在直線MN、GH上,點(diǎn)O在直線MN、GH之間,若,.(1)=;(2)如圖2,點(diǎn)C、D是、角平分線上的兩點(diǎn),且,求的度數(shù);(3)如圖3,點(diǎn)F是平面上的一點(diǎn),連結(jié)FA、FB,E是射線FA上的一點(diǎn),若,,且,求n的值.4.已知,,點(diǎn)為射線上一點(diǎn).(1)如圖1,寫(xiě)出、、之間的數(shù)量關(guān)系并證明;(2)如圖2,當(dāng)點(diǎn)在延長(zhǎng)線上時(shí),求證:;(3)如圖3,平分,交于點(diǎn),交于點(diǎn),且:,,,求的度數(shù).5.已知ABCD,點(diǎn)E是平面內(nèi)一點(diǎn),∠CDE的角平分線與∠ABE的角平分線交于點(diǎn)F.(1)若點(diǎn)E的位置如圖1所示.①若∠ABE=60°,∠CDE=80°,則∠F=°;②探究∠F與∠BED的數(shù)量關(guān)系并證明你的結(jié)論;(2)若點(diǎn)E的位置如圖2所示,∠F與∠BED滿足的數(shù)量關(guān)系式是.(3)若點(diǎn)E的位置如圖3所示,∠CDE為銳角,且,設(shè)∠F=α,則α的取值范圍為.6.已知:如圖1直線、被直線所截,.(1)求證:;(2)如圖2,點(diǎn)E在,之間的直線上,P、Q分別在直線、上,連接、,平分,平分,則和之間有什么數(shù)量關(guān)系,請(qǐng)直接寫(xiě)出你的結(jié)論;(3)如圖3,在(2)的條件下,過(guò)P點(diǎn)作交于點(diǎn)H,連接,若平分,,求的度數(shù).7.(數(shù)學(xué)經(jīng)驗(yàn))三角形的中線,角平分線,高是三角形的重要線段,我們知道,三角形的3條高所在直線交于同一點(diǎn).(1)①如圖1,△ABC中,∠A=90°,則△ABC的三條高所在的直線交于點(diǎn);②如圖2,△ABC中,∠BAC>90°,已知兩條高BE,AD,請(qǐng)你僅用一把無(wú)刻度的直尺(僅用于過(guò)任意兩點(diǎn)作直線、連接任意兩點(diǎn)、延長(zhǎng)任意線段)畫(huà)出△ABC的第三條高.(不寫(xiě)畫(huà)法,保留作圖痕跡).(綜合應(yīng)用)(2)如圖3,在△ABC中,∠ABC>∠C,AD平分∠BAC,過(guò)點(diǎn)B作BE⊥AD于點(diǎn)E.①若∠ABC=80°,∠C=30°,則∠EBD=;②請(qǐng)寫(xiě)出∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系,并說(shuō)明理由.(拓展延伸)(3)三角形的中線將三角形分成面積相等的兩部分,如果兩個(gè)三角形的高相同,則他們的面積比等于對(duì)應(yīng)底邊的比.如圖4,M是BC上一點(diǎn),則有.如圖5,△ABC中,M是BC上一點(diǎn)BM=BC,N是AC的中點(diǎn),若三角形ABC的面積是m請(qǐng)直接寫(xiě)出四邊形CMDN的面積.(用含m的代數(shù)式表示)8.已如在四邊形中,.(1)如圖1,若,則________.(2)如圖2,若、分別平分、,判斷與位置關(guān)系并證明理由.(3)如圖3,若、分別五等分、(即,),則_______.9.如圖1,由線段組成的圖形像英文字母,稱為“形”.(1)如圖1,形中,若,則______;(2)如圖2,連接形中兩點(diǎn),若,試探求與的數(shù)量關(guān)系,并說(shuō)明理由;(3)如圖3,在(2)的條件下,且的延長(zhǎng)線與的延長(zhǎng)線有交點(diǎn),當(dāng)點(diǎn)在線段的延長(zhǎng)線上從左向右移動(dòng)的過(guò)程中,直接寫(xiě)出與所有可能的數(shù)量關(guān)系.10.已知:直線,點(diǎn)E,F(xiàn)分別在直線AB,CD上,點(diǎn)M為兩平行線內(nèi)部一點(diǎn).(1)如圖1,∠AEM,∠M,∠CFM的數(shù)量關(guān)系為_(kāi)_______;(直接寫(xiě)出答案)(2)如圖2,∠MEB和∠MFD的角平分線交于點(diǎn)N,若∠EMF等于130°,求∠ENF的度數(shù);(3)如圖3,點(diǎn)G為直線CD上一點(diǎn),延長(zhǎng)GM交直線AB于點(diǎn)Q,點(diǎn)P為MG上一點(diǎn),射線PF、EH相交于點(diǎn)H,滿足,,設(shè)∠EMF=α,求∠H的度數(shù)(用含α的代數(shù)式表示).【參考答案】一、解答題1.(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2解析:(1)40°;(2)的值不變,比值為;(3)∠OEC=∠OBA=60°.【分析】(1)根據(jù)OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,從而得出答案;(2)根據(jù)平行線的性質(zhì),即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根據(jù)∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值為1:2.(3)設(shè)∠AOB=x,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等表示出∠CBO=∠AOB=x,再根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和表示出∠OEC,然后利用三角形的內(nèi)角和等于180°列式表示出∠OBA,然后列出方程求解即可.【詳解】(1)∵CB∥OA∴∠C+∠COA=180°∵∠C=100°∴∠COA=180°-∠C=80°∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;∴∠EOB=40°;(2)∠OBC:∠OFC的值不發(fā)生變化∵CB∥OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2(3)當(dāng)平行移動(dòng)AB至∠OBA=60°時(shí),∠OEC=∠OBA.設(shè)∠AOB=x,∵CB∥AO,∴∠CBO=∠AOB=x,∵CB∥OA,AB∥OC,∴∠OAB+∠ABC=180°,∠C+∠ABC=180°∴∠OAB=∠C=100°.∵∠OEC=∠CBO+∠EOB=x+40°,∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,∴x+40°=80°-x,∴x=20°,∴∠OEC=∠OBA=80°-20°=60°.【點(diǎn)睛】本題主要考查了平行線、角平分線的性質(zhì)以及三角形內(nèi)角和定理,熟記各性質(zhì)并準(zhǔn)確識(shí)圖理清圖中各角度之間的關(guān)系是解題的關(guān)鍵.2.【現(xiàn)象解釋】見(jiàn)解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【現(xiàn)象解釋】見(jiàn)解析;【嘗試探究】BEC70;【深入思考】2.【分析】[現(xiàn)象解釋]根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可證得AB∥CD;[嘗試探究]根據(jù)三角形內(nèi)角和定理求得∠2+∠3=125°,根據(jù)平面鏡反射光線的規(guī)律得∠1=∠2,∠3=∠4,再利用平角的定義得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根據(jù)三角形內(nèi)角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定義得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性質(zhì)∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可證得β=2α.【詳解】[現(xiàn)象解釋]如圖2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【嘗試探究】如圖3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如圖4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【點(diǎn)睛】本題考查了平行線的判定,三角形外角的性質(zhì)以及三角形內(nèi)角和定理,熟練掌握三角形的性質(zhì)是解題的關(guān)鍵.3.(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n=3.【分析】(1)如圖:過(guò)O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;(2)如圖:分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,先根據(jù)角平分線求得,再根據(jù)平行線的性質(zhì)得到;進(jìn)一步求得,,然后根據(jù)三角形外角的性質(zhì)解答即可;(3)設(shè)BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,從而,又∠FKN=∠F+∠FAK,得,即可求n.【詳解】解:(1)如圖:過(guò)O作OP//MN,∵M(jìn)N//GHl∴MN//OP//GH∴∠NAO+∠POA=180°,∠POB+∠OBH=180°∴∠NAO+∠AOB+∠OBH=360°∵∠NAO=116°,∠OBH=144°∴∠AOB=360°-116°-144°=100°;(2)分別延長(zhǎng)AC、CD交GH于點(diǎn)E、F,∵AC平分且,∴,又∵M(jìn)N//GH,∴;∵,∵BD平分,∴,又∵∴;∴;(3)設(shè)FB交MN于K,∵,則;∴∵,∴,,在△FAK中,,∴,∴.經(jīng)檢驗(yàn):是原方程的根,且符合題意.【點(diǎn)睛】本題主要考查平行線的性質(zhì)及應(yīng)用,正確作出輔助線、構(gòu)造平行線、再利用平行線性質(zhì)進(jìn)行求解是解答本題的關(guān)鍵.4.(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H解析:(1),證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).【分析】(1)過(guò)E作EH∥AB,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)設(shè)CD與AE交于點(diǎn)H,根據(jù)∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,進(jìn)而得到∠EAF=∠AED+∠EDG;(3)設(shè)∠EAI=∠BAI=α,則∠CHE=∠BAE=2α,進(jìn)而得出∠EDI=α+10°,∠CDI=α+5°,再根據(jù)∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,求得α=70°,即可根據(jù)三角形內(nèi)角和定理,得到∠EKD的度數(shù).【詳解】解:(1)∠AED=∠EAF+∠EDG.理由:如圖1,過(guò)E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)證明:如圖2,設(shè)CD與AE交于點(diǎn)H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可設(shè)∠EAI=∠BAI=α,則∠BAE=2α,如圖3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=∠EDK=α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),三角形外角性質(zhì)以及三角形內(nèi)角和定理的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造內(nèi)錯(cuò)角,運(yùn)用三角形外角性質(zhì)進(jìn)行計(jì)算求解.解題時(shí)注意:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和.5.(1)①70;②∠F=∠BED,證明見(jiàn)解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過(guò)F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠A解析:(1)①70;②∠F=∠BED,證明見(jiàn)解析;(2)2∠F+∠BED=360°;(3)【分析】(1)①過(guò)F作FG//AB,利用平行線的判定和性質(zhì)定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,利用角平分線的定義得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),求得∠ABF+∠CDF=70,即可求解;②分別過(guò)E、F作EN//AB,F(xiàn)M//AB,利用平行線的判定和性質(zhì)得到∠BED=∠ABE+∠CDE,利用角平分線的定義得到∠BED=2(∠ABF+∠CDF),同理得到∠F=∠ABF+∠CDF,即可求解;(2)根據(jù)∠ABE的平分線與∠CDE的平分線相交于點(diǎn)F,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,因?yàn)锳B∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結(jié)合①的結(jié)論即可說(shuō)明∠BED與∠BFD之間的數(shù)量關(guān)系;(3)通過(guò)對(duì)的計(jì)算求得,利用角平分線的定義以及三角形外角的性質(zhì)求得,即可求得.【詳解】(1)①過(guò)F作FG//AB,如圖:∵AB∥CD,F(xiàn)G∥AB,∴CD∥FG,∴∠ABF=∠BFG,∠CDF=∠DFG,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF,∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF)=60+80=140,∴∠ABF+∠CDF=70,∴∠DFB=∠ABF+∠CDF=70,故答案為:70;②∠F=∠BED,理由是:分別過(guò)E、F作EN//AB,F(xiàn)M//AB,∵EN//AB,∴∠BEN=∠ABE,∠DEN=∠CDE,∴∠BED=∠ABE+∠CDE,∵DF、BF分別是∠CDE的角平分線與∠ABE的角平分線,∴∠ABE=2∠ABF,∠CDE=2∠CDF,即∠BED=2(∠ABF+∠CDF);同理,由FM//AB,可得∠F=∠ABF+∠CDF,∴∠F=∠BED;(3)2∠F+∠BED=360°.如圖,過(guò)點(diǎn)E作EG∥AB,則∠BEG+∠ABE=180°,∵AB∥CD,EG∥AB,∴CD∥EG,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),∵BF平分∠ABE,∴∠ABE=2∠ABF,∵DF平分∠CDE,∴∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由①得:∠BFD=∠ABF+∠CDF,∴∠BED=360°-2∠BFD,即2∠F+∠BED=360°;(3)∵,∠F=α,∴,解得:,如圖,∵∠CDE為銳角,DF是∠CDE的角平分線,∴∠CDH=∠DHB,∴∠F∠DHB,即,∴,故答案為:.【點(diǎn)睛】本題考查了平行線的性質(zhì)、角平分線的定義以及三角形外角性質(zhì)的應(yīng)用,在解答此題時(shí)要注意作出輔助線,構(gòu)造出平行線求解.6.(1)證明見(jiàn)解析;(2),理由見(jiàn)解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦解析:(1)證明見(jiàn)解析;(2),理由見(jiàn)解析;(3).【分析】(1)只需要證明即可證明;(2)作.由平行線的性質(zhì)即可證明,同理可證明,由此再根據(jù)角平分線的定義和平角的性質(zhì)可得;(3)設(shè),.,則,想辦法構(gòu)建方程即可解決問(wèn)題;【詳解】解:(1)如圖1中,,,,.(2)結(jié)論:如圖2中,.理由:作.,,,,,,,同理可證:,∵平分,平分,,,∵,,;(3)設(shè),.,∵,∴,∵,∴,,,,平分,,,平分,,,,,,.【點(diǎn)睛】本題考查平行線的判定和性質(zhì),角平分線的定義等知識(shí),(2)中能正確作出輔助線是解題關(guān)鍵;(3)中能熟練掌握相關(guān)性質(zhì),找到角度之間的關(guān)系是解題關(guān)鍵.7.(1)①A;②見(jiàn)解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長(zhǎng)BE,DA,兩者交于F,連接CF交BA的延長(zhǎng)線解析:(1)①A;②見(jiàn)解析;(2)①25°;②2∠EBD=∠ABC﹣∠ACB;(3)m.【分析】(1)①由直角三角形三條高的定義即可得出結(jié)論;②分別延長(zhǎng)BE,DA,兩者交于F,連接CF交BA的延長(zhǎng)線于H,CH即為所求;(2)①由三角形內(nèi)角和定理和角平分線的性質(zhì)可以得出∠BAE=∠BAC=35°,再由直角三角形的性質(zhì)得∠ABE=55°,即可求解;②由三角形內(nèi)角和定理和角平分線的性質(zhì)求解即可;(3)連接CD,由中線的性質(zhì)得S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,S△ABN=S△CBN=m,再求出S△CDM=S△BCD=,S△ACM=S△ABC=m,利用面積關(guān)系求解即可.【詳解】解:(1)①∵直角三角形三條高的交點(diǎn)為直角頂點(diǎn),∠A=90°,∴△ABC的三條高所在直線交于點(diǎn)A,故答案為:A;②如圖,分別延長(zhǎng)BE,DA,兩者交于F,連接CF交BA的延長(zhǎng)線于H,CH即為所求;(2)①∵∠ABC=80°,∠ACB=30°,∴∠BAC=70°,∵AD平分∠BAC,∴∠BAE=∠BAC=35°,∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣35°=55°,∴∠EBD=∠ABC﹣∠ABE=80°﹣55°=25°,故答案為:25°;②∠EBD與∠ABC,∠C之間的數(shù)量關(guān)系為:2∠EBD=∠ABC﹣∠ACB∵BE⊥AD,∴∠AEB=90°,∴∠ABE=90°﹣∠BAD,∴∠EBD=∠ABC﹣∠ABE=∠ABC+∠BAD﹣90°,∵AD平分∠BAC,∴∠BAD=∠CAD=∠BAC,∵∠BAC=180°﹣∠ABC﹣∠ACB,∴∠BAD=90°﹣∠ABC﹣∠ACB,∴∠EBD=∠ABC+∠BAD﹣90°=∠ABC+90°﹣∠ABC﹣∠C﹣90°=∠ABC﹣∠C,∴2∠EBD=∠ABC﹣∠ACB,故答案為:2∠EBD=∠ABC﹣∠ACB;(3)連接CD,如圖所示:∵N是AC的中點(diǎn),∴,∴S△ADN=S△CDN,同理:S△ABN=S△CBN,設(shè)S△ADN=S△CDN=a,∵△ABC的面積是m,∴S△ABN=S△CBN=m,∴S△BCD=S△ABD=m﹣a,∵BM=BC,∴,∴,,∴S△CDM=3S△BDM,S△ACM=3S△ABM,∴S△CDM=S△BCD=×(m﹣a)=,S△ACM=S△ABC=m,∵S△ACM=S四邊形CMDN+S△ADN=S△CDM+S△CDN+S△ADN,即:,解得:a=,∴S四邊形CMDN=S△CDM+S△CDN=,【點(diǎn)睛】本題主要考查了三角形的高,三角形的中線,三角形內(nèi)角和,三角形面積,解題的關(guān)鍵在于能夠熟練掌握相關(guān)知識(shí)進(jìn)行求解.8.(1)70°;(2)DE∥BF,證明見(jiàn)解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計(jì)算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF解析:(1)70°;(2)DE∥BF,證明見(jiàn)解析;(3)54°【分析】(1)根據(jù)四邊形內(nèi)角和計(jì)算即可;(2)根據(jù)平角的定義和等量代換可得∠MBC+∠CDN=180°,再根據(jù)角平分線的定義得到∠CBF+∠CDE=90°,從而推出∠EDB+∠FBD=180°,可得結(jié)論;(3)根據(jù)五等分得到∠CDP+∠CBP=36°,連接PC并延長(zhǎng),證明∠DCB=∠DPB+∠CBP+∠CDP,即可計(jì)算.【詳解】解:(1)∵∠A=∠C=90°,∠ABC=70°,∴∠ADC=360°-90°-90°-70°=110°,∴∠NDC=180°-110°=70°;(2)DE∥BF,如圖,連接BD,∵∠ABC+∠ADC=180°,且∠MBC+∠ABC=180°,∠CDN+∠ADC=180°,∴∠MBC+∠CDN=180°,∵∠CBF=∠MBC,∠CDE=∠CDN,∴∠CBF+∠CDE=90°,∵∠C=90°,∴∠CBD+∠CDB=90°,∴∠EDB+∠FBD=∠CBF+∠CDE+∠CBD+∠CDB=180°,∴DE∥BF;(3)∵∠MBC+∠CDN=180°,∴∠CDP+∠CBP=(∠MBC+∠CDN)=36°,連接PC并延長(zhǎng),∵∠DCE=∠CDP+∠CPD,∠BCE=∠CPB+∠CBP,∴∠DCB=∠DCE+∠BCE=∠DPB+∠CBP+∠CDP,∴∠DPB=90°-36°=54°.【點(diǎn)睛】本題考查多邊形內(nèi)角和與外角,三角形內(nèi)角和定理,平行線的判定等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,屬于中考??碱}型.9.(1)50°;(2)∠A+∠C=30°+α,理由見(jiàn)解析;(3)∠A-∠DCM=30°+α或30°-α【分析
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025吉林大學(xué)白求恩醫(yī)學(xué)部機(jī)關(guān)面向校內(nèi)招聘正科級(jí)干部1人備考考試試題及答案解析
- 2025重慶大學(xué)醫(yī)院勞務(wù)派遣醫(yī)技人員招聘4人備考考試試題及答案解析
- 2023檢查實(shí)施方案十篇
- 網(wǎng)商家的合同范本
- 網(wǎng)格員聘請(qǐng)協(xié)議書(shū)
- 耗材供銷合同范本
- 職工不坐班協(xié)議書(shū)
- 聯(lián)合中標(biāo)合同范本
- 聘用dj合同范本
- 聘用護(hù)士合同范本
- 2025年齊齊哈爾市總工會(huì)工會(huì)社會(huì)工作者招聘39人考試筆試模擬試題及答案解析
- 慈溪白骨案課件
- 2024南江輔警考試真題及答案
- 小兒腎挫傷的護(hù)理措施
- 2025中原證券股份有限公司招聘55人筆試考試參考試題及答案解析
- 醫(yī)療不良事件上報(bào)與績(jī)效聯(lián)動(dòng)策略
- 學(xué)堂在線 雨課堂 學(xué)堂云 科研倫理與學(xué)術(shù)規(guī)范 章節(jié)測(cè)試答案
- 骨相美學(xué)理論課件
- 2025年空氣采樣操作流程試題有答案
- 2025年度數(shù)字化城市管理信息系統(tǒng)安全自查報(bào)告
- 營(yíng)銷沙盤實(shí)訓(xùn)報(bào)告
評(píng)論
0/150
提交評(píng)論