福州第一中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)水平測試試題含解析_第1頁
福州第一中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)水平測試試題含解析_第2頁
福州第一中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)水平測試試題含解析_第3頁
福州第一中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)水平測試試題含解析_第4頁
福州第一中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

福州第一中學(xué)2026屆數(shù)學(xué)九上期末學(xué)業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,若A、B、C、D、E,甲、乙、丙、丁都是方格紙中的格點,為使△ABC與△DEF相似,則點F應(yīng)是甲、乙、丙、丁四點中的().A.甲 B.乙 C.丙 D.丁2.已知⊙O的直徑為8cm,P為直線l上一點,OP=4cm,那么直線l與⊙O的公共點有()A.0個 B.1個 C.2個 D.1個或2個3.如圖,△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=22°,則∠BDC等于A.44° B.60° C.67° D.77°4.如果,兩點都在反比例函數(shù)的圖象上,那么與的大小關(guān)系是()A. B. C. D.5.如圖,AB與⊙O相切于點A,BO與⊙O相交于點C,點D是優(yōu)弧AC上一點,∠CDA=27°,則∠B的大小是()A.27° B.34° C.36° D.54°6.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.20° C.15° D.30°7.如圖,,相交于點,.若,,則與的面積之比為()A. B. C. D.8.如圖,點M為反比例函數(shù)y=上的一點,過點M作x軸,y軸的垂線,分別交直線y=-x+b于C,D兩點,若直線y=-x+b分別與x軸,y軸相交于點A,B,則AD·BC的值是()A.3 B.2 C.2 D.9.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°10.如圖,點E、F是邊長為4的正方形ABCD邊AD、AB上的動點,且AF=DE,BE交CF于點P,在點E、F運動的過程中,PA的最小值為()A.2 B.2 C.4﹣2 D.2﹣2二、填空題(每小題3分,共24分)11.如圖,在Rt△ABC中,∠C=90°,AB=10,BC=6,則sinA=_____.12.已知點B位于點A北偏東30°方向,點C位于點A北偏西30°方向,且AB=AC=8千米,那么BC=________千米.13.一元二次方程x2=2x的解為________.14.關(guān)于的方程有兩個不相等的實數(shù)根,那么的取值范圍是__________.15.如圖,小明從路燈下A處,向前走了5米到達D處,行走過程中,他的影子將會(只填序號)________.①越來越長,②越來越短,③長度不變.在D處發(fā)現(xiàn)自己在地面上的影子長DE是2米,如果小明的身高為1.7米,那么路燈離地面的高度AB是________米.16.如圖,有九張分別印有如下車標(biāo)的卡片(卡片中除圖案不同外,其余均相同)現(xiàn)將帶圖案的一面朝下擺放,從中任意抽取一張,抽到的是中心對稱圖形車標(biāo)卡片的概率是_______.17.__________.18.如圖,在直角△OAB中,∠AOB=30°,將△OAB繞點O逆時針旋轉(zhuǎn)100°得到△OA1B1,則∠A1OB=°.三、解答題(共66分)19.(10分)春節(jié)期間,支付寶“集五?!被顒又械摹凹甯!备?ü卜譃?種,分別為富強福、和諧福、友善福、愛國福、敬業(yè)福,從國家、社會和個人三個層面體現(xiàn)了社會主義核心價值觀的價值目標(biāo).(1)小明一家人春節(jié)期間參與了支付寶“集五?!被顒?,小明和姐姐都缺一個“敬業(yè)福”,恰巧爸爸有一個可以送給他們其中一個人,兩個人各設(shè)計了一個游戲,獲勝者得到“敬業(yè)福”.在一個不透明盒子里放入標(biāo)號分別為1,2,3,4的四個小球,這些小球除了標(biāo)號數(shù)字外都相同,將小球搖勻.小明的游戲規(guī)則是:從盒子中隨機摸出一個小球,摸到標(biāo)號數(shù)字為奇數(shù)小球,則判小明獲勝,否則,判姐姐獲勝.請判斷,此游戲規(guī)則對小明和姐姐公平嗎?說明理由.姐姐的游戲規(guī)則是:小明從盒子中隨機摸出一個小球,記下標(biāo)號數(shù)字后放回盒里,充分搖勻后,姐姐再從盒中隨機摸出一個小球,并記下標(biāo)號數(shù)字.若兩次摸到小球的標(biāo)號數(shù)字同為奇數(shù)或同為偶數(shù),則判小明獲勝,若兩次摸到小球的標(biāo)號數(shù)字為一奇一偶,則判姐姐獲勝.請用列表法或畫樹狀圖的方法進行判斷此游戲規(guī)則對小明和姐姐是否公平.(2)“五福”中體現(xiàn)了社會主義核心價值觀的價值目標(biāo)的個人層面有哪些?20.(6分)如圖,在中,,,.點從點出發(fā),沿向終點運動,同時點從點出發(fā),沿射線運動,它們的速度均為每秒5個單位長度,點到達終點時,、同時停止運動,當(dāng)點不與點、重合時,過點作于點,連接,以、為鄰邊作.設(shè)與重疊部分圖形的面積為,點的運動時間為.(1)①的長為______;②的長用含的代數(shù)式表示為______;(2)當(dāng)為矩形時,求的值;(3)當(dāng)與重疊部分圖形為四邊形時,求與之間的函數(shù)關(guān)系式.21.(6分)如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于點及點(1)求二次函數(shù)的解析式及的坐標(biāo)(2)根據(jù)圖象,直按寫出滿足的的取值范圍22.(8分)如圖,在△ABC中,CD⊥AB,DE⊥AC,DF⊥BC,垂足分別為D,E,F(xiàn).(1)求證:CE?CA=CF?CB;(2)EF交CD于點O,求證:△COE∽△FOD;23.(8分)已知關(guān)于x的一元二次方程(k﹣1)x2+4x+1=1.(1)若此方程的一個根為﹣1,求k的值;(2)若此一元二次方程有實數(shù)根,求k的取值范圍.24.(8分)如圖,P是正方形ABCD的邊CD上一點,∠BAP的平分線交BC于點Q,求證:AP=DP+BQ.25.(10分)已知,正方形中,點是邊延長線上一點,連接,過點作,垂足為點,與交于點.

(1)如圖甲,求證:;(2)如圖乙,連接,若,,求的值.26.(10分)已知拋物線y=kx2+(1﹣2k)x+1﹣3k與x軸有兩個不同的交點A、B.(1)求k的取值范圍;(2)證明該拋物線一定經(jīng)過非坐標(biāo)軸上的一點M,并求出點M的坐標(biāo);(3)當(dāng)<k≤8時,由(2)求出的點M和點A,B構(gòu)成的△ABM的面積是否有最值?若有,求出該最值及相對應(yīng)的k值.

參考答案一、選擇題(每小題3分,共30分)1、A【分析】令每個小正方形的邊長為1,分別求出兩個三角形的邊長,從而根據(jù)相似三角形的對應(yīng)邊成比例即可找到點F對應(yīng)的位置.【詳解】解:根據(jù)題意,△ABC的三邊之比為要使△ABC∽△DEF,則△DEF的三邊之比也應(yīng)為經(jīng)計算只有甲點合適,

故選:A.

本題考查了相似三角形的判定定理:

(1)兩角對應(yīng)相等的兩個三角形相似.

(2)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似.

(3)三邊對應(yīng)成比例的兩個三角形相似.2、D【分析】根據(jù)垂線段最短,得圓心到直線的距離小于或等于4cm,再根據(jù)數(shù)量關(guān)系進行判斷.若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與圓相離;即可得出公共點的個數(shù).【詳解】解:根據(jù)題意可知,圓的半徑r=4cm.∵OP=4cm,當(dāng)OP⊥l時,直線和圓是相切的位置關(guān)系,公共點有1個;當(dāng)OP與直線l不垂直時,則圓心到直線的距離小于4cm,所以是相交的位置關(guān)系,公共點有2個.∴直線L與⊙O的公共點有1個或2個,故選D.本題考查了直線與圓的位置關(guān)系.特別注意OP不一定是圓心到直線的距離.3、C【解析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折疊的性質(zhì)可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故選C.4、C【分析】直接把點A(1,y1),B(3,y1)兩點代入反比例函數(shù)中,求出y1與y1的值,再比較其大小即可.【詳解】解:∵A(1,y1),B(3,y1)兩點都在反比例函數(shù)的圖象上;∴y1>y1.

故選:C.本題考查的是反比例函數(shù)圖象上點的坐標(biāo)特點,熟知反比例函數(shù)圖象上各點的坐標(biāo)一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.5、C【分析】由切線的性質(zhì)可知∠OAB=90°,由圓周角定理可知∠BOA=54°,根據(jù)直角三角形兩銳角互余可知∠B=36°.【詳解】解:∵AB與⊙O相切于點A,

∴OA⊥BA.

∴∠OAB=90°.

∵∠CDA=27°,

∴∠BOA=54°.

∴∠B=90°-54°=36°.故選C.考點:切線的性質(zhì).6、A【分析】根據(jù)圓周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等邊對等角即可求解答.【詳解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案為A.本題考查了圓周角定理和平行線的性質(zhì),靈活應(yīng)用所學(xué)定理以及數(shù)形結(jié)合思想的應(yīng)用都是解答本題的關(guān)鍵.7、B【分析】先證明兩三角形相似,再利用面積比是相似比的平方即可解出.【詳解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比為:1:2.∴△AOB和△DCO面積比為:1:4.故選B.本題考查相似三角形的面積比,關(guān)鍵在于牢記面積比和相似比的關(guān)系.8、C【分析】設(shè)點M的坐標(biāo)為(),將代入y=-x+b中求出C點坐標(biāo),同理求出D點坐標(biāo),再根據(jù)兩點之間距離公式即可求解.【詳解】解:設(shè)點M的坐標(biāo)為(),將代入y=-x+b中,得到C點坐標(biāo)為(),將代入y=-x+b中,得到D點坐標(biāo)為(),∵直線y=-x+b分別與x軸,y軸相交于點A,B,∴A點坐標(biāo)(0,b),B點坐標(biāo)為(b,0),∴AD×BC=,故選:C.本題考查的是一次函數(shù)及反比例函數(shù)的性質(zhì),先設(shè)出M點坐標(biāo),用M點的坐標(biāo)表示出C、D兩點的坐標(biāo)是解答此題的關(guān)鍵.9、B【解析】先根據(jù)多邊形的內(nèi)角和公式分別求得正六邊形和正五邊形的每一個內(nèi)角的度數(shù),再根據(jù)多邊形的內(nèi)角和公式求得∠APG的度數(shù).【詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.本題考查了多邊形內(nèi)角與外角,關(guān)鍵是熟悉多邊形內(nèi)角和定理:(n﹣2)?180(n≥3)且n為整數(shù)).10、D【分析】根據(jù)直角三角形斜邊上的中線等于斜邊的一半,取BC的中點O,連接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根據(jù)三角形的三邊關(guān)系可知當(dāng)O、P、A三點共線時,AP的長度最?。驹斀狻拷猓涸谡叫蜛BCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如圖,取BC的中點O,連接OP、OA,則OP=BC=1,在Rt△AOB中,OA=,根據(jù)三角形的三邊關(guān)系,OP+AP≥OA,∴當(dāng)O、P、A三點共線時,AP的長度最小,AP的最小值=OA﹣OP=﹣1.故選:D.本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),三角形的三邊關(guān)系.確定出AP最小值時點P的位置是解題關(guān)鍵,也是本題的難點.二、填空題(每小題3分,共24分)11、【分析】根據(jù)銳角的正弦為對邊比斜邊,可得答案.【詳解】解:在Rt△ABC中,∠C=90°,AB=10,BC=6,則sinA=,故答案為:.本題考查了求解三角函數(shù),屬于簡單題,熟悉正弦三角函數(shù)的定義是解題關(guān)鍵.12、8【解析】因為點B位于點A北偏東30°方向,點C位于點A北偏西30°方向,所以∠BAC=60°,因為AB=AC,所以△ABC是等邊三角形,所以BC=AB=AC=8千米,故答案為:8.13、x1=0,x1=1【解析】試題分析:移項得x1-1x=0,即x(x-1)=0,解得x=0或x=1.考點:解一元二次方程14、且【解析】分析:根據(jù)一元二次方程的定義以及根的判別式的意義可得△=4-12m>1且m≠1,求出m的取值范圍即可.詳解:∵一元二次方程mx2-2x+3=1有兩個不相等的實數(shù)根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案為:m<且m≠1.點睛:本題考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c為常數(shù))根的判別式△=b2-4ac.當(dāng)△>1,方程有兩個不相等的實數(shù)根;當(dāng)△=1,方程有兩個相等的實數(shù)根;當(dāng)△<1,方程沒有實數(shù)根.也考查了一元二次方程的定義.15、①;5.95.【解析】試題解析:小明從路燈下A處,向前走了5米到達D處,行走過程中,他的影子將會越來越長;∵CD∥AB,∴△ECD∽△EBA,∴,即,∴AB=5.95(m).考點:中心投影.16、【分析】首先判斷出是中心對稱圖形的有多少張,再利用概率公式可得答案.【詳解】共有9張卡片,是中心對稱圖形車標(biāo)卡片是第2張,則抽到的是中心對稱圖形車標(biāo)卡片的概率是,故答案為:.此題主要考查了概率公式和中心對稱圖形,關(guān)鍵是掌握隨機事件A的概率P(A)=.17、【分析】直接代入特殊角的三角函數(shù)值進行計算即可.【詳解】.故答案為:.本題考查了特殊角的三角函數(shù)值,熟記特殊角的三角函數(shù)值是解題的關(guān)鍵.18、70【解析】∵將△OAB繞點O逆時針旋轉(zhuǎn)100°得到△OA1B1,∴∠A1OA=100°.又∵∠AOB=30°,∴∠A1OB=∠A1OA-∠AOB=70°.三、解答題(共66分)19、(1)游戲1對小明和姐姐是公平的;游戲2對小明和姐姐是公平的;(2)友善福、愛國福、敬業(yè)福.【分析】(1)在兩種游戲中,分別求出小明和姐姐獲勝的概率,即可得答案;(2)分別從國家、社會和個人三個層面解答即可得答案.【詳解】(1)小明的游戲:∵共有4種等可能結(jié)果,一次摸到小球的標(biāo)號數(shù)字為奇數(shù)或為偶數(shù)的各有2種,∴小明獲勝的概率為=,姐姐獲勝的概率為=,∴游戲1對小明和姐姐是公平的;姐姐的游戲:畫樹狀圖如下:共有16種可能情況,其中兩次摸到小球的標(biāo)號數(shù)字同為奇數(shù)或同為偶數(shù)的共有8種,兩次摸到小球的標(biāo)號數(shù)字為一奇一偶的結(jié)果也共有8種,∴小明獲勝的概率為=,姐姐獲勝的概率為=,∴游戲2對小明和姐姐是公平的..(2)“五?!敝袊覍用媸牵焊粡姼?,“五?!敝猩鐣用媸牵汉椭C福,“五?!敝袀€人層面是:友善福、愛國福、敬業(yè)福.本題考查游戲公平性的判斷,判斷游戲的公平性要計算每個參與者獲勝的概率,概率相等則游戲公平,否則游戲不公平,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)①3;②3t;(2);(3)當(dāng)0<t≤時,S=-3t2+48t;當(dāng)<t<3,S=t2?14t+1.【分析】(1)①根據(jù)勾股定理即可直接計算AB的長;②根據(jù)三角函數(shù)即可計算出PN;

(2)當(dāng)?PQMN為矩形時,由PN⊥AB可知PQ∥AB,根據(jù)平行線分線段成比例定理可得,即可計算出t的值.

(3)當(dāng)?PQMN與△ABC重疊部分圖形為四邊形時,有兩種情況,Ⅰ.?PQMN在三角形內(nèi)部時,Ⅱ.?PQMN有部分在外邊時.由三角函數(shù)可計算各圖形中的高從而計算面積.【詳解】解:(1)在Rt△ABC中,∠C=90°,AC=20,BC=2.

∴AB==3.

∴sin∠CAB=,

由題可知AP=5t,

∴PN=AP?sin∠CAB=5t?=3t.

故答案為:①3;②3t.

(2)當(dāng)?PQMN為矩形時,∠NPQ=90°,

∵PN⊥AB,

∴PQ∥AB,

∴,

由題意可知AP=CQ=5t,CP=20-5t,

∴,

解得t=,

即當(dāng)?PQMN為矩形時t=.

(3)當(dāng)?PQMN△ABC重疊部分圖形為四邊形時,有兩種情況,

Ⅰ.如解圖(3)1所示.?PQMN在三角形內(nèi)部時.延長QM交AB于G點,

由(1)題可知:cosA=sinB=,cosB=,AP=5t,BQ=2-5t,PN=QM=3t.

∴AN=AP?cosA=4t,BG=BQ?cosB=9-3t,QG=BQ?sinB=12-4t,

∵.?PQMN在三角形內(nèi)部時.有0<QM≤QG,

∴0<3t≤12-4t,

∴0<t≤.

∴NG=3-4t-(9-3t)=16-t.

∴當(dāng)0<t≤時,?PQMN與△ABC重疊部分圖形為?PQMN,S與t之間的函數(shù)關(guān)系式為S=PN?NG=3t?(16-t)=-3t2+48t.

Ⅱ.如解圖(3)2所示.當(dāng)0<QG<QM,?PQMN與△ABC重疊部分圖形為梯形PQGN時,

即:0<12-4t<3t,解得:<t<3,

?PQMN與△ABC重疊部分圖形為梯形PQGN的面積S=NG(PN+QG)=(16?t)(3t+12?4t)=t2?14t+1.

綜上所述:當(dāng)0<t≤時,S=-3t2+48t.當(dāng)<t<3,S=t2?14t+1.本題考查了平行四邊形的性質(zhì)、勾股定理、矩形的性質(zhì)、銳角三角函數(shù)等知識,關(guān)鍵是根據(jù)題意畫出圖形,分情況進行討論,避免出現(xiàn)漏解.21、(1)或,點B的坐標(biāo)為(4,3);(2)當(dāng)時,kx+b≥(x-2)2+m【分析】(1)先將點A(1,0)代入求出m的值,即可得出二次函數(shù)的解析式,再將代入二次函數(shù)的解析式即可求出的坐標(biāo);(2)根據(jù)圖象和A、B的交點坐標(biāo)可直接求出的x的取值范圍.【詳解】解:(1)∵二次函數(shù)y=(x-2)2+m的圖象經(jīng)過點A(1,0)∴解得:∴二次函數(shù)的解析式為解得:(不合題意,舍去)∴點B的坐標(biāo)為(4,3)(2)由圖像可知二次函數(shù)y=(x-2)2+m的圖像與一次函數(shù)y=kx+b的圖象交于點A(1,0)及點B(4,3)當(dāng)時,kx+b≥(x-2)2+m本題考查用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關(guān)系式時,要根據(jù)題目給定的條件,選擇恰當(dāng)?shù)姆椒ㄔO(shè)出關(guān)系式,從而代入數(shù)值求解.一般地,當(dāng)已知拋物線上三點時,常選擇一般式,用待定系數(shù)法列三元一次方程組來求解;當(dāng)已知拋物線的頂點或?qū)ΨQ軸時,常設(shè)其解析式為頂點式來求解;當(dāng)已知拋物線與x軸有兩個交點時,可選擇設(shè)其解析式為交點式來求解.22、(1)證明見解析;(2)證明見解析【分析】(1)本題首先根據(jù)垂直性質(zhì)以及公共角分別求證△CED∽△CDA,△CDF∽△CBD,繼而以為中間變量進行等量替換證明本題.(2)本題以第一問結(jié)論為前提證明△CEF∽△CBA,繼而根據(jù)垂直性質(zhì)證明∠OFD=∠ECO,最后利用“角角”判定證明相似.【詳解】(1)由已知得:∠CED=∠CDA=90°,∠ECD=∠DCA,∴△CED∽△CDA,∴,即CD2=CE?CA,又∵∠CFD=∠CDB=90°,∠FCD=∠DCB,∴△CDF∽△CBD,∴,即CD2=CB?CF,則CA?CE=CB?CF;(2)∵CA?CE=CB?CF,∴,又∵∠ECF=∠BCA,∴△CEF∽△CBA,∴∠CFE=∠A,∵∠CFE+∠OFD=∠A+∠ECO=90°,∴∠OFD=∠ECO,又∵∠COE=∠FOD,∴△COE∽△FOD.本題考查相似的判定與性質(zhì)綜合,相似判定難點首先在于確定哪兩個三角形相似,其次是判定定理的選擇,相似判定常用“角角”定理,另外需注意相似圖形其潛在信息點是邊的比例關(guān)系以及角等.23、(2);(2)且.【分析】(2)把x=﹣2代入原方程求k值;(2)一元二次方程的判別式是非負數(shù),且二次項系數(shù)不等于2.【詳解】解:(2)將x=﹣2代入一元二次方程(k﹣2)x2+4x+2=2得,(k﹣2)﹣4+2=2,解得k=4;(2)∵若一元二次方程(k﹣2)x2+4x+2=2有實數(shù)根,∴△=26﹣4(k﹣2)≥2,且k﹣2≠2解得k≤5且k﹣2≠2,即k的取值范圍是k≤5且k≠2.24、證明見解析.【解析】試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)得出∠E=∠AQB,∠EAD=∠QAB,進而得出∠PAE=∠E,即可得出AP=PE=DP+DE=DP+BQ.試題解析:證明:將△ABQ繞A逆時針旋轉(zhuǎn)90°得到△ADE,由旋轉(zhuǎn)的性質(zhì)可得出∠E=∠AQB,∠EAD=∠QAB,又∵∠PAE=90°﹣∠PAQ=90°﹣∠BAQ=∠DAQ=∠AQB=∠E,在△PAE中,得AP=PE=DP+DE=DP+BQ.點睛:此題主要考查了旋轉(zhuǎn)的性質(zhì),根據(jù)已知得出PE=DP+DE是解題關(guān)鍵.25、(1)證明見解析;(2).【分析】(1)由正方形的性質(zhì)得出BC=DC,∠BCG=∠DCE=90°,利用角邊角證明△BGC≌△DEC,然后可得出CG=CE;

(2)由線段的和差,正方形的性質(zhì)求出正方形的邊長為3,根據(jù)勾股定理求出線段BD=6,過點G作GH⊥DB,根據(jù)勾股定理可得出HG=DH=2,進而求出BH=4,BG=2,在Rt△HBG中可求出cos∠DBG的值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論