2026屆山西省太原五十一中學數(shù)學九年級第一學期期末調研試題含解析_第1頁
2026屆山西省太原五十一中學數(shù)學九年級第一學期期末調研試題含解析_第2頁
2026屆山西省太原五十一中學數(shù)學九年級第一學期期末調研試題含解析_第3頁
2026屆山西省太原五十一中學數(shù)學九年級第一學期期末調研試題含解析_第4頁
2026屆山西省太原五十一中學數(shù)學九年級第一學期期末調研試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2026屆山西省太原五十一中學數(shù)學九年級第一學期期末調研試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知的三邊長分別為、、,且滿足,則的形狀是().A.等邊三角形 B.等腰三角形 C.等腰直角三角形 D.直角三角形2.用min{a,b}表示a,b兩數(shù)中的最小數(shù),若函數(shù),則y的圖象為()A. B. C. D.3.若拋物線經(jīng)過點,則的值在().A.0和1之間 B.1和2之間 C.2和3之間 D.3和4之間4.在平面直角坐標系中,將拋物線向左平移1個單位,再向下平移1個單位后所得拋物線的表達式為()A. B.C. D.5.下列所給圖形是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.6.方程x2﹣2x+3=0的根的情況是()A.有兩個相等的實數(shù)根 B.只有一個實數(shù)根C.沒有實數(shù)根 D.有兩個不相等的實數(shù)根7.已知:m=+1,n=﹣1,則=()A.±3 B.﹣3 C.3 D.8.下列函數(shù)的對稱軸是直線的是()A. B. C. D.9.如圖,正五邊形內接于⊙,為上的一點(點不與點重合),則的度數(shù)為()A. B. C. D.10.已知點P(1,-3)在反比例函數(shù)的圖象上,則的值是A.3 B.-3 C. D.二、填空題(每小題3分,共24分)11.已知關于x的方程有兩個不相等的實數(shù)根,則的取值范__________.12.一個不透明的袋中原裝有2個白球和1個紅球,攪勻后從中任意摸出一個球,要使摸出紅球的概率為,則袋中應再添加紅球____個(以上球除顏色外其他都相同).13.如圖是一個圓錐的展開圖,如果扇形的圓心角等于90°,扇形的半徑為6cm,則圓錐底面圓的半徑是______cm.14.一元二次方程x2﹣4=0的解是._________15.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數(shù)根,則a的取值范圍為________.16.如圖,在平面直角坐標系中,第二象限內的點P是反比例函數(shù)y=(k≠0)圖象上的一點,過點P作PA⊥x軸于點A,點B為AO的中點若△PAB的面積為3,則k的值為_____.17.拋物線y=﹣x2+2x﹣5與y軸的交點坐標為_____.18.若是方程的一個根,則的值是________.三、解答題(共66分)19.(10分)先化簡,再求值:,其中x=1﹣.20.(6分)如圖內接于,,CD是的直徑,點P是CD延長線上一點,且.求證:PA是的切線;若,求的直徑.21.(6分)某商場購進一種單價為30元的商品,如果以單價55元售出,那么每天可賣出200個,根據(jù)銷售經(jīng)驗,每降價1元,每天可多賣出10個.假設每個降價x(元)時,每天獲得的利潤為W(元).則降價多少元時,每天獲得的利潤最大?22.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達式;(2)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?23.(8分)如圖⑴,在△ABC中,∠C=90°,AC=8cm,BC=6cm.點M由點B出發(fā)沿BA方向向點A勻速運動,同時點N由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為2cm/s.連接MN,設運動時間為t(s)﹙0<t<4﹚,解答下列問題:⑴設△AMN的面積為S,求S與t之間的函數(shù)關系式,并求出S的最大值;⑵如圖⑵,連接MC,將△MNC沿NC翻折,得到四邊形MNPC,當四邊形MNPC為菱形時,求t的值;⑶當t的值為,△AMN是等腰三角形.24.(8分)我們不妨約定:如圖①,若點D在△ABC的邊AB上,且滿足∠ACD=∠B(或∠BCD=∠A),則稱滿足這樣條件的點為△ABC邊AB上的“理想點”.(1)如圖①,若點D是△ABC的邊AB的中點,AC=,AB=4.試判斷點D是不是△ABC邊AB上的“理想點”,并說明理由.(2)如圖②,在⊙O中,AB為直徑,且AB=5,AC=4.若點D是△ABC邊AB上的“理想點”,求CD的長.(3)如圖③,已知平面直角坐標系中,點A(0,2),B(0,-3),C為x軸正半軸上一點,且滿足∠ACB=45°,在y軸上是否存在一點D,使點A是B,C,D三點圍成的三角形的“理想點”,若存在,請求出點D的坐標;若不存在,請說明理由.25.(10分)為了“城市更美好、人民更幸?!?,我市開展“三城聯(lián)創(chuàng)”活動,環(huán)衛(wèi)部門要求垃圾按三類分別裝袋、投放,其中類指廢電池,過期藥品等有毒垃圾,類指剩余食品等廚余垃圾,類指塑料、廢紙等可回收垃圾,甲、乙兩人各投放一袋垃圾.(1)甲投放的垃圾恰好是類的概率是;(2)用樹狀圖或表格求甲、乙兩人投放的垃圾是不同類別的概率.26.(10分)把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知EF=CD=16cm,請求出球的半徑.

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)非負數(shù)性質求出a,b,c,再根據(jù)勾股定理逆定理解析分析.【詳解】因為所以a-5=0,b-12=0,13-c=0所以a=5,b=12,c=13因為52+122=132所以a2+b2=c2所以以的三邊長分別為、、的三角形是直角三角形.故選:D考核知識點:勾股定理逆定理.根據(jù)非負數(shù)性質求出a,b,c是關鍵.2、C【分析】根據(jù)題意,把問題轉化為二次函數(shù)問題.【詳解】根據(jù)題意,min{x2+1,1-x2}表示x2+1與1-x2中的最小數(shù),不論x取何值,都有x2+1≥1-x2,所以y=1-x2;可知,當x=0時,y=1;當y=0時,x=±1;則函數(shù)圖象與x軸的交點坐標為(1,0),(-1,0);與y軸的交點坐標為(0,1).故選C.考核知識點:二次函數(shù)的性質.3、D【分析】將點A代入拋物線表達式中,得到,根據(jù)進行判斷.【詳解】∵拋物線經(jīng)過點,∴,∵,∴的值在3和4之間,故選D.本題考查拋物線的表達式,無理數(shù)的估計,熟知是解題的關鍵.4、B【分析】直接關鍵二次函數(shù)的平移規(guī)律“左加右減,上加下減”解答即可.【詳解】將拋物線向左平移1個單位,再向下平移1個單位后所得拋物線的表達式為:故選:B本題考查的是二次函數(shù)的平移,掌握其平移規(guī)律是關鍵,需注意:二次函數(shù)平移時必須化成頂點式.5、D【解析】A.此圖形不是中心對稱圖形,不是軸對稱圖形,故A選項錯誤;B.此圖形是中心對稱圖形,也是軸對稱圖形,故B選項錯誤;C.此圖形不是中心對稱圖形,是軸對稱圖形,故D選項錯誤.D.此圖形是中心對稱圖形,不是軸對稱圖形,故C選項正確;故選D.6、C【解析】試題分析:利用根的判別式進行判斷.解:∵∴此方程無實數(shù)根.故選C.7、C【分析】先根據(jù)題意得出和的值,再把式子化成含與的形式,最后代入求值即可.【詳解】由題得:、∴故選:C.本題考查代數(shù)式求值和完全平方公式,運用整體思想是關鍵.8、C【分析】根據(jù)二次函數(shù)的性質分別寫出各選項中拋物線的對稱軸,然后利用排除法求解即可.【詳解】A、對稱軸為y軸,故本選項錯誤;B、對稱軸為直線x=3,故本選項錯誤;C、對稱軸為直線x=-3,故本選項正確;D、∵=∴對稱軸為直線x=3,故本選項錯誤.故選:C.本題考查了二次函數(shù)的性質,主要利用了對稱軸的確定,是基礎題.9、B【分析】根據(jù)圓周角的性質即可求解.【詳解】連接CO、DO,正五邊形內心與相鄰兩點的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對應的圓周角為圓心角的一半,故∠CPD=,故選B.此題主要考查圓內接多邊形的性質,解題的關鍵是熟知圓周角定理的應用.10、B【解析】根據(jù)點在曲線上,點的坐標滿足方程的關系,將P(1,-1)代入,得,解得k=-1.故選B.二、填空題(每小題3分,共24分)11、且;【分析】根據(jù)一元二次方程的定義和根的判別式得出不等式組,求出不等式組的解集即可.【詳解】∵關于x的方程(k-1)x1-x+1=0有兩個不相等的實數(shù)根,∴k-1≠0且△=(-1)1-4(k-1)?1=-4k+9>0,即,解得:k<且k≠1,故答案為k<且k≠1.本題考查了一元二次方程的定義和根的判別式,能得出關于k的不等式組是解此題的關鍵.12、1【分析】首先設應在該盒子中再添加紅球x個,根據(jù)題意得:,解此分式方程即可求得答案.【詳解】解:設應在該盒子中再添加紅球x個,根據(jù)題意得:,解得:x=1,經(jīng)檢驗,x=1是原分式方程的解.故答案為:1.此題考查了概率公式的應用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.13、【分析】把的扇形的弧長等于圓錐底面周長作為相等關系,列方程求解.【詳解】設此圓錐的底面半徑為r,根據(jù)圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,2πr=,解得:r=cm,故答案為.本題考查了圓錐側面展開扇形與底面圓之間的關系,圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.14、x=±1【解析】移項得x1=4,∴x=±1.故答案是:x=±1.15、a≤且a≠1.【分析】根據(jù)一元二次方程有實數(shù)根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據(jù)題意列出關于a的不等式組是解答此題的關鍵.16、-1.【分析】根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出的面積,再根據(jù)線段中點的性質可知,最后根據(jù)雙曲線所在的象限即可求出k的值.【詳解】如圖,連接OP∵點B為AO的中點,的面積為3由反比例函數(shù)的幾何意義得則,即又由反比例函數(shù)圖象的性質可知則解得故答案為:.本題考查了反比例函數(shù)的圖象與性質、線段的中點,熟記反比例函數(shù)的性質是解題關鍵.17、(0,﹣5)【分析】要求拋物線與y軸的交點,即令x=0,解方程.【詳解】解:把x=0代入y=﹣x2+2x﹣5,求得y=﹣5,則拋物線y=﹣x2+2x﹣5與y軸的交點坐標為(0,﹣5).故答案為(0,﹣5).本題考查了拋物線與軸的交點坐標,正確掌握令或令是解題的關鍵.18、1【分析】將代入方程,得到,進而得到,,然后代入求值即可.【詳解】解:由題意,將代入方程∴,,∴故答案為:1本題考查一元二次方程的解,及分式的化簡,掌握方程的解的概念和平方差公式是本題的解題關鍵.三、解答題(共66分)19、1﹣x,原式=.【分析】先利用分式的加減乘除運算對分式進行化簡,然后把x的值代入即可.【詳解】原式=當x=1﹣時,∴原式=1﹣(1﹣)=;本題主要考查分式的化簡求值,掌握分式混合運算的順序和法則是解題的關鍵.20、(1)詳見解析;(2)的直徑為.【解析】連接OA,根據(jù)圓周角定理求出,再根據(jù)同圓的半徑相等從而可得,繼而根據(jù)等腰三角形的性質可得出,繼而由,可得出,從而得出結論;利用含的直角三角形的性質求出,可得出,再由,可得出的直徑.【詳解】連接OA,如圖,,,又,,又,,,,是的切線.在中,,,又,,,.的直徑為.本題考查了切線的判定、圓周角定理、含30度角的直角三角形的性質,熟練掌握切線的判定定理、圓周角定理及含30度角的直角三角形的性質是解題的關鍵.21、降價2.5元時,每天獲得的利潤最大.【分析】根據(jù)題意列函數(shù)關系式,然后根據(jù)二次函數(shù)的性質即可得到結論.【詳解】解:由題意得:W=(55﹣30﹣x)?(200+10x),=﹣10x2+50x+5000,=,二次函數(shù)對稱軸為x=2.5,∴降價2.5元時,每天獲得的利潤最大,最大利潤為5062.5元.答:降價2.5元時,每天獲得的利潤最大.本題主要考查了二次函數(shù)的性質在實際生活中的應用,解決本題的關鍵是要熟練掌握商品銷售利潤問題中等量關系.22、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構造二次函數(shù),利用二次函數(shù)的性質即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.23、(1),;(2)t=;(3)或或【分析】(1)如圖過點M作MD⊥AC于點D,利用相似三角形的性質求出MD即可解決問題;(2)連接PM,交AC于D,,當四邊形MNPC為菱形時,ND=,即可用t表示AD,再結合第一問的相似可以用另外一個含t式子表示AD,列方程計算即可;(3)分別用t表示出AP、AQ、PQ,再分三種情況討論:①當AQ=AP②當PQ=AQ③當PQ=AP,再分別計算即可.【詳解】解:⑴過點M作MD⊥AC于點D.∵,;∴AB=10cm.BM=AN=2t∴AM=10-2t.∵△ADM∽△ACB∴即∴∴又∴S的最大值是;⑵連接PM,交AC于D,∵四邊形MNPC是菱形,則MP⊥NC,ND=CD∵CN=8-2t∴ND=4-t∴AD=2t+4-t=t+4由⑴知AD=∴=t+4∴t=;(3)由(1)知,PE=﹣t+3,與(2)同理得:QE=AE﹣AQ=﹣t+4∴PQ===,在△APQ中,①當AQ=AP,即t=5﹣t時,解得:t1=;②當PQ=AQ,即=t時,解得:t2=,t3=5;③當PQ=AP,即=5﹣t時,解得:t4=0,t5=;∵0<t<4,∴t3=5,t4=0不合題意,舍去,∴當t為s或s或s時,△APQ是等腰三角形.此題主要考查了相似形綜合,用到的知識點是相似三角形的判定與性質、勾股定理、三角形的面積公式以及二次函數(shù)的最值問題,關鍵是根據(jù)題意做出輔助線,利用數(shù)形結合思想進行解答.24、(1)是,理由見解析;(2);(3)D(0,42)或D(0,6)【分析】(1)依據(jù)邊長AC=,AB=4,D是邊AB的中點,得到AC2=,可得到兩個三角形相似,從而得到∠ACD=∠B;(2)由點D是△ABC的“理想點”,得到∠ACD=∠B或∠BCD=∠A,分兩種情況證明均得到CD⊥AB,再根據(jù)面積法求出CD的長;(3)使點A是B,C,D三點圍成的三角形的“理想點”,應分兩種情況討論,利用三角形相似分別求出點D的坐標即可.【詳解】(1)D是△ABC邊AB上的“理想點”,理由:∵AB=4,點D是△ABC的邊AB的中點,∴AD=2,∵AC2=8,,∴AC2=,又∵∠A=∠A,∴△ADC∽△ACB,∴∠ACD=∠B,∴D是△ABC邊AB上的“理想點”.(2)如圖②,∵點D是△ABC的“理想點”,∴∠ACD=∠B或∠BCD=∠A,當∠ACD=∠B時,∵∠ACD+∠BCD=90,∴∠BCD+∠B=90,∴∠CDB=90,當∠BCD=∠A時,同理可得CD⊥AB,在Rt△ABC中,∵∠ACB=90,AB=5,AC=4,∴BC==3,∵,∴,∴.(3)如圖③,存在.過點A作MA⊥AC交CB的延長線于點M,∵∠MAC=∠AOC=90,∠ACM=45,∴∠AMC=∠ACM=45,∴AM=AC,∵∠MAH+∠CAO=90,∠CAO+∠ACO=90,∴∠MAH=∠ACO,∴△AHM≌△COA∴MH=OA,OC=AH,設C(a,0),∵A(0,2),B(0,-3),∴OA=MH=2,OB=3,AB=5,OC=AH=a,BH=a-5,∵MH∥OC,∴,∴,解得a=6或a=-1(舍去),經(jīng)檢驗a=6是原分式方程的解,∴C(6,0),OC=6.①當∠D1CA=∠ABC時,點A是△BCD1的“理想點”,設D1(0,m),∵∠D1CA=∠ABC,∠CD1A=∠CD1B,∴△D1AC∽△D1CB,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論